JP2007261844A - Manufacturing method of silicon carbide single crystal - Google Patents

Manufacturing method of silicon carbide single crystal Download PDF

Info

Publication number
JP2007261844A
JP2007261844A JP2006087077A JP2006087077A JP2007261844A JP 2007261844 A JP2007261844 A JP 2007261844A JP 2006087077 A JP2006087077 A JP 2006087077A JP 2006087077 A JP2006087077 A JP 2006087077A JP 2007261844 A JP2007261844 A JP 2007261844A
Authority
JP
Japan
Prior art keywords
sic
single crystal
growth
melt
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006087077A
Other languages
Japanese (ja)
Inventor
Kazuto Kamei
一人 亀井
Kazuhiko Kusunoki
一彦 楠
Masanari Yashiro
将斉 矢代
Akihiro Yanai
昭博 八内
Mitsuhiro Hasebe
光弘 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006087077A priority Critical patent/JP2007261844A/en
Publication of JP2007261844A publication Critical patent/JP2007261844A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of silicon carbide single crystal having high quality at a high growing speed and stably using a raw material that is comparatively easily available for realizing the mass production, in manufacturing of silicon carbide single crystal by a liquid phase growth method in which the SiC single crystal is grown on a seed crystal substrate from a solution that is obtained by dissolving SiC in a solvent of a molten Si alloy. <P>SOLUTION: The manufacturing method uses an Si-Cr alloy as a solvent and its composition has a value of [Cr]/([Cr]+[Si]) of not smaller than 0.2 and not larger than 0.6 wherein [Cr] is the molar concentration of Cr and [Si] is the molar concentration of Si. By the manufacturing method, bulk or thin film single crystal can be stably and uniformly grown even when continuously growing the SiC single crystal by a temperature gradient method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特に光デバイスおよび電子デバイスの材料として好適な炭化珪素の良質な単結晶の製造方法に関し、特に液相成長法により炭化珪素単結晶を高い成長速度で製造することができる炭化珪素単結晶の製造方法に関する。   The present invention relates to a method for producing a high-quality single crystal of silicon carbide that is particularly suitable as a material for optical devices and electronic devices, and in particular, a silicon carbide single crystal capable of producing a silicon carbide single crystal at a high growth rate by a liquid phase growth method. The present invention relates to a method for producing a crystal.

炭化珪素(SiC)は、熱的および化学的に安定な化合物半導体の1種であって、シリコン(Si)に比べて、バンドギャップが約3倍、絶縁破壊電圧が約10倍、電子飽和速度が約2倍、熱伝導率が約3倍大きいという物性上の特徴を有する。このような優れた特徴から、炭化珪素は、Siデバイスの物性的な限界を打破するパワーデバイスや、高温動作する耐環境デバイスといった電子デバイス材料としての応用が期待されている。   Silicon carbide (SiC) is one of the thermally and chemically stable compound semiconductors. Compared to silicon (Si), the band gap is about 3 times, the breakdown voltage is about 10 times, and the electron saturation rate. Is about twice as large and the thermal conductivity is about three times as large. Due to such excellent features, silicon carbide is expected to be applied as an electronic device material such as a power device that breaks the physical limitations of Si devices and an environment-resistant device that operates at high temperatures.

一方、光デバイスにおいては、短波長化を目指した窒化物系材料(GaN,AlN)の開発が行われている。SiCは、窒化物系材料に対する格子不整合が他の化合物半導体材料に比べて格段に小さいので、窒化物系材料のエピタキシャル成長用の基板材料としても注目されている。   On the other hand, for optical devices, development of nitride-based materials (GaN, AlN) aimed at shortening the wavelength has been carried out. SiC is attracting attention as a substrate material for epitaxial growth of nitride-based materials, since the lattice mismatch with respect to nitride-based materials is much smaller than other compound semiconductor materials.

しかし、SiCは結晶多形(ポリタイプ)を呈する物質として有名である。結晶多形とは、化学量論的には同じ組成でありながら原子の積層様式がC軸方向にのみ異なる多くの結晶構造を取りうる現象である。SiCの代表的な結晶多形としては、6H型(6分子を1周期とする六方晶系)4H型(4分子を1周期とする六方晶系)3C型(3分子を1周期とする立方晶系)、15R型(15分子を1周期とする菱面晶系)などがある。ある一定の温度でSiC単結晶を成長させた場合にも2種類以上の結晶多形が発生することがあるが、結晶多形の混在はデバイスへの応用上好ましくない。   However, SiC is famous as a substance exhibiting a crystal polymorph (polytype). Crystal polymorphism is a phenomenon that can take many crystal structures in which the stacking mode of atoms differs only in the C-axis direction while having the same stoichiometric composition. Typical crystal polymorphs of SiC are 6H type (hexagonal system with 6 molecules as one period), 4H type (hexagonal system with 4 molecules as one period), and 3C type (cube with 3 molecules as one period). Crystal system) and 15R type (rhombohedral system with 15 molecules as one period). Even when an SiC single crystal is grown at a certain temperature, two or more types of crystal polymorphs may be generated. However, the mixture of crystal polymorphs is not preferable in terms of application to a device.

炭化珪素を電子または光デバイスに応用するには、結晶多形が単一で、欠陥が皆無または非常に少ないという意味で良質の、バルク(自立)形態または薄膜形態のSiC単結晶が必要となる。本発明において、炭化珪素のバルク単結晶とは、厚さ200μm以上の単結晶を意味し、薄膜単結晶とはそれより小さい厚みのものを指す。   Application of silicon carbide to electronic or optical devices requires high-quality SiC single crystals in the form of bulk (self-supporting) or thin film in the sense that they have a single crystal polymorphism and no or very few defects. . In the present invention, the bulk single crystal of silicon carbide means a single crystal having a thickness of 200 μm or more, and the thin film single crystal means one having a smaller thickness.

従来より知られている炭化珪素の製造方法として、気相成長法に属する昇華再結晶化法および化学気相成長(CVD法)と、液相成長法、とが挙げられる。
昇華再結晶化法は、原料の炭化珪素粉末を2200〜2500℃の高温で昇華させ、低温部に配置した炭化珪素単結晶からなる種結晶基板上に炭化珪素単結晶を再結晶化させる方法である。昇華再結晶化法では、バルク結晶が得られやすいことから、現在、SiC単結晶ウエハーの工業的な生産は昇華再結晶化法で行われている。しかし、昇華再結晶化法で成長させたSiC単結晶は、マイクロパイプ欠陥と呼ばれる中空貫通欠陥やらせん転位、積層欠陥、などの結晶欠陥を含んでおり、結晶の品質に問題がある。
Conventionally known methods for producing silicon carbide include a sublimation recrystallization method and chemical vapor deposition (CVD method) belonging to a vapor phase growth method, and a liquid phase growth method.
The sublimation recrystallization method is a method in which a silicon carbide powder as a raw material is sublimated at a high temperature of 2200 to 2500 ° C., and a silicon carbide single crystal is recrystallized on a seed crystal substrate made of a silicon carbide single crystal disposed in a low temperature portion. is there. Since bulk crystals are easily obtained by the sublimation recrystallization method, industrial production of SiC single crystal wafers is currently performed by the sublimation recrystallization method. However, the SiC single crystal grown by the sublimation recrystallization method has crystal defects such as hollow penetrating defects called micropipe defects, screw dislocations, and stacking faults.

