JP5273131B2 - Method for producing SiC single crystal - Google Patents

Method for producing SiC single crystal Download PDF

Info

Publication number
JP5273131B2
JP5273131B2 JP2010263950A JP2010263950A JP5273131B2 JP 5273131 B2 JP5273131 B2 JP 5273131B2 JP 2010263950 A JP2010263950 A JP 2010263950A JP 2010263950 A JP2010263950 A JP 2010263950A JP 5273131 B2 JP5273131 B2 JP 5273131B2
Authority
JP
Japan
Prior art keywords
single crystal
solution
sic
sic single
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010263950A
Other languages
Japanese (ja)
Other versions
JP2012111670A (en
Inventor
忠雄 野村
則男 山形
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010263950A priority Critical patent/JP5273131B2/en
Priority to US13/300,911 priority patent/US10167573B2/en
Priority to TW100143156A priority patent/TWI554659B/en
Priority to KR1020110123695A priority patent/KR101827928B1/en
Priority to CN201810285275.2A priority patent/CN108286075A/en
Priority to CN2011104631235A priority patent/CN102534797A/en
Priority to EP20110190766 priority patent/EP2458039B1/en
Publication of JP2012111670A publication Critical patent/JP2012111670A/en
Application granted granted Critical
Publication of JP5273131B2 publication Critical patent/JP5273131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an SiC single crystal increasing C solubility in a solution to improve a growth rate of the SiC single crystal, suppressing fluctuation in a solution composition due to consumption of an SiC component associated with the growth of the single crystal, and stabilizing conditions for single crystal growth. <P>SOLUTION: The method of producing an SiC single crystal includes: disposing an SiC seed crystal 20 at a bottom part inside a graphite crucible 10; causing a solution 30 containing Si, C and R (R is at least one selected from the rare earth elements inclusive of Sc and Y) to be present in the crucible 10; supercooling the solution 30 so as to cause the SiC single crystal to grow on the seed crystal 20; and adding powdery or granular Si and/or SiC raw material 41 to the solution 30 from above the graphite crucible 10 while keeping the growth of the SiC single crystal. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、溶液法を用いたSiC(炭化ケイ素)単結晶の製造方法に関する。   The present invention relates to a method for producing a SiC (silicon carbide) single crystal using a solution method.

SiCは、バンドギャップ、絶縁破壊電圧、電子飽和速度、熱伝導率等において優れた特性を有するために、Siの限界を超える次世代パワーデバイスや高温デバイスとして期待されており、これに伴って基板材料の開発も活発に行われている。   SiC has excellent characteristics in terms of band gap, dielectric breakdown voltage, electron saturation speed, thermal conductivity, etc., so it is expected as a next-generation power device and high-temperature device that exceeds the limits of Si. Material development is also active.

従来、SiC単結晶の成長方法としては、昇華法、CVD法、アチソン法、溶液法等が知られている。   Conventionally, as a method for growing a SiC single crystal, a sublimation method, a CVD method, an Atchison method, a solution method, and the like are known.

アチソン法は工業的に古くから行われてきた方法で、無水ケイ酸と炭素を高温加熱してSiC結晶を析出させるが、高純度の単結晶を作ることは難しい。昇華法は、SiC原料粉末を2,200〜2,400℃に昇温し、減圧下で一旦Si、Si2C、SiC2等のガスとして、低温の種結晶上に再びSiCとして析出させる。現在SiCバルク単結晶作製において主流の方法であるが、気相成長法であるため結晶中に種々の欠陥が生じやすい問題がある。またCVD法は、原料がガス成分であるためバルク単結晶を製造するのが難しい。 The Atchison method has been practiced industrially for a long time, and SiC crystals are precipitated by heating silicic acid and carbon at a high temperature, but it is difficult to produce high-purity single crystals. In the sublimation method, the temperature of the SiC raw material powder is raised to 2,200 to 2,400 ° C., and once again deposited as SiC on a low-temperature seed crystal as a gas such as Si, Si 2 C, or SiC 2 under reduced pressure. At present, this is the mainstream method for producing SiC bulk single crystals, but since it is a vapor phase growth method, there is a problem that various defects are likely to occur in the crystal. In addition, it is difficult to produce a bulk single crystal in the CVD method because the raw material is a gas component.

溶液法は、黒鉛るつぼ内でSiやSi含有合金を溶解し、更に黒鉛るつぼからも炭素を溶出させることにより、SiとCを含む溶液から低温部に設置した種結晶上にSiC単結晶を析出成長させる方法である。一般的には、Si融液だけではCが十分に固溶しにくいため、第3元素を含む溶液とすることでC溶解度を高める手法がとられる。溶液法では昇華法よりも欠陥の少ない高品質の単結晶を得ることが可能であるが、一方で昇華法ほどの成長速度が得られない課題も有する。このため、溶液法を用いたSiC単結晶の製造方法について、これまで種々の検討が行われてきた。   In the solution method, SiC and Si-containing alloys are dissolved in a graphite crucible, and carbon is also eluted from the graphite crucible, thereby precipitating a SiC single crystal on a seed crystal placed in a low temperature part from a solution containing Si and C. It is a way to grow. In general, since C is not sufficiently solid-solved with the Si melt alone, a method of increasing the C solubility by using a solution containing the third element is employed. In the solution method, it is possible to obtain a high-quality single crystal with fewer defects than in the sublimation method, but there is also a problem that a growth rate as high as the sublimation method cannot be obtained. For this reason, various investigations have been conducted so far on a method for producing an SiC single crystal using a solution method.