CVD法は、原料としてシラン系ガスと炭化水素系ガスとを用い、シリコンまたは炭化珪素単結晶からなる基板上に炭化珪素単結晶をエピタキシャル成長させる方法である。CVD法は、成長速度が比較的遅いことから、主として薄膜の炭化珪素結晶の成長に利用されている。薄膜の炭化珪素単結晶は基板の影響を受けるが、主に昇華再結晶化法で作製される基板が上記のように品質に問題があるため、薄膜の高品質化には制約がある。   The CVD method is a method in which a silane-based gas and a hydrocarbon-based gas are used as raw materials, and a silicon carbide single crystal is epitaxially grown on a substrate made of silicon or a silicon carbide single crystal. The CVD method is mainly used for the growth of a thin silicon carbide crystal because the growth rate is relatively slow. Although the thin film silicon carbide single crystal is affected by the substrate, there is a limitation in improving the quality of the thin film because the substrate produced mainly by the sublimation recrystallization method has a problem in quality as described above.

液相成長法は、シリコンまたはシリコン含有合金融液中に炭素を溶解させ、種結晶基板を融液に浸漬し、少なくとも種結晶基板の周囲に融液の過冷却によるSiC濃度の過飽和状態を創出し、種結晶基板上に炭化珪素単結晶を成長させる方法である。融液は、Siを溶媒とするSiCの溶液である。   In the liquid phase growth method, carbon is dissolved in silicon or a silicon-containing compound financial solution, the seed crystal substrate is immersed in the melt, and at least around the seed crystal substrate, a supersaturated state of SiC concentration is created by supercooling the melt. In this method, a silicon carbide single crystal is grown on a seed crystal substrate. The melt is a SiC solution using Si as a solvent.

液相成長法には、融液に種結晶基板近傍の融液温度が他の部分よりも低温になるような温度勾配を設ける、いわゆる温度差法(種結晶基板近傍の溶液だけが過飽和となる)と、種結晶基板を漬けた融液全体を冷却してSiCの過飽和溶液とする、いわゆる冷却法とがある。他に、溶媒を蒸発させて溶液を過飽和にする蒸発法もある。冷却法や蒸発法はバッチ式であるため、薄膜の単結晶を得る方法として好ましく、バルク単結晶を得るには連続成長とすることができる温度差法が好ましい。   In the liquid phase growth method, a so-called temperature difference method (only a solution near the seed crystal substrate becomes supersaturated) is provided with a temperature gradient in the melt so that the melt temperature in the vicinity of the seed crystal substrate is lower than other portions. And a so-called cooling method in which the entire melt immersed in the seed crystal substrate is cooled to obtain a supersaturated solution of SiC. There is also an evaporation method in which the solvent is evaporated to supersaturate the solution. Since the cooling method and the evaporation method are batch methods, it is preferable as a method for obtaining a single crystal of a thin film, and a temperature difference method capable of continuous growth is preferable for obtaining a bulk single crystal.

液相成長法では、熱的平衡状態に近い状態で結晶成長が起こるため、気相成長に比べて格段に結晶性の良好な(異なるポリタイプの混入がない)単結晶が得られることが知られている。従って、液相成長法によれば、昇華再結晶化法より良質のSiC単結晶を製造することができる。しかし、融液への炭素の溶解度が低く、融液中のSiC濃度が低いため、結晶の成長速度が遅いことが、液相成長法の実用化を阻む問題点となっていた。   In the liquid phase growth method, since crystal growth occurs in a state close to thermal equilibrium, it is known that a single crystal with significantly better crystallinity (no mixing of different polytypes) can be obtained compared to vapor phase growth. It has been. Therefore, according to the liquid phase growth method, it is possible to produce a SiC single crystal of higher quality than the sublimation recrystallization method. However, since the solubility of carbon in the melt is low and the SiC concentration in the melt is low, the slow growth rate of crystals has been a problem that hinders the practical use of the liquid phase growth method.

下記特許文献1には、少なくとも1種の遷移金属元素とSiとCとを含む原料を加熱溶融して融液とし、この融液を冷却することによりSiC単結晶を析出成長させることが開示されている。この場合には、Siと遷移金属との合金がSiCの溶媒となる。この特許文献では、三元系状態図をもとに最適な融液組成を推定している。しかし、具体的に開示されている融液組成は、遷移金属元素がMo、CrまたはCoである場合について、それぞれ1つずつだけである。   The following Patent Document 1 discloses that a raw material containing at least one transition metal element and Si and C is heated and melted to form a melt, and this melt is cooled to precipitate and grow a SiC single crystal. ing. In this case, an alloy of Si and a transition metal serves as a solvent for SiC. In this patent document, an optimum melt composition is estimated based on a ternary phase diagram. However, there is only one melt composition specifically disclosed for each case where the transition metal element is Mo, Cr or Co.

今日のSiC単結晶の液相成長における技術課題は、Si−C−M(Mは添加金属)の信頼できる3元系状態図がほとんど知られていないため、SiC結晶成長に最適な融液組成を絞り込むことすらできないことである。理論的かつ実験的に信頼できる多元系融液の平衡状態図は、Si−C−M系に限らず、一般にほとんど知られていないのが現実である。従って、添加する遷移金属元素およびその量について選定するには、高度な知識を必要とする多元系平衡状態図の計算をまず行う必要がある。   The technical problem in liquid phase growth of today's SiC single crystal is that the most reliable ternary phase diagram of Si-C-M (M is an additive metal) is not known. You cannot even narrow down. In reality, theoretically and experimentally reliable equilibrium diagrams of multicomponent melts are not limited to Si—C—M systems, and are generally unknown. Therefore, in order to select the transition metal element to be added and its amount, it is necessary to first calculate a multi-component equilibrium state diagram that requires advanced knowledge.

また、平衡状態図は平衡状態での種々の相の出現消滅挙動を示すのみである。液相成長法では、過飽和溶液からの結晶成長という平衡状態からのズレを利用する。そのため、仮に平衡状態図から最適の融液組成が推定できても、実際の単結晶成長では、平衡状態図から予測しえないさまざまな事態が生じ、安定してSiC単結晶が得られるとは限らない。例えば、成長のための冷却中や温度勾配下で、種々の副次的な生成物を生じて、均一な単結晶が得られなかったり、種結晶基板が溶解したり、或いは融液が坩堝と反応し、坩堝を損傷するなどの可能性がある。そのため、最適な単結晶成長条件を知るには、融液組成や他の結晶成長条件を種々に変化させた実際の成長実験を行って、いかなる現象が生じるかを子細に検討する必要がある。   The equilibrium diagram only shows the appearance and disappearance behavior of various phases in the equilibrium state. In the liquid phase growth method, a deviation from an equilibrium state of crystal growth from a supersaturated solution is used. Therefore, even if the optimum melt composition can be estimated from the equilibrium diagram, various situations that cannot be predicted from the equilibrium diagram occur in the actual single crystal growth, and a SiC single crystal can be obtained stably. Not exclusively. For example, during cooling for growth or under a temperature gradient, various secondary products are generated, and a uniform single crystal cannot be obtained, a seed crystal substrate is dissolved, or a melt is melted with a crucible. It may react and damage the crucible. Therefore, in order to know the optimum single crystal growth conditions, it is necessary to examine in detail what kind of phenomenon occurs by conducting actual growth experiments with various changes in the melt composition and other crystal growth conditions.

各種の溶媒系中でも、Si−Cr系は炭素溶解度が最も大きい溶媒の一つであり、温度とともに炭素溶解度が増加し、かつSiC結晶にはCrが取り込まれ難いことが知られており、SiとCrの合金を用いることで効率的にSiC単結晶を得ることが十分に期待できる。   Among various solvent systems, the Si-Cr system is one of the solvents with the highest carbon solubility, and the carbon solubility increases with temperature, and it is known that Cr is difficult to be taken into the SiC crystal. It can be sufficiently expected that a SiC single crystal can be efficiently obtained by using a Cr alloy.

遷移金属がCrである場合について特許文献1に具体的に開示されている融液組成は、Cr、SiおよびCのモル濃度(原子%と同じ)をそれぞれ[Cr]、[Si]および[C]として、[Cr]:[Si]:[C]=54:23:23、即ち、[Cr]/([Cr]+[Si])の値が0.70である1例だけである。後述するが、本発明者らがこの組成でSiC単結晶の成長実験を行ったところ均一なSiC単結晶を得ることができなかった。その他の融液組成でのSiCの成長挙動や、最も大きな成長速度を与えるに最適な組成は開示されていない。   The melt composition specifically disclosed in Patent Document 1 for the case where the transition metal is Cr has the molar concentrations of Cr, Si and C (same as atomic%) of [Cr], [Si] and [C], respectively. [Cr]: [Si]: [C] = 54: 23: 23, that is, only one example in which the value of [Cr] / ([Cr] + [Si]) is 0.70. As will be described later, when the present inventors conducted a SiC single crystal growth experiment with this composition, a uniform SiC single crystal could not be obtained. The growth behavior of SiC with other melt compositions and the optimum composition for giving the highest growth rate are not disclosed.

Si−Cr合金を溶媒とする液相成長法については、下記の非特許文献1および2にも報告されている。
非特許文献1では、Cr−12wt%Si溶液、即ち、[Cr]/([Cr]+[Si])の値が0.798である溶液から、液相成長法の一種であるTravelling Solvent法でSiC単結晶の育成を行い、SiC結晶の育成に成功している。しかし、結晶サイズは1mmに満たない大きさであり、実用に供することは困難である。育成手法は、少量の融液を2枚のSiC単結晶で挟んで温度勾配下で成長させるものであり、基礎的検討の域を出ていない。
The liquid phase growth method using a Si—Cr alloy as a solvent is also reported in Non-Patent Documents 1 and 2 below.
In Non-Patent Document 1, from a Cr-12 wt% Si solution, that is, a solution having a [Cr] / ([Cr] + [Si]) value of 0.798, a Traveling Solvent method which is a kind of liquid phase growth method. The SiC single crystal has been grown in the process, and the SiC crystal has been successfully grown. However, the crystal size is less than 1 mm and is difficult to put into practical use. The growth method is a method in which a small amount of melt is sandwiched between two SiC single crystals and grown under a temperature gradient, and is not in the scope of basic examination.

非特許文献2は、Cr溶媒はSiCといかなる温度においても単純な平衡状態を示さず種々のCrの炭化物が晶出するなどしてSiCのみの成長は困難であると述べている。また、Cr溶媒は蒸気圧が高く、成長中に溶液が蒸発するおそれがあることが述べられている。   Non-Patent Document 2 states that a Cr solvent does not show a simple equilibrium state with SiC at any temperature, and it is difficult to grow only SiC because various carbides of Cr crystallize out. Further, it is stated that the Cr solvent has a high vapor pressure and the solution may evaporate during the growth.

このように、SiC単結晶成長に関するCr溶媒の効果については、一定の検討結果は存在するものの、未だ評価が定まらないのが現状である。
一方、本発明者らは先に、SiとTiまたはMnとの合金を溶媒として用いる手法を開発し、6H−SiCのバルク単結晶を得ることに成功した(下記特許文献2)。Siとの合金元素としてTiまたはMnを選択することによって、Siのみを溶媒とする場合より数倍高い成長速度を実現できた。これは、TiまたはMnとのSi合金の炭素溶解度が、Si単独に比べて極めて大きいためと考えられる。
As described above, the effect of the Cr solvent on the growth of the SiC single crystal has not been determined yet, although there are certain examination results.
On the other hand, the present inventors previously developed a method using an alloy of Si and Ti or Mn as a solvent, and succeeded in obtaining a 6H—SiC bulk single crystal (Patent Document 2 below). By selecting Ti or Mn as an alloying element with Si, a growth rate several times higher than when using only Si as a solvent could be realized. This is presumably because the carbon solubility of the Si alloy with Ti or Mn is much higher than that of Si alone.

しかし、Tiは高価な金属であり、結晶成長コストが大きくなるという経済上の難点がある。また、Tiは活性な金属であり、場合によっては種々のガス成分と反応してSiC結晶を汚染する可能性が残る。Mnは安価な金属であるが、蒸気圧が大きく、場合によっては、結晶成長中に蒸発して結晶成長炉を汚染したり、蒸発による濃度変動で、結晶成長そのものが不安定になるという可能性が残る。
特開2000−264790号公報 特開2004−2173号公報 M. A. Wright, Journal of The Electrochemical Society, vol. 112, p. 1114-1116 (1965) P. W. Pellegrini, J. M. Feldman, Journal of Crystal Growth, vol. 27, p. 320-324 (1974)
However, since Ti is an expensive metal, there is an economic difficulty that the crystal growth cost increases. Further, Ti is an active metal, and in some cases, it may react with various gas components to contaminate the SiC crystal. Mn is an inexpensive metal, but its vapor pressure is high, and in some cases, it may evaporate during crystal growth and contaminate the crystal growth furnace, or the crystal growth itself may become unstable due to concentration fluctuations due to evaporation. Remains.
JP 2000-264790 A JP 2004-2173 A MA Wright, Journal of The Electrochemical Society, vol. 112, p. 1114-1116 (1965) PW Pellegrini, JM Feldman, Journal of Crystal Growth, vol. 27, p. 320-324 (1974)

したがって、SiC単結晶の量産化を実現するには、高速成長を可能にするように、溶媒として炭素溶解度が大きいSi合金を選定し、その最適合金組成を決定することが求められている。そのような合金は、比較的容易に入手でき、かつ安定して使用できるものであることが望ましい。   Therefore, in order to realize mass production of SiC single crystals, it is required to select a Si alloy having a high carbon solubility as a solvent and to determine the optimum alloy composition so as to enable high-speed growth. It is desirable that such an alloy is relatively easily available and can be used stably.

本発明によれば、SiとCとCrとを含む融液(SiCの溶媒はSi−Cr合金)を用い、融液中のCr含有量を特定範囲に設定することにより、上記課題を解決することができる。   According to the present invention, the above-mentioned problem is solved by using a melt containing Si, C and Cr (the solvent of SiC is a Si—Cr alloy) and setting the Cr content in the melt to a specific range. be able to.