特許文献1(特開2000−264790号公報)では、Si、Cと遷移金属を含む融液を用いて、SiC単結晶を析出成長させる方法が開示されている。また特許文献2(特開2004−002173号公報)では、Si−C−M(M:MnもしくはTi)、特許文献3(特開2006−143555号公報)では、Si−C−M(M:Fe及び/又はCo)、特許文献4(特開2007−076986号公報)では、Si−C−Ti−M(M:Co及び/又はMn)の融液を用いてSiC単結晶を成長させている。   Patent Document 1 (Japanese Patent Laid-Open No. 2000-264790) discloses a method of depositing and growing a SiC single crystal using a melt containing Si, C and a transition metal. In Patent Document 2 (Japanese Patent Laid-Open No. 2004-002173), Si-C-M (M: Mn or Ti) is used. In Patent Document 3 (Japanese Patent Laid-Open No. 2006-143555), Si-C-M (M: Fe and / or Co) and Patent Document 4 (Japanese Patent Laid-Open No. 2007-076986), an SiC single crystal is grown using a melt of Si—C—Ti—M (M: Co and / or Mn). Yes.

特許文献5(特開2006−321681号公報)は、Si、Cと第3元素もしくはその化合物を含む原料を融解した融液を用いて、15R、3C及び6Hのうち所望の結晶構造のSiC単結晶を成長させる方法であり、第3元素として硼化物、Sn(15R)、Gd(3C)、Al、Dy、La(6H)等が挙げられている。特許文献6(特開2007−277049号公報)では、Siに希土類元素とSn、Al、Geのいずれかとを添加した融液が用いられている。ここでは、希土類元素の添加がSi融液中のC溶解度を高めてSiC単結晶の成長速度を向上させる効果を有するものの、成長速度が大きい条件下では成長表面での多核化あるいは多結晶化が起き易いため、成長表面を一様に活性化させる元素としてSn、Al、Geを添加し、平坦成長を安定して確保する技術が示されている。特許文献7(特開2009−167045号公報)では、Si−Cr−X(X:Ce及び/又はNd)の融液が用いられており、CrとXとを同時に添加することにより、SiC単結晶中のマクロ的な欠陥を低減できることが示されている。また特許文献8,9(特開2005−154190号公報、特開2005−350324号公報)は、SiC原料棒、溶媒、種結晶を下から順に積層し、溶媒の上下端面で温度勾配を形成してSiC単結晶を成長させる方法であり、Y、ランタノイド、I族元素、II族元素、IIIB族元素等から選ばれる元素とSiからなる溶媒が用いられている。   Patent Document 5 (Japanese Patent Application Laid-Open No. 2006-321681) discloses a SiC single crystal having a desired crystal structure among 15R, 3C, and 6H using a melt obtained by melting a raw material containing Si, C and a third element or a compound thereof. This is a method for growing a crystal. Examples of the third element include borides, Sn (15R), Gd (3C), Al, Dy, La (6H), and the like. In Patent Document 6 (Japanese Patent Laid-Open No. 2007-277049), a melt obtained by adding a rare earth element and any of Sn, Al, and Ge to Si is used. Here, although the addition of rare earth elements has the effect of increasing the C solubility in the Si melt and improving the growth rate of the SiC single crystal, polynucleation or polycrystallization on the growth surface is not possible under conditions where the growth rate is high. Since it is likely to occur, a technique for stably ensuring flat growth by adding Sn, Al, and Ge as elements that uniformly activate the growth surface is shown. In Patent Document 7 (Japanese Patent Application Laid-Open No. 2009-167045), a melt of Si—Cr—X (X: Ce and / or Nd) is used. It has been shown that macroscopic defects in crystals can be reduced. Patent Documents 8 and 9 (Japanese Patent Laid-Open Nos. 2005-154190 and 2005-350324) sequentially stack a SiC raw material rod, a solvent, and a seed crystal from the bottom, and form a temperature gradient on the upper and lower end surfaces of the solvent. In this method, a SiC single crystal is grown, and a solvent comprising Si and an element selected from Y, lanthanoids, Group I elements, Group II elements, Group IIIB elements and the like is used.

希土類元素を含む溶液を用いるとCの溶解度を高めることができ、溶液法における課題の一つである成長速度は向上する。しかし、C溶解度を高めると、成長表面の荒れや多結晶化が起き易く、SiC単結晶の品質が低下する問題があった。これに対しC溶解度を抑制する元素を希土類元素と同時に添加する試みが行われているが、溶液が更なる多成分系となるために組成のコントロールが難しく、結晶成長の仕方が成長条件の微妙な変化に影響されやすい。更に、溶液からSiC単結晶が成長するにつれて溶液成分からSiやCが消費されて組成の変動が生じるため、成長に最適な条件は時間と共に大きく変化してしまう。このため、溶液法で長尺かつ大口径のSiC単結晶を作製することは難しい。特許文献8,9(特開2005−154190号公報、特開2005−350324号公報)ではSiC原料棒から原料が供給される方法が開示されており、この場合溶媒の組成は大きく変動しないが、予めSiC原料棒を用意する必要があり、製造コストが高くなる。   When a solution containing a rare earth element is used, the solubility of C can be increased, and the growth rate which is one of the problems in the solution method is improved. However, when the C solubility is increased, there is a problem that the growth surface is roughened or polycrystallized easily, and the quality of the SiC single crystal is lowered. In contrast, attempts have been made to add an element that suppresses C solubility at the same time as the rare earth element. However, since the solution becomes more multi-component, it is difficult to control the composition and the crystal growth method is sensitive to the growth conditions. Susceptible to changes. Further, as the SiC single crystal grows from the solution, Si and C are consumed from the solution components and the composition varies, so that the optimum conditions for growth greatly change with time. For this reason, it is difficult to produce a long and large-diameter SiC single crystal by a solution method. Patent Documents 8 and 9 (Japanese Patent Laid-Open Nos. 2005-154190 and 2005-350324) disclose a method of supplying a raw material from a SiC raw material rod, and in this case, the composition of the solvent does not vary greatly. It is necessary to prepare a SiC raw material rod in advance, which increases the manufacturing cost.

特開2000−264790号公報JP 2000-264790 A 特開2004−002173号公報JP 2004-002173 A 特開2006−143555号公報JP 2006-143555 A 特開2007−076986号公報JP 2007-076986 A 特開2006−321681号公報JP 2006-321681 A 特開2007−277049号公報JP 2007-277049 A 特開2009−167045号公報JP 2009-167045 A 特開2005−154190号公報JP 2005-154190 A 特開2005−350324号公報JP 2005-350324 A

本発明は、上記事情に鑑みなされたもので、多結晶化等の欠陥が抑制された長尺かつ大口径のSiC単結晶を高い成長速度で得ることができるSiC単結晶の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a method for producing a SiC single crystal capable of obtaining a long and large-diameter SiC single crystal in which defects such as polycrystallization are suppressed at a high growth rate. For the purpose.

本発明者らは、かかる課題を解決する手段について検討した結果、Cの溶解度を高める効果のある希土類元素を含んだ溶液を用い、かつ溶液成分の蒸発等が生じやすく局所的な条件変動が激しい溶液上面ではなく、黒鉛るつぼに囲まれて条件が安定しており、より緩やかな温度勾配を設定できる溶液底部からSiC単結晶を成長させると共に、黒鉛るつぼ上部からは溶液内に粉末状もしくは粒状のSi及び/又はSiC原料を適時添加して、時間経過に依存せず溶液組成を一定に保持する方法を見出し、本発明をなすに至った。   As a result of examining the means for solving such a problem, the present inventors have used a solution containing a rare earth element having an effect of increasing the solubility of C, and are liable to cause evaporation of solution components, and local condition fluctuation is severe. The SiC single crystal is grown from the bottom of the solution where the conditions are stable and surrounded by a graphite crucible rather than the top surface of the solution, and a gentler temperature gradient can be set. A method for keeping the solution composition constant without depending on the passage of time by adding Si and / or SiC raw materials in a timely manner has been found, and the present invention has been made.

従って、本発明は、下記に示すSiC単結晶の製造方法を提供する。
[1]黒鉛るつぼ内の底部にSiC種結晶を設置すると共に、このるつぼ内にSiとCとR(RはSc及びYを含む希土類元素から選ばれる1種以上)を含む溶液を存在させ、この溶液を過冷却させて前記種結晶上にSiC単結晶を成長させると共に、該SiC単結晶を成長させながら前記黒鉛るつぼの上部から前記溶液に粉末状もしくは粒状のSi及び/又はSiC原料を添加することを特徴とするSiC単結晶の製造方法。
[2]SiC単結晶を成長させているときの前記溶液中におけるSiの質量WSiとRの質量WRとの合計に対するRの質量比[WR/(WSi+WR)]が0.05以上かつ0.75以下となるように、前記粉末状もしくは粒状のSi及び/又はSiC原料の前記溶液への添加量を調整する[1]記載のSiC単結晶の製造方法。
[3]SiC単結晶を成長させているときの前記溶液中におけるRの質量比と前記黒鉛るつぼ内に仕込む前記溶液の原料組成におけるRの質量比の差が±0.1を超えないように、前記粉末状もしくは粒状のSi及び/又はSiC原料の添加量を調整する[1]又は[2]記載のSiC単結晶の製造方法。
[4]Rが、La、Ce、Pr、Nd、Gd、Dyより選ばれる1種以上である[1]〜[3]のいずれかに記載のSiC単結晶の製造方法。
[5]黒鉛るつぼが配設される炉の内部が真空又は不活性雰囲気であり、かつ下方に向かって連続的に低下する温度勾配領域を有し、前記温度勾配の領域中で前記黒鉛るつぼを引き下げることにより、前記種結晶上にSiC単結晶を成長させる[1]〜[4]のいずれかに記載のSiC単結晶の製造方法。
Accordingly, the present invention provides the following method for producing a SiC single crystal.
[1] A SiC seed crystal is placed at the bottom of the graphite crucible, and a solution containing Si, C, and R (R is one or more selected from rare earth elements including Sc and Y) is present in the crucible. The solution is supercooled to grow a SiC single crystal on the seed crystal, and powder or granular Si and / or SiC raw material is added to the solution from the top of the graphite crucible while growing the SiC single crystal. A method for producing a SiC single crystal, comprising:
[2] The mass ratio [W R / (W Si + W R )] of R to the total of the mass W Si of Si and the mass W R of R in the solution when the SiC single crystal is grown is 0. The method for producing a SiC single crystal according to [1], wherein the amount of the powdered or granular Si and / or SiC raw material added to the solution is adjusted to be 05 or more and 0.75 or less.
[3] The difference between the mass ratio of R in the solution when the SiC single crystal is grown and the mass ratio of R in the raw material composition of the solution charged in the graphite crucible does not exceed ± 0.1. The method for producing a SiC single crystal according to [1] or [2], wherein an addition amount of the powdery or granular Si and / or SiC raw material is adjusted.
[4] The method for producing a SiC single crystal according to any one of [1] to [3], wherein R is one or more selected from La, Ce, Pr, Nd, Gd, and Dy.
[5] The interior of the furnace in which the graphite crucible is disposed is in a vacuum or an inert atmosphere, and has a temperature gradient region that continuously decreases downward, and the graphite crucible is disposed in the temperature gradient region. The method for producing a SiC single crystal according to any one of [1] to [4], wherein the SiC single crystal is grown on the seed crystal by being pulled down.