本発明者らはまず、最新の計算手法を用い、Si−Cr−Cの平衡状態図を鋭意計算し、図1に示すような2000Kでの状態図を得た。すなわち、本発明者らの計算によれば2000Kでは高Cr側に液相が広く存在しており、SiCを初晶として得ることは十分可能であり、液相成長法によりSiCの単結晶合成が期待できる。この温度でCが最も多量に溶解する組成は、mol%で、Cr:57.33−C:28.5−Si:14.1であり、[Cr]/([Cr]+[Si])の値は0.802である。   First, the inventors of the present invention used the latest calculation method to earnestly calculate the equilibrium state diagram of Si—Cr—C, and obtained a state diagram at 2000K as shown in FIG. That is, according to the calculation by the present inventors, a liquid phase is widely present on the high Cr side at 2000K, and it is sufficiently possible to obtain SiC as the primary crystal, and single crystal synthesis of SiC can be performed by the liquid phase growth method. I can expect. The composition in which C is dissolved in the largest amount at this temperature is mol%, Cr: 57.33-C: 28.5-Si: 14.1, and [Cr] / ([Cr] + [Si]) The value of is 0.802.

この状態図計算をもとに鋭意結晶成長実験を行った。その結果、Cが最も溶解する組成域すなわち、[Cr]/([Cr]+[Si])が0.8近傍で成長実験を行うとグラファイトが晶出しやすく、しばしばSiC単結晶の安定的な成長を阻害することがわかった。   An earnest crystal growth experiment was conducted based on this phase diagram calculation. As a result, when a growth experiment is performed in a composition range where C is most dissolved, that is, [Cr] / ([Cr] + [Si]) is about 0.8, graphite is likely to crystallize, and the stability of the SiC single crystal is often stable. It was found to inhibit growth.

また、上記特許文献1に具体的に開示されている、[Cr]/([Cr]+[Si])の値が0.70近傍の組成では、結晶成長用の坩堝内にCr3Siが晶出する寄生的な反応が生じ、SiC単結晶の均一な成長が阻害されることが判明した。つまり、特許文献1に具体的に開示されている融液では、均一なSiC単結晶を得ることはできない。 Further, in the composition specifically disclosed in the above-mentioned Patent Document 1, the value of [Cr] / ([Cr] + [Si]) is about 0.70, Cr 3 Si is contained in the crucible for crystal growth. It has been found that a parasitic reaction to crystallize occurs and the uniform growth of the SiC single crystal is inhibited. That is, with the melt specifically disclosed in Patent Document 1, a uniform SiC single crystal cannot be obtained.

本発明者らは、種々の[Cr]、[Si]組成でSiC単結晶の成長実験を継続した結果、[Cr]/([Cr]+[Si])の値が0.60を越えない組成において上記グラファイト晶出やCr3Siの晶出が無く、安定かつ均一にSiC単結晶がTi溶媒の場合より高速で成長することを突き止めた。また、[Cr]/([Cr]+[Si])の値が0.2を下回ると、C濃度が著しく低下し、SiCの成長速度がSi−Ti合金溶媒の場合より低下することも判明した。 As a result of continuing the growth experiment of SiC single crystal with various [Cr] and [Si] compositions, the present inventors have a value of [Cr] / ([Cr] + [Si]) not exceeding 0.60. It has been found that the SiC single crystal grows at a higher speed than the case of the Ti solvent stably and uniformly without the above-described graphite crystallization and Cr 3 Si crystallization. It was also found that when the value of [Cr] / ([Cr] + [Si]) is less than 0.2, the C concentration is remarkably reduced, and the SiC growth rate is lower than in the case of the Si—Ti alloy solvent. did.

以上の知見に基づいて、本発明は、SiとCとCrとを含み、Crのモル濃度を[Cr]、Siのモル濃度を[Si]として、[Cr]/([Cr]+[Si])の値が0.2以上、0.6以下である合金融液に、SiC成長用の種結晶基板を接触させ、少なくとも前記種結晶基板周辺において前記合金融液をSiCの過飽和状態とすることによって、前記種結晶基板上にSiC単結晶を成長させる、SiC単結晶の製造方法である。   Based on the above knowledge, the present invention includes Si, C, and Cr, wherein Cr is [Cr] and Si is [Si], and [Cr] / ([Cr] + [Si] ]) Is brought into contact with a seed crystal substrate for SiC growth to a combined financial solution having a value of 0.2 or more and 0.6 or less, and the combined financial solution is brought into a supersaturated state of SiC at least around the seed crystal substrate. By this, it is the manufacturing method of a SiC single crystal which grows a SiC single crystal on the seed crystal substrate.

本発明は、SiCを液相から成長させる液相成長法によるSiC単結晶の製造方法に関する。本発明で用いるSiとCとCrとを含む融液は、Si−Cr合金からなる溶媒中にSiCが溶解しているSiC溶液である。Si−Cr合金の融液が高い炭素溶解度を示し、液相成長法におけるSiCの溶媒となりうることは、上記非特許文献1、2や特許文献1から知られていた。しかし、上記非特許文献2が指摘するように、Si−Cr合金の溶媒系からSiC単結晶を均一成長させることはこれまで困難であった。   The present invention relates to a method for producing a SiC single crystal by a liquid phase growth method in which SiC is grown from a liquid phase. The melt containing Si, C, and Cr used in the present invention is a SiC solution in which SiC is dissolved in a solvent made of a Si—Cr alloy. It has been known from Non-Patent Documents 1 and 2 and Patent Document 1 that the melt of the Si—Cr alloy exhibits high carbon solubility and can be a solvent for SiC in the liquid phase growth method. However, as Non-Patent Document 2 points out, it has been difficult to grow a SiC single crystal uniformly from a solvent system of a Si—Cr alloy.

これは、炭素溶解度が最も高くなるのが[Cr]/([Cr]+[Si])の値が0.8前後とCr濃度の高い組成域であり、そのようなCr濃度の高い組成域ではグラファイトやCr−Si金属間化合物などの他の結晶の析出が避けられないからである。上記特許文献1と上記非特許文献1のいずれも、[Cr]/([Cr]+[Si])の値が0.7以上のCr濃度の高い組成域でしか成長実験を行っていない。   This is because the highest carbon solubility is in a composition region having a high Cr concentration with a value of [Cr] / ([Cr] + [Si]) of about 0.8, and such a composition region having a high Cr concentration. This is because precipitation of other crystals such as graphite and Cr—Si intermetallic compounds is inevitable. In both Patent Document 1 and Non-Patent Document 1, growth experiments are conducted only in a composition region having a high Cr concentration in which the value of [Cr] / ([Cr] + [Si]) is 0.7 or more.

本発明では、それよりCr濃度の低い[Cr]/([Cr]+[Si])の値が0.6以下というSi−Cr合金を溶媒とすることによって、合金元素MがTiである場合より高い成長速度で、SiCの均一な単結晶を成長させることに成功したものである。これは、Si−Cr合金系からは均一なSiC単結晶を成長させることができないという非特許文献2や、[Cr]/([Cr]+[Si])の値が0.7以上の合金系しか例示していない特許文献1および非特許文献1といった従来技術からは容易に導き出せるものではない。   In the present invention, when the alloy element M is Ti by using, as a solvent, a Si—Cr alloy having a Cr concentration lower than that of [Cr] / ([Cr] + [Si]) of 0.6 or less. It has succeeded in growing a uniform single crystal of SiC at a higher growth rate. This is because Non-Patent Document 2 that a uniform SiC single crystal cannot be grown from a Si—Cr alloy system, or an alloy having a value of [Cr] / ([Cr] + [Si]) of 0.7 or more. It cannot be easily derived from the prior art such as Patent Document 1 and Non-Patent Document 1 that only illustrate the system.

本発明において、「少なくとも前記種結晶基板周辺において前記融液の過冷却により融液に溶解しているSiCを過飽和状態とする」手段は、特に制限されず、液相成長法において一般に利用可能な任意の手段を採用することができる。前述したように、そのような手段として下記が挙げられる。
(1)融液全体を実質的に一様に徐冷して過冷却状態(すなわち過飽和状態)とする冷却法(徐冷法)、
(2)融液に温度勾配を設けて、種結晶基板の周辺が低温部になるようにして、この部分だけを溶液の過冷却状態とする温度差法(温度勾配法)
(3)溶媒を蒸発させて全体を過飽和状態とする蒸発法。
In the present invention, means for “saturating SiC dissolved in the melt by supercooling the melt at least around the seed crystal substrate” is not particularly limited, and can be generally used in the liquid phase growth method. Any means can be employed. As described above, examples of such means include the following.
(1) A cooling method (slow cooling method) in which the entire melt is gradually cooled substantially uniformly to form a supercooled state (ie, a supersaturated state),
(2) A temperature difference method (temperature gradient method) in which a temperature gradient is provided in the melt so that the periphery of the seed crystal substrate becomes a low temperature portion and only this portion is in a supercooled state of the solution.
(3) An evaporation method in which the solvent is evaporated and the whole is supersaturated.

冷却法では、融液の冷却をその融液の固相線温度より高い温度で終了した後、融液の加熱と冷却を繰り返すことにより過冷却を繰り返し行って、種結晶基板上へのSiC単結晶の成長を続けることにより、バルクの単結晶を得ることも可能である。しかし、加熱と冷却の繰り返しは熱エネルギーの消費量が多いので、バルク単結晶の成長は温度差法で行う方が有利である。冷却法は固相線よりも高い温度までの冷却を1回だけで終了して、バッチ方式でエピタキシャル成長薄膜を得るのに適している。蒸発法も冷却法と同様に、薄膜単結晶成長に適している。   In the cooling method, cooling of the melt is finished at a temperature higher than the solidus temperature of the melt, and then supercooling is repeatedly performed by repeating heating and cooling of the melt, so that the SiC single crystal on the seed crystal substrate is obtained. A bulk single crystal can be obtained by continuing crystal growth. However, since repeated heating and cooling consumes a large amount of heat energy, it is advantageous to perform bulk single crystal growth by the temperature difference method. The cooling method is suitable for obtaining an epitaxially grown thin film by a batch method by finishing the cooling to a temperature higher than the solidus line only once. As with the cooling method, the evaporation method is suitable for thin film single crystal growth.

温度差法は、連続的に結晶成長が行われるため、バルク単結晶を得るのに適した方法であるが、温度差法でも成長時間を短時間にすることでエピタキシャル薄膜を得ることは可能である。温度差法における融液の温度勾配は、融液の上下方向、水平方向のいずれに形成してもよく、その両方を組み合わせることも可能である。上下方向の温度勾配は通常は、種結晶基板が浸漬される融液上部を低温部、下部を高温部にする。水平方向の温度勾配は、融液の液面近傍において、種結晶基板が浸漬させる中央部を低温部とし、坩堝壁面近傍を高温部にするのが普通である。   The temperature difference method is a method suitable for obtaining a bulk single crystal because crystal growth is performed continuously, but it is possible to obtain an epitaxial thin film by shortening the growth time even with the temperature difference method. is there. The temperature gradient of the melt in the temperature difference method may be formed either in the vertical direction or in the horizontal direction of the melt, or a combination of both. The temperature gradient in the vertical direction is usually such that the upper part of the melt in which the seed crystal substrate is immersed is the low temperature part and the lower part is the high temperature part. As for the temperature gradient in the horizontal direction, in the vicinity of the liquid surface of the melt, the central portion where the seed crystal substrate is immersed is usually a low temperature portion, and the vicinity of the crucible wall surface is a high temperature portion.

本発明によれば、炭素溶解度が大きく、蒸気圧が小さく、化学的にTiより安定しているCrとのSi合金を溶媒に用いた液相成長法によりSiC単結晶を成長させることによって、高い結晶成長速度で、均一にSiC単結晶を成長させることができ、効率よく高品質のSiC単結晶を製造することができる。従って、本発明は、電子および光デバイスとして利用可能な良質のバルクおよび薄膜SiC単結晶の量産化を可能にする技術を提供する。   According to the present invention, by growing a SiC single crystal by a liquid phase growth method using a Si alloy with Cr, which has a high carbon solubility, a low vapor pressure, and is chemically more stable than Ti, as a solvent, high A SiC single crystal can be uniformly grown at a crystal growth rate, and a high-quality SiC single crystal can be produced efficiently. Therefore, the present invention provides a technique that enables mass production of high-quality bulk and thin-film SiC single crystals that can be used as electronic and optical devices.

本発明に従ってSiC単結晶を製造するには、まず、SiとCrとCとを含む融液を調製する。この融液は、溶媒であるSi−Cr合金系(Cr:20〜60モル%)にSiCが溶解しているSiC溶液である。融液から単結晶を成長させるには、融液中のSiC濃度(溶解したC濃度)は飽和濃度か、それに近い濃度にする必要がある。   In order to produce a SiC single crystal according to the present invention, first, a melt containing Si, Cr and C is prepared. This melt is a SiC solution in which SiC is dissolved in an Si—Cr alloy system (Cr: 20 to 60 mol%) as a solvent. In order to grow a single crystal from the melt, the SiC concentration (dissolved C concentration) in the melt needs to be a saturation concentration or a concentration close thereto.

この融液は、例えば、黒鉛坩堝に所定の割合でSiとCrを装入し、坩堝を加熱して融液状態にし、加熱をさらに続けて黒鉛坩堝からCを溶解させることにより調製することができる。即ち、黒鉛坩堝のような炭素質坩堝からCを供給する方法である。この方法は、SiC析出の核となりうる未溶解の炭素が融液中に残留することがない点で望ましい。但し、坩堝が消耗するので、その交換頻度が高くなる。   This melt can be prepared, for example, by charging Si and Cr at a predetermined ratio into a graphite crucible, heating the crucible into a molten state, and further heating to dissolve C from the graphite crucible. it can. That is, it is a method of supplying C from a carbonaceous crucible such as a graphite crucible. This method is desirable in that undissolved carbon that can be a nucleus of SiC precipitation does not remain in the melt. However, since the crucible is consumed, the replacement frequency becomes high.

別のC供給方法として、炭化水素ガスを所定組成のSi−Cr合金の融液に吹込んで融液中にCを溶解させる気相経由の方法、さらには固体の炭素源を融液に投入して溶解させる方法も可能である。この場合には非消耗性の坩堝を使用することができる。固体の炭素源としては、黒鉛のブロックや棒、顆粒、粉体の他に、黒鉛以外の非晶質の炭素原料、さらにはSiCやCrの炭化物なども利用できる。   As another method for supplying C, a method via a gas phase in which hydrocarbon gas is blown into a melt of Si—Cr alloy having a predetermined composition to dissolve C in the melt, and further, a solid carbon source is introduced into the melt. It is also possible to dissolve them. In this case, a non-consumable crucible can be used. As a solid carbon source, in addition to graphite blocks, rods, granules, and powders, amorphous carbon raw materials other than graphite, SiC and Cr carbides, and the like can be used.