本発明のSiC単結晶の製造方法によれば、溶液内のC溶解度を高めてSiC単結晶の成長速度を向上させると共に、単結晶の成長に伴うSiC成分の消費等による溶液の組成変動を抑制し、単結晶成長のための条件を安定させることができる。   According to the method for producing a SiC single crystal of the present invention, the C solubility in the solution is increased to improve the growth rate of the SiC single crystal, and the composition variation of the solution due to consumption of the SiC component accompanying the growth of the single crystal is suppressed. In addition, the conditions for single crystal growth can be stabilized.

本発明の方法を実施するのに適したSiC単結晶製造装置の一例を示す概略図である。It is the schematic which shows an example of the SiC single crystal manufacturing apparatus suitable for enforcing the method of this invention. 本発明の方法を実施するのに適したSiC単結晶製造装置の他の例を示す概略図である。It is the schematic which shows the other example of the SiC single crystal manufacturing apparatus suitable for implementing the method of this invention. Rの質量比の時間変化を模式的に示すものである。The time change of the mass ratio of R is shown typically.

図1及び図2に、本発明の方法を実施するための装置例を示す。各図において、1は炉を示し、炉1内は真空又は不活性ガス雰囲気に保持される。この炉1内に黒鉛るつぼ10が配設される。この黒鉛るつぼ10は、上端が開口し、下端が閉塞した円筒状に形成され、上下動移動可能に配設された支持体2上に配置され、支持体2が下降する際にこれと一体に黒鉛るつぼ10が下降するようになっている。ここで、図1の黒鉛るつぼ10は、その内壁が内壁中間部から下部に向うに従い、漸次下向傾斜する漏斗状に形成され、その底部中央部にSiC種結晶20が配置される。一方、図2の黒鉛るつぼ10は、その内壁が円筒状で、底面中央部にSiC種結晶20が配置される。そして、この状態において、上記黒鉛るつぼ10内にSiとCとRを含む溶液30を存在させる。また、前記黒鉛るつぼ10内の上方に原料投入容器40が配設され、この原料投入容器40から投入物41(Si及び/又はSiC原料)が黒鉛るつぼ10の上端開口部より前記溶液30に投入される。なお、図中50はサセプタ、51は断熱材、52は誘導コイルを示す。   1 and 2 show an example of an apparatus for carrying out the method of the present invention. In each figure, 1 indicates a furnace, and the inside of the furnace 1 is maintained in a vacuum or an inert gas atmosphere. A graphite crucible 10 is disposed in the furnace 1. The graphite crucible 10 is formed in a cylindrical shape having an upper end opened and a lower end closed, and is disposed on a support 2 disposed so as to be movable up and down. When the support 2 is lowered, the graphite crucible 10 is integrated with the graphite crucible 10. The graphite crucible 10 is lowered. Here, the graphite crucible 10 of FIG. 1 is formed in a funnel shape in which the inner wall gradually slopes downward as the inner wall moves from the inner wall middle part to the lower part, and the SiC seed crystal 20 is disposed at the center of the bottom part. On the other hand, the graphite crucible 10 of FIG. 2 has a cylindrical inner wall, and the SiC seed crystal 20 is disposed at the bottom center. In this state, a solution 30 containing Si, C, and R is present in the graphite crucible 10. Further, a raw material charging container 40 is disposed above the graphite crucible 10, and an input 41 (Si and / or SiC raw material) is supplied from the raw material charging container 40 to the solution 30 through the upper end opening of the graphite crucible 10. Is done. In the figure, 50 is a susceptor, 51 is a heat insulating material, and 52 is an induction coil.

本発明においては、前記黒鉛るつぼ内の底部にSiC種結晶を設置し、更に溶液となる原料を仕込む。溶液はSiとCとR(RはSc及びYを含む希土類元素から選ばれる1種以上)を含むので、原料にはSi及びR金属やその化合物、合金等を使用するのが好ましい。Cは原料としてSiCやR炭化物等を用いてもよいし、あるいは黒鉛るつぼからCが溶液中に溶け出るのを利用してもよい。   In the present invention, a SiC seed crystal is placed at the bottom of the graphite crucible, and a raw material that becomes a solution is charged. Since the solution contains Si, C, and R (R is one or more selected from rare earth elements including Sc and Y), it is preferable to use Si and R metal, a compound thereof, an alloy, or the like as a raw material. C may use SiC, R carbide, or the like as a raw material, or may utilize the dissolution of C from a graphite crucible into a solution.

溶液へのC溶解度を高めるために、第3元素としてR(RはSc及びYを含む希土類元素から選ばれる1種以上)を選択する。RがLa、Ce、Pr、Nd、Gd、Dyより選ばれる1種以上であれば、原料コストの観点からより好ましい。Rは単金属を使用してもよいし、化合物として用いてもよい。   In order to increase the solubility of C in the solution, R (R is one or more selected from rare earth elements including Sc and Y) is selected as the third element. If R is one or more selected from La, Ce, Pr, Nd, Gd, and Dy, it is more preferable from the viewpoint of raw material costs. R may be a single metal or a compound.