もちろん、これらの2以上の方法を組み合わせてCを供給することも可能である。
加熱温度は、坩堝に装入したSiとCrの混合物の液相線温度以上であれば良い。加熱は、融液中のSiC濃度が飽和濃度またはそれに近い濃度になるまで、黒鉛坩堝または添加炭素源からCが融液中に溶解するまで続ける。固体の炭素源、特に粉末や顆粒の炭素源、を坩堝に添加した場合には、それらが未溶解で融液中に残留すると、そこにSiC結晶が析出して、SiC単結晶の成長速度を低下させ、あるいは結晶の品質を低下させることがあるので、添加した炭素源が完全に溶解するように加熱を続けることが好ましい。融液の加熱時間は、一般に1時間から10時間程度の範囲である。
Of course, it is also possible to supply C by combining these two or more methods.
The heating temperature should just be more than the liquidus temperature of the mixture of Si and Cr with which the crucible was charged. Heating is continued until C is dissolved in the melt from the graphite crucible or added carbon source until the SiC concentration in the melt is at or near the saturation concentration. When a solid carbon source, particularly a powder or granule carbon source, is added to the crucible, if they remain undissolved and remain in the melt, SiC crystals will precipitate there, increasing the growth rate of the SiC single crystal. Since it may lower the quality of the crystal or the quality of the crystal, the heating is preferably continued so that the added carbon source is completely dissolved. The heating time of the melt is generally in the range of about 1 hour to 10 hours.

溶媒系を構成するSi−Cr合金の組成は、[Cr]/([Cr]+[Si])の値が0.2〜0.6、即ち、CrとSiの合計に対してCrが20〜60モル%となる割合にする。前述したように、これよりCrが多くなると、SiC以外の結晶の析出が起こるようになり、均一なSiC単結晶を得ることができなくなる。一方、Crの割合が20モル%より少ないと、SiC単結晶の成長速度が著しく低下し、合金元素がTiである場合より成長速度が低くなる。[Cr]/([Cr]+[Si])の値は、好ましくは0.3以上、0.5以下である。   The composition of the Si—Cr alloy constituting the solvent system is such that the value of [Cr] / ([Cr] + [Si]) is 0.2 to 0.6, that is, Cr is 20 with respect to the total of Cr and Si. The ratio is ˜60 mol%. As described above, if the amount of Cr is larger than this, precipitation of crystals other than SiC occurs, and a uniform SiC single crystal cannot be obtained. On the other hand, when the proportion of Cr is less than 20 mol%, the growth rate of the SiC single crystal is remarkably lowered, and the growth rate is lower than that when the alloy element is Ti. The value of [Cr] / ([Cr] + [Si]) is preferably 0.3 or more and 0.5 or less.

坩堝は、炭素を坩堝の溶解により供給する場合には、黒鉛坩堝で代表される炭素質坩堝を使用する。添加した炭素源から炭素を供給する場合には、SiCの成長温度域で安定な坩堝材料、例えば、Ta、W、Moなどの高融点金属からなる坩堝や、黒鉛坩堝を適当な耐火材料(例、上記高融点金属またはセラミック)で内張りした坩堝を使用することができる。所望の融液組成が実現されるなら、コールドクルーシブルやレビテーション法など、坩堝を使用しない方法も適用可能である。   As the crucible, when supplying carbon by melting the crucible, a carbonaceous crucible represented by a graphite crucible is used. When supplying carbon from the added carbon source, a crucible material stable in the SiC growth temperature range, for example, a crucible made of a refractory metal such as Ta, W, Mo, or a graphite crucible is used as an appropriate refractory material (eg A crucible lined with the above-mentioned refractory metal or ceramic) can be used. If a desired melt composition is realized, a method that does not use a crucible, such as a cold crucible or a levitation method, is also applicable.

SiCが飽和濃度またはその近くまで溶解した融液(SiC溶液)が得られたら、その融液にSiC成長用の種結晶基板を接触させ、少なくとも種結晶基板の近傍の融液をSiCの過飽和状態にすることによって、SiCを種結晶基板上に成長させる。   When a melt (SiC solution) in which SiC is dissolved at or near the saturation concentration is obtained, a seed crystal substrate for SiC growth is brought into contact with the melt, and at least the melt near the seed crystal substrate is in a supersaturated state of SiC. By doing so, SiC is grown on the seed crystal substrate.

種結晶基板は、昇華再結晶化法で得られたSiC単結晶が望ましいが、CVD法などの気相成長で得られたSiC単結晶でも良い。種結晶基板は、成長させたいSiC単結晶の結晶構造と同じ結晶構造のものを使用するのが一般的である。種結晶基板はSiC単結晶に限られるものではない。その上でSiCがヘテロエピタキシャル成長することができ、融液中で安定に存在しうる、結晶構造が同じ異種の基板、例えばシリコン基板、を種結晶基板として使用することも可能である。   The seed crystal substrate is preferably an SiC single crystal obtained by sublimation recrystallization, but may be an SiC single crystal obtained by vapor phase growth such as CVD. As the seed crystal substrate, a substrate having the same crystal structure as that of the SiC single crystal to be grown is generally used. The seed crystal substrate is not limited to a SiC single crystal. Further, a heterogeneous substrate having the same crystal structure, for example, a silicon substrate, which can be heteroepitaxially grown on SiC and can exist stably in the melt, can be used as a seed crystal substrate.

種結晶基板は通常は、坩堝の蓋を貫通する回転可能なシード軸の先端に装着された種結晶基板支持治具に取り付けられ、融液に浸漬される。結晶成長を均一にするため、シード軸に加えて、坩堝も回転させることが好ましい。シード軸と坩堝の回転方向は、互いに同方向でも逆方向でもよい。種結晶基板の融液内の位置は、温度差法の場合には融液の自由界面(液面)すれすれとするのが普通であるが、融液全体を過飽和にする冷却法や蒸発法では任意である。   The seed crystal substrate is usually attached to a seed crystal substrate support jig attached to the tip of a rotatable seed shaft that passes through the lid of the crucible, and is immersed in the melt. In order to make the crystal growth uniform, it is preferable to rotate the crucible in addition to the seed shaft. The rotation directions of the seed shaft and the crucible may be the same or opposite directions. In the case of the temperature difference method, the position of the seed crystal substrate in the melt is usually the grazing free interface (liquid surface), but in the cooling method or evaporation method in which the entire melt is supersaturated. Is optional.

SiCの過飽和状態を得る方法としては、前述したように、溶液を蒸発させ過飽和状態とする蒸発法、飽和濃度のSiC溶液に種結晶基板を浸漬後、過冷却によって過飽和状態とする冷却法、温度勾配を有するSiC溶液中に種結晶基板を浸漬し、低温部でSiC結晶を晶出させる温度差法などが可能である。   As described above, the method for obtaining the supersaturated state of SiC includes the evaporation method for evaporating the solution to make it supersaturated, the cooling method for making the supersaturated state by supercooling after immersing the seed crystal substrate in a SiC solution of saturated concentration, and the temperature. A temperature difference method or the like in which a seed crystal substrate is immersed in a gradient SiC solution and a SiC crystal is crystallized at a low temperature portion is possible.