この場合、SiとCとRの使用割合は、適宜選定されるが、溶液中におけるRの質量比[WR/(WSi+WR)]は、SiC単結晶の成長中、常に0.05以上かつ0.75以下であることが好ましい。質量比が0.05未満の場合は溶液中へのC溶解度が小さく、SiC単結晶の十分な成長速度が得られず、また質量比が0.75を超えるとSiCの多結晶化が生じやすくなり単結晶の育成が難しくなる場合がある。Rの質量比は、0.1以上0.7以下であればより好ましく、0.15以上0.6以下であれば更に好ましい。 In this case, the use ratio of Si, C, and R is appropriately selected, but the mass ratio of R in the solution [W R / (W Si + W R )] is always 0.05 during the growth of the SiC single crystal. It is preferable that it is more than 0.75. When the mass ratio is less than 0.05, the solubility of C in the solution is small, and a sufficient growth rate of the SiC single crystal cannot be obtained, and when the mass ratio exceeds 0.75, SiC is easily crystallized. Therefore, it may be difficult to grow a single crystal. The mass ratio of R is more preferably from 0.1 to 0.7, and even more preferably from 0.15 to 0.6.

溶液のC濃度はできるだけ高いことが好ましいが、C濃度が高すぎる場合は溶液中に未溶解のSiCやCが存在し、単結晶の成長に悪影響を与えるために、こうした未溶解SiCやCが存在しない範囲の濃度とすることが好ましい。最適なC量はR/(Si+R)質量比や溶液温度に大きく依存するが、溶液全体におけるC質量比として0.1〜15質量%、特に1〜10質量%の範囲で調整することが好ましい。また必要であれば、Rに加えて、Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ge,Al,Zr,Nb,Mo,Hf,Ta,W等から選ばれる第4元素Xを更に添加してもよい。このときXの添加量は質量比でRの0.5倍以下が好ましい。   The C concentration of the solution is preferably as high as possible. However, when the C concentration is too high, undissolved SiC or C exists in the solution, which adversely affects the growth of the single crystal. It is preferable to set the concentration within a range that does not exist. The optimum amount of C greatly depends on the R / (Si + R) mass ratio and the solution temperature, but is preferably adjusted in the range of 0.1 to 15 mass%, particularly 1 to 10 mass% as the C mass ratio in the entire solution. . If necessary, in addition to R, a fourth selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Al, Zr, Nb, Mo, Hf, Ta, W, etc. Element X may be further added. At this time, the addition amount of X is preferably 0.5 times or less of R by mass ratio.

種結晶と溶液原料を仕込んだ黒鉛るつぼを炉内に設置した後、炉内を真空もしくはAr等の不活性雰囲気として、ヒータ加熱によりるつぼ内の原料を融解する。ヒータは、誘導コイルとサセプタを組み合わせた方式でもよいし、あるいは抵抗加熱方式でもよい。装置内部には、下方に向かって連続的に低下する温度勾配領域が形成されている。るつぼ内が所定温度に到達した後、温度勾配領域を通過するようにるつぼを引き下げていく。このとき、るつぼ内の溶液温度は底部から徐々に低下していき、溶液内のC溶解度が小さくなるため、底部に設置された種結晶付近で過飽和状態になると、この過飽和度を駆動力として種結晶上にSiC単結晶が成長する。   After the graphite crucible charged with the seed crystal and the solution raw material is placed in the furnace, the inside of the crucible is melted by heating with a vacuum or an inert atmosphere such as Ar. The heater may be a combination of an induction coil and a susceptor, or a resistance heating method. Inside the apparatus, a temperature gradient region that continuously decreases downward is formed. After the inside of the crucible reaches a predetermined temperature, the crucible is pulled down so as to pass through the temperature gradient region. At this time, the temperature of the solution in the crucible gradually decreases from the bottom, and the C solubility in the solution becomes small. Therefore, when the supersaturated state is reached near the seed crystal installed at the bottom, this supersaturation is used as a driving force. A SiC single crystal grows on the crystal.

ここで、るつぼ内の原料温度は、1,400〜2,200℃、特に1,600〜2,100℃とすることが好ましい。また、炉内の温度勾配は、5〜100℃/cm、特に10〜50℃/cmとなるように、下方に連続的に低下するようにすることが好ましい。
また、るつぼの引き下げは、10〜1,000μm/hr、特に50〜500μm/hrの速度で行うことが好ましい。
Here, the raw material temperature in the crucible is preferably 1,400 to 2,200 ° C., more preferably 1,600 to 2,100 ° C. Moreover, it is preferable to make it fall continuously downward so that the temperature gradient in a furnace may be 5-100 degreeC / cm, especially 10-50 degreeC / cm.
The crucible is preferably pulled down at a speed of 10 to 1,000 μm / hr, particularly 50 to 500 μm / hr.

第3元素としてRを用いると、溶液中へのC溶解度を高めることができるが、一般にSiC単結晶の多核化あるいは多結晶化が起き易くなる。こうした現象を抑制するため、SiC単結晶の成長を、溶液面に近い上部でなく条件の安定した溶液下部で行うことにより、溶液面からの成分蒸発や振動等の局所的な条件変動が生じにくく、温度勾配も成長面全体に亘ってばらつき少なく均一にすることができ、そのため緩やかな温度勾配の設定が可能となってSiCの析出を緩やかにし、多結晶化を抑制することができる。   When R is used as the third element, the solubility of C in the solution can be increased, but generally, the SiC single crystal is likely to be multinucleated or polycrystallized. In order to suppress this phenomenon, local condition fluctuations such as component evaporation and vibration from the solution surface are less likely to occur by growing the SiC single crystal not at the upper part near the solution surface but at the lower part of the stable solution. Also, the temperature gradient can be made uniform with little variation over the entire growth surface, so that a gradual temperature gradient can be set, so that SiC precipitation is moderated and polycrystallization can be suppressed.

るつぼの引き下げを継続すると、SiC単結晶は、溶液中からSi及びC元素を取り込んで更に成長していくが、これに伴って、溶液は出発時の組成から徐々にSiが減少していき、相対的にRの多い組成に変動していく。また溶液表面からのSi成分の蒸発等も組成変動の要因となる。組成がRリッチにずれていくと、溶液中からSiC相が析出する条件もまた変動していく。従って、引下げ時間の経過と共にSiC単結晶の成長に適した条件は少しずつ変化していくことになり、最初は順調に成長していたSiC単結晶が途中から多結晶化したり、種々の欠陥を生じたりするようになる。   As the crucible continues to be pulled down, the SiC single crystal takes in Si and C elements from the solution and further grows, but with this, the solution gradually decreases in Si from the starting composition, The composition changes to a composition having a relatively large R. In addition, evaporation of Si component from the solution surface also causes composition variation. As the composition shifts to R-rich, the conditions under which the SiC phase precipitates from the solution also change. Accordingly, the conditions suitable for the growth of the SiC single crystal gradually change with the elapse of the pull-down time, and the SiC single crystal that was growing smoothly at the beginning is polycrystallized from the middle or various defects are observed. It comes to occur.

これに対して、SiC単結晶の成長を続けながら、溶液組成の変動分に見合った原料を添加していくことで、溶液を一定範囲内の組成に保つことができる。原料は、黒鉛るつぼの上部から溶液内に投入する。もし、種結晶を溶液上部に浸漬してから上方に引上げていく方法で、同じように追加原料を溶液面上から投入すると、SiC単結晶がすぐ傍で成長しているため、原料を投入したときの溶液面付近の乱れや組成の局所的な変動が、SiCの析出に大きく影響を与えてしまう。本発明では、SiC単結晶の成長を溶液下部で行い、原料の投入は結晶成長部から離れた溶液上部で行うことで、原料を添加する作業がSiC単結晶の成長に悪影響を及ぼすのを避けることができる。   On the other hand, the solution can be kept at a composition within a certain range by adding the raw material corresponding to the variation of the solution composition while continuing the growth of the SiC single crystal. The raw material is introduced into the solution from the top of the graphite crucible. If the seed material is immersed in the upper part of the solution and then pulled upward, the same material is added from above the solution surface in the same way. Disturbances near the solution surface and local fluctuations in composition greatly affect SiC precipitation. In the present invention, the growth of the SiC single crystal is performed in the lower part of the solution, and the raw material is charged in the upper part of the solution away from the crystal growth part, so that the work of adding the raw material avoids adversely affecting the growth of the SiC single crystal. be able to.

原料としては、投入しやすい粉末状や粒状のSiを用いる。溶液のC濃度が時間経過と共に減少する条件の場合は、粉末状や粒状のSiCも同時に添加する。原料の添加量は、予め添加なしの条件で実験を行って冷却固化した溶液残りの残留物の組成を分析し、組成の変化量を把握した上で、運転時間と変化量の関係から算出すればよい。   As the raw material, powdery or granular Si that is easy to charge is used. In the condition where the C concentration of the solution decreases with time, powdery or granular SiC is also added simultaneously. The amount of raw material added is calculated from the relationship between the operating time and the amount of change after analyzing the composition of the residue of the remaining solution that has been cooled and solidified by conducting an experiment in the absence of addition in advance and grasping the amount of change in the composition. That's fine.

原料の添加は連続的に行ってもよいが、溶液の組成が初期組成から大きくずれない範囲で一定量を断続的に投入する方法でもよい。断続的に投入する場合の溶液組成の変化を模式的に図3に示す。ここで、Siの質量WSiとRの質量WRとの合計に対するRの質量WRの割合を質量比[WR/(WSi+WR)]とすると、溶液中SiとRの合計に対するRの質量比[WR/(WSi+WR)]と、黒鉛るつぼ内に仕込む溶液原料の全体におけるRの質量比の差が0.1を超えないことが好ましく、0.05以下ならば更に好ましく、0.03以下ならば一層好ましい。 The addition of the raw materials may be performed continuously, or a method in which a constant amount is intermittently added in a range where the composition of the solution does not deviate significantly from the initial composition may be used. FIG. 3 schematically shows changes in the solution composition when intermittently charged. Here, when the ratio of the mass R R of the R to the sum of the mass W Si of the Si and the mass W R of the R is a mass ratio [W R / (W Si + W R )], The difference between the mass ratio of R [W R / (W Si + W R )] and the mass ratio of R in the whole solution raw material charged into the graphite crucible preferably does not exceed 0.1, and if 0.05 or less More preferably, 0.03 or less is more preferable.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1〜6、比較例1,2]
図1の装置を用い、黒鉛るつぼの底部にSiC種結晶を設置し、更にその上にSiとRの原料を所定の組成となるように仕込んだ。炉内をAr雰囲気としてから設定温度に昇温して30分〜3時間保持した後、るつぼ引き下げを開始した。
引き下げは100時間行い、その間3〜10時間毎にSiC粉とSi粉をるつぼ上部から溶液中に投入した。投入量は、投入を行わなかったときの残留物組成分析結果と原料組成との差を元に算出した。実施例ではいずれも良好なSiC単結晶が得られた。表1に仕込時の原料とRの質量比、保持温度を、表2に引き下げ後の残留物のRの質量比とSiC単結晶の成長速度を示す。
[Examples 1 to 6, Comparative Examples 1 and 2]
Using the apparatus shown in FIG. 1, an SiC seed crystal was placed at the bottom of a graphite crucible, and Si and R raw materials were charged thereon to a predetermined composition. After making the inside of the furnace Ar atmosphere, the temperature was raised to a set temperature and maintained for 30 minutes to 3 hours, and then the crucible pulling was started.
The pulling-down was performed for 100 hours, and during that time, SiC powder and Si powder were introduced into the solution from the upper part of the crucible. The input amount was calculated based on the difference between the residue composition analysis result and the raw material composition when the input was not performed. In each of the examples, a good SiC single crystal was obtained. Table 1 shows the mass ratio of the raw material and R at the time of charging and the holding temperature, and Table 2 shows the mass ratio of R of the residue after pulling down and the growth rate of the SiC single crystal.