蒸発法は加熱温度が高くなり、発生した蒸気の処理も煩雑になるので、量産には冷却法または温度差法が適している。結晶成長時の温度(冷却法では冷却終了時の温度、温度差法では結晶成長が起こる低温部の種結晶基板近傍の温度)は、その融液組成の固相線温度よりやや低い温度とすることが好ましい。   In the evaporation method, the heating temperature becomes high and the treatment of the generated steam becomes complicated, so the cooling method or the temperature difference method is suitable for mass production. The temperature at the time of crystal growth (temperature at the end of cooling in the cooling method, temperature in the vicinity of the seed crystal substrate in the low temperature portion where crystal growth occurs in the temperature difference method) is slightly lower than the solidus temperature of the melt composition. It is preferable.

温度差法の場合、上下方向の温度勾配は、坩堝の周囲に配した加熱手段の制御により達成できるが、場合により低温部となる種結晶基板が浸漬される部分の周囲に冷却手段を配置しても良い。水平方向の温度勾配については、加熱された坩堝からの伝熱により融液を加熱すると、融液の液面からは抜熱が起こるため、坩堝壁面に接する融液の周辺部の方が、融液中央部に比べて高温になる温度勾配が自然に形成される。したがって融液中央部の液面近傍に浸漬すれば、その近傍が低温部になる。種結晶基板を取り付けたシード軸を水冷すると、この水平方向の温度勾配はさらに大きくなるので、結晶成長速度が増大する。   In the case of the temperature difference method, the temperature gradient in the vertical direction can be achieved by controlling the heating means arranged around the crucible, but in some cases, a cooling means is arranged around the part where the seed crystal substrate that becomes the low temperature part is immersed. May be. Regarding the temperature gradient in the horizontal direction, when the melt is heated by heat transfer from the heated crucible, heat is removed from the melt surface, so the periphery of the melt in contact with the crucible wall surface is melted. A temperature gradient that is higher than the temperature in the liquid center is naturally formed. Therefore, if it is immersed in the vicinity of the liquid surface of the melt central portion, the vicinity thereof becomes a low temperature portion. When the seed shaft on which the seed crystal substrate is attached is water-cooled, this horizontal temperature gradient is further increased, so that the crystal growth rate is increased.

温度差法における温度勾配は5〜100℃/cmの範囲が好ましい。5℃/cm未満では融液内の溶質であるSiCの輸送の駆動力が小さく、SiCの成長速度は小さくなる。温度勾配が100℃/cmを越えると、種結晶基板近傍で自然核発生によるSiC結晶が生じて、種結晶基板上への均一な溶質供給を阻害する。この結果、均一層成長した結晶が得られなくなる。冷却法の場合の冷却速度は5℃/min以下とすることが好ましい。   The temperature gradient in the temperature difference method is preferably in the range of 5 to 100 ° C./cm. If it is less than 5 ° C./cm, the driving force for transport of SiC, which is the solute in the melt, is small, and the growth rate of SiC is small. When the temperature gradient exceeds 100 ° C./cm, SiC crystals are generated near the seed crystal substrate due to the generation of natural nuclei, and the uniform solute supply onto the seed crystal substrate is hindered. As a result, crystals with uniform layer growth cannot be obtained. The cooling rate in the cooling method is preferably 5 ° C./min or less.

上述したように、本発明の方法は、SiCの薄膜単結晶とバルク単結晶のいずれも製造可能である。蒸発法や冷却法でバルク単結晶を得るには、結晶成長(Cの溶解と蒸発または冷却)を繰り返せばよい。温度差法では、成長時間によって、薄膜単結晶とバルク単結晶を作り分けることができる。   As described above, the method of the present invention can produce both SiC thin film single crystals and bulk single crystals. In order to obtain a bulk single crystal by an evaporation method or a cooling method, crystal growth (dissolution and evaporation or cooling of C) may be repeated. In the temperature difference method, a thin film single crystal and a bulk single crystal can be formed separately depending on the growth time.

6H−SiCを種結晶基板として冷却法によりSiC単結晶を成長させる成長試験を行った。結晶成長用の加熱炉としては抵抗加熱による均熱炉を用いた。
融液の合金原料として、SiとCrを表1に示す種々の割合となるように秤量し、高さ120mm×内径40mm(外径50mm)の黒鉛坩堝に入れた後、黒鉛蓋で坩堝を閉じた。円柱状の黒鉛製のシード軸の先端の種結晶支持冶具に、種結晶基板として、昇華再結晶化法により得られた10mm×10mm×0.35mm厚の6H−SiCの単結晶基板を取り付けた。
A growth test was conducted in which a SiC single crystal was grown by a cooling method using 6H—SiC as a seed crystal substrate. A soaking furnace using resistance heating was used as a heating furnace for crystal growth.
As alloy raw materials for the melt, Si and Cr were weighed so as to have various ratios shown in Table 1, and placed in a graphite crucible having a height of 120 mm × inner diameter of 40 mm (outer diameter of 50 mm), and then the crucible was closed with a graphite lid. It was. A 6H-SiC single crystal substrate having a thickness of 10 mm × 10 mm × 0.35 mm obtained by sublimation recrystallization was attached as a seed crystal substrate to a seed crystal support jig at the tip of a cylindrical graphite seed shaft. .

黒鉛蓋をした黒鉛坩堝と種結晶基板を取り付けたシード軸を均熱炉にセットした後、炉内をまず5×10-2Torr以下まで排気した。排気後、アルゴン(Ar)を充填することで炉内の雰囲気をArに置換した。Ar置換した後、炉内温度が1700℃の溶解温度になるまで10℃/minで加熱した。溶解温度に2.5時間保持して、坩堝から十分に炭素を溶解させた後、シード軸を黒鉛蓋のシード軸差し込み口から挿入し、種結晶基板が黒鉛坩堝の底部付近に達するまでシード軸を下ろすことで、種結晶基板を溶液中に浸漬した。種結晶基板を浸漬した後、溶解温度を7.5時間保持した。その後、1℃/minで冷却(徐冷)を開始した。1600℃に到達した後、シード軸を融液上に引き上げ、ヒーターの電源を切り、さらに室温まで冷却した。この時の加熱および冷却のヒートパターンを図2に模式的に示す。 After setting a graphite crucible with a graphite lid and a seed shaft attached with a seed crystal substrate in a soaking furnace, the inside of the furnace was first evacuated to 5 × 10 −2 Torr or less. After evacuation, the atmosphere in the furnace was replaced with Ar by filling with argon (Ar). After Ar substitution, the furnace was heated at 10 ° C / min until the furnace temperature reached 1700 ° C. After maintaining the melting temperature for 2.5 hours to sufficiently dissolve the carbon from the crucible, the seed shaft is inserted from the seed shaft insertion port of the graphite lid, and the seed shaft is reached until the seed crystal substrate reaches near the bottom of the graphite crucible. The seed crystal substrate was immersed in the solution. After immersing the seed crystal substrate, the dissolution temperature was maintained for 7.5 hours. Thereafter, cooling (slow cooling) was started at 1 ° C./min. After reaching 1600 ° C., the seed shaft was pulled up on the melt, the heater was turned off, and further cooled to room temperature. The heat pattern of heating and cooling at this time is schematically shown in FIG.