比較例1は、引き下げ中にSiC粉とSi粉の投入を行わなかった。引き下げ終了後に取り出したSiC結晶は成長途中から多結晶化が生じていた。比較例2はR元素を含まない溶液を用いたが、極めて低い成長速度しか得られず、結晶性も十分に得られなかった。   In Comparative Example 1, SiC powder and Si powder were not charged during pulling down. The SiC crystal taken out after the completion of the pulling was polycrystallized during the growth. In Comparative Example 2, a solution containing no R element was used, but only a very low growth rate was obtained, and sufficient crystallinity was not obtained.

Figure 0005273131
Figure 0005273131

Figure 0005273131
Figure 0005273131

本発明によれば、溶液法における長時間結晶成長においても、組成変動が少なく条件が安定するため、良質かつ長尺のSiC単結晶を作製することができる。   According to the present invention, even during long-term crystal growth in the solution method, the composition fluctuation is small and the conditions are stable, so that a high-quality and long SiC single crystal can be produced.

1 炉
2 支持体
10 黒鉛るつぼ
20 SiC種結晶
30 溶液
40 投入容器
41 投入物
50 サセプタ
51 断熱材
52 誘導コイル
1 furnace 2 support 10 graphite crucible 20 SiC seed crystal 30 solution 40 charging vessel 41 charging 50 susceptor 51 heat insulating material 52 induction coil

Claims (5)

黒鉛るつぼ内の底部にSiC種結晶を設置すると共に、このるつぼ内にSiとCとR(RはSc及びYを含む希土類元素から選ばれる1種以上)を含む溶液を存在させ、この溶液を過冷却させて前記種結晶上にSiC単結晶を成長させると共に、該SiC単結晶を成長させながら前記黒鉛るつぼの上部から前記溶液に粉末状もしくは粒状のSi及び/又はSiC原料を添加することを特徴とするSiC単結晶の製造方法。   A SiC seed crystal is placed at the bottom of the graphite crucible, and a solution containing Si, C, and R (R is one or more selected from rare earth elements including Sc and Y) is present in the crucible. The SiC single crystal is grown on the seed crystal by supercooling, and the powdered or granular Si and / or SiC raw material is added to the solution from the top of the graphite crucible while growing the SiC single crystal. A method for producing a SiC single crystal characterized. SiC単結晶を成長させているときの前記溶液中におけるSiの質量WSiとRの質量WRとの合計に対するRの質量比[WR/(WSi+WR)]が0.05以上かつ0.75以下となるように、前記粉末状もしくは粒状のSi及び/又はSiC原料の前記溶液への添加量を調整する請求項1記載のSiC単結晶の製造方法。 When the SiC single crystal is grown, the mass ratio [W R / (W Si + W R )] of R to the sum of the Si mass W Si and the R mass W R in the solution is 0.05 or more and The manufacturing method of the SiC single crystal of Claim 1 which adjusts the addition amount to the said solution of the said powdery or granular Si and / or SiC raw material so that it may become 0.75 or less. SiC単結晶を成長させているときの前記溶液中におけるRの質量比と前記黒鉛るつぼ内に仕込む前記溶液の原料組成におけるRの質量比の差が±0.1を超えないように、前記粉末状もしくは粒状のSi及び/又はSiC原料の添加量を調整する請求項1又は2記載のSiC単結晶の製造方法。   The powder so that the difference between the mass ratio of R in the solution when the SiC single crystal is grown and the mass ratio of R in the raw material composition of the solution charged in the graphite crucible does not exceed ± 0.1 The manufacturing method of the SiC single crystal of Claim 1 or 2 which adjusts the addition amount of the shape or granular Si and / or SiC raw material. Rが、La、Ce、Pr、Nd、Gd、Dyより選ばれる1種以上である請求項1乃至3のいずれか1項記載のSiC単結晶の製造方法。   The method for producing an SiC single crystal according to any one of claims 1 to 3, wherein R is at least one selected from La, Ce, Pr, Nd, Gd, and Dy. 黒鉛るつぼが配設される炉の内部が真空又は不活性雰囲気であり、かつ下方に向かって連続的に低下する温度勾配領域を有し、前記温度勾配の領域中で前記黒鉛るつぼを引き下げることにより、前記種結晶上にSiC単結晶を成長させる請求項1乃至4のいずれか1項記載のSiC単結晶の製造方法。   The inside of the furnace in which the graphite crucible is disposed is a vacuum or an inert atmosphere, and has a temperature gradient region that continuously decreases downward, and by pulling down the graphite crucible in the temperature gradient region The method for producing an SiC single crystal according to claim 1, wherein an SiC single crystal is grown on the seed crystal.
JP2010263950A 2010-11-26 2010-11-26 Method for producing SiC single crystal Active JP5273131B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010263950A JP5273131B2 (en) 2010-11-26 2010-11-26 Method for producing SiC single crystal
US13/300,911 US10167573B2 (en) 2010-11-26 2011-11-21 Method of producing SiC single crystal
KR1020110123695A KR101827928B1 (en) 2010-11-26 2011-11-24 Method of Producing SiC Single Crystal
TW100143156A TWI554659B (en) 2010-11-26 2011-11-24 Method of producing sic single crystal
CN201810285275.2A CN108286075A (en) 2010-11-26 2011-11-25 The manufacturing method of SiC single crystal
CN2011104631235A CN102534797A (en) 2010-11-26 2011-11-25 Method of producing sic single crystal
EP20110190766 EP2458039B1 (en) 2010-11-26 2011-11-25 Method of producing sic single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010263950A JP5273131B2 (en) 2010-11-26 2010-11-26 Method for producing SiC single crystal

Publications (2)

Publication Number Publication Date
JP2012111670A JP2012111670A (en) 2012-06-14
JP5273131B2 true JP5273131B2 (en) 2013-08-28

Family

ID=46496307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263950A Active JP5273131B2 (en) 2010-11-26 2010-11-26 Method for producing SiC single crystal

Country Status (1)

Country Link
JP (1) JP5273131B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9896778B2 (en) * 2013-05-31 2018-02-20 Toyota Jidosha Kabushiki Kaisha Apparatus for producing SiC single crystals and method of producing SiC single crystals using said production apparatus
JP6177676B2 (en) * 2013-12-06 2017-08-09 信越化学工業株式会社 Crystal growth method of silicon carbide
JP6180910B2 (en) * 2013-12-06 2017-08-16 信越化学工業株式会社 Crystal growth method of silicon carbide
EP2881499B1 (en) 2013-12-06 2020-03-11 Shin-Etsu Chemical Co., Ltd. Method for growing silicon carbide crystal
KR101649543B1 (en) * 2014-12-05 2016-08-31 주식회사 포스코 Reverse sublimation apparatus for single crystal growth
KR101649539B1 (en) * 2014-12-05 2016-08-22 주식회사 포스코 Reverse sublimation apparatus for single crystal growth
JP6533716B2 (en) 2015-08-06 2019-06-19 信越化学工業株式会社 Method of manufacturing SiC single crystal
KR102142424B1 (en) 2017-06-29 2020-08-07 주식회사 엘지화학 Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same
WO2024057934A1 (en) * 2022-09-16 2024-03-21 株式会社プロテリアル Silicon carbide single crystal production method, regression model generation device, composition estimation device, program, recording medium, regression model generation method, and composition estimation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236681A (en) * 1985-04-13 1986-10-21 Tohoku Metal Ind Ltd Process and device for preparing single crystal
JPS61242981A (en) * 1985-04-22 1986-10-29 Tohoku Metal Ind Ltd Production of single crystal
JPS6227397A (en) * 1985-07-30 1987-02-05 Tohoku Metal Ind Ltd Production of single crystal
DE3644746A1 (en) * 1986-12-30 1988-07-14 Hagen Hans Dr Ing Process and apparatus for growing crystals
JPH06239691A (en) * 1993-02-12 1994-08-30 Japan Energy Corp Method for growing single crystal
JP2004339012A (en) * 2003-05-16 2004-12-02 Toyota Motor Corp Method for manufacturing sic single crystal
JP2006321681A (en) * 2005-05-19 2006-11-30 Toyota Motor Corp Method for producing silicon carbide single crystal

Also Published As

Publication number Publication date
JP2012111670A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5273130B2 (en) Method for producing SiC single crystal
JP5273131B2 (en) Method for producing SiC single crystal
TWI554659B (en) Method of producing sic single crystal
JP4179331B2 (en) Method for producing SiC single crystal
KR102313257B1 (en) Crystal growth method of silicon carbide
JP5304793B2 (en) Method for producing silicon carbide single crystal
US11440849B2 (en) SiC crucible, SiC sintered body, and method of producing SiC single crystal
JP4450074B2 (en) Method for growing silicon carbide single crystal
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
JP5983772B2 (en) Method for producing n-type SiC single crystal
JP4736401B2 (en) Method for producing silicon carbide single crystal
KR101152857B1 (en) Method for growing silicon carbide single crystal
WO2017022535A1 (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
JP2009126770A (en) Method for growing silicon carbide single crystal
JP2007261844A (en) Manufacturing method of silicon carbide single crystal
JP5359796B2 (en) Method for producing SiC single crystal
JP2006143555A (en) Method for manufacturing silicon carbide single crystal
JP2019163187A (en) Single crystal growth method of iron gallium alloy
EP3192899A1 (en) METHOD FOR MANUFACTURING P-TYPE SiC SINGLE CRYSTAL
JP2020508277A (en) Silicon-based molten composition and method for producing silicon carbide single crystal using the same
JP2020050544A (en) Seed crystal for iron gallium alloy single crystal growth
JP7349100B2 (en) Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Ref document number: 5273131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150