成長実験後に回収された種結晶基板を縦方向に切断した断面を光学顕微鏡で観察して、エピタキシャル成長層(基板上に成長しているSiC単結晶薄膜)の厚みを測定すると共に、成長の均一性も評価した。成長の均一性は、薄膜厚みの最大値と最小値および平均値を求め、最大値および最小値が平均値の20%以内に収まっている場合を「○」、20%を超えた場合を「×」と評価した。成長層の厚みと浸漬後の保持時間から算出した成長速度を、均一成長の有無と一緒に表1に示す。   The cross-section of the seed crystal substrate collected after the growth experiment was cut in the vertical direction and observed with an optical microscope to measure the thickness of the epitaxial growth layer (SiC single crystal thin film grown on the substrate) and the uniformity of growth. Was also evaluated. For the uniformity of growth, the maximum value, the minimum value, and the average value of the thin film thickness are obtained. When the maximum value and the minimum value are within 20% of the average value, “◯” is indicated. “×”. The growth rate calculated from the thickness of the growth layer and the holding time after immersion is shown in Table 1 together with the presence or absence of uniform growth.

本発明の効果の判定するために、現在最も安定してSiCの液相成長法が行えるSi−Ti−Cの3元融液(溶媒はSi−Ti合金)(上記特許文献2に開示)からSiC単結晶を成長させる方法を比較対象とした。本例では、Si−Ti溶液で得られる成長速度を基準とし、成長速度がSi−Ti溶液からの成長の場合の2倍以上であって、かつ均一成長の結果が「○」であった場合を、成長速度および成長の安定性の両方に効果があったと評価した(表中の効果欄では「有」と表示)。   In order to determine the effect of the present invention, from the ternary melt of Si—Ti—C (the solvent is a Si—Ti alloy) (disclosed in the above-mentioned Patent Document 2) that can perform the liquid phase growth method of SiC most stably at present. A method for growing a SiC single crystal was used as a comparison target. In this example, based on the growth rate obtained with the Si-Ti solution, the growth rate is more than twice as high as the growth from the Si-Ti solution, and the result of uniform growth is "◯" Was evaluated as having an effect on both the growth rate and the stability of the growth (shown as “Yes” in the effect column in the table).

Figure 2007261844
Figure 2007261844

表1より、溶媒がSi−Ti合金である時の成長速度の2倍以上の成長速度と均一な膜厚が得られる条件は、[Cr]/([Cr]+[Si])の値が0.2以上、0.6以下であることがわかる。この範囲では、SiC結晶が均一に成長し、安定して高い成長速度でSiC単結晶を製造することが可能となる。   From Table 1, the condition for obtaining a growth rate equal to or more than twice the growth rate when the solvent is a Si—Ti alloy and a uniform film thickness is [Cr] / ([Cr] + [Si]). It can be seen that it is 0.2 or more and 0.6 or less. In this range, the SiC crystal grows uniformly, and it becomes possible to produce a SiC single crystal stably at a high growth rate.

本例では、冷却法によりSiCの薄膜単結晶を成長させたが、次に述べるように、本発明を温度勾配下で静置する温度差法に適用し、バルクSiC単結晶を成長させることもできることを確認している。   In this example, the SiC thin film single crystal was grown by the cooling method. However, as described below, the present invention can be applied to the temperature difference method in which it is allowed to stand under a temperature gradient to grow a bulk SiC single crystal. I have confirmed that I can do it.

すなわち、[Cr]/([Cr]+[Si])の値が0.5となるように調整した合金原料を、高さ150mm×内径80mm(外径100mm)の黒鉛坩堝に入れた後、黒鉛蓋で坩堝を閉じた。円柱状の黒鉛製のシード軸先端に設けた種結晶基板支持冶具には、種結晶基板として、昇華再結晶化法により得られた1インチ径×0.35mm厚の6H−SiCの単結晶基板を取り付けた。黒鉛蓋をした黒鉛坩堝と種結晶基板を取り付けたシード軸を、高周波加熱炉(断熱材からなる炉の周囲に誘導加熱用の高周波コイルを設けた加熱炉)にセットした後、炉内をまず5×10-2Torr以下まで排気した。 That is, after putting the alloy raw material adjusted so that the value of [Cr] / ([Cr] + [Si]) is 0.5, into a graphite crucible having a height of 150 mm × inner diameter of 80 mm (outer diameter of 100 mm), The crucible was closed with a graphite lid. A seed crystal substrate support jig provided at the tip of a cylindrical graphite seed shaft is a 6-SiC single crystal substrate having a diameter of 1 inch × 0.35 mm obtained by sublimation recrystallization as a seed crystal substrate. Attached. After setting the graphite crucible with a graphite lid and the seed shaft to which the seed crystal substrate is attached to a high-frequency heating furnace (a heating furnace provided with a high-frequency coil for induction heating around a furnace made of heat insulating material) The air was exhausted to 5 × 10 −2 Torr or less.

排気後、アルゴン(Ar)を充填することで炉内の雰囲気をArに置換した。Ar置換した後、炉内温度が所定の溶解温度になるまで10℃/minで加熱して融液を形成した。この時に黒鉛坩堝と高周波コイルとの相対的な位置関係の制御により、融液に液面近傍が低温部(1700℃)となる20℃/cmの上下方向の温度勾配が形成された。十分なCが坩堝から溶解するように加熱を続けた後、シード軸を黒鉛蓋のシード軸差し込み口から挿入し、種結晶基板が溶液表面直下5mmの位置の融液温度が1700℃に設定されている領域に浸漬した。種結晶基板を浸漬した後、上記の加熱を50時間保持した。その後、シード軸を融液上に引き上げてからヒーターの電源を切り、さらに室温まで冷却した。   After evacuation, the atmosphere in the furnace was replaced with Ar by filling with argon (Ar). After Ar substitution, the melt was formed by heating at 10 ° C./min until the furnace temperature reached a predetermined melting temperature. At this time, by controlling the relative positional relationship between the graphite crucible and the high-frequency coil, a temperature gradient in the vertical direction of 20 ° C./cm was formed in the melt so that the vicinity of the liquid surface became a low temperature portion (1700 ° C.). After heating so that sufficient C is dissolved from the crucible, the seed shaft is inserted from the seed shaft insertion port of the graphite lid, and the melt temperature at the position of 5 mm immediately below the solution surface is set to 1700 ° C. Soaked in the area. After soaking the seed crystal substrate, the above heating was maintained for 50 hours. Thereafter, the seed shaft was pulled up on the melt, and then the heater was turned off and further cooled to room temperature.

得られたインゴットを切断、研削、研磨加工し、厚さ500μmの1インチ径バルク結晶を得た。得られたSiCバルク単結晶は、欠陥が皆無または少なく、かつ異なるポリタイプを含んでいない良質の結晶であった。   The obtained ingot was cut, ground, and polished to obtain a 1 inch bulk crystal having a thickness of 500 μm. The obtained SiC bulk single crystal was a high-quality crystal having no or few defects and containing no different polytypes.

昇華再結晶化法で得られた種結晶基板はマイクロパイプを含んでいた。しかし、液相成長の初期段階において融液のマイクロパイプへの侵入とSiCの横方向成長とにより種結晶基板中のマイクロパイプが閉塞した。そのため、この欠陥は成長層中には伝播せず、得られた結晶はマイクロパイプを含んでおらず、種結晶基板より格段に品質が向上していた。また、Crは蒸気圧が低く、Tiのように活性ではないため、温度差法により長時間の結晶成長を続けても、成長の反応系は安定していた。   The seed crystal substrate obtained by the sublimation recrystallization method contained micropipes. However, in the initial stage of liquid phase growth, the micropipe in the seed crystal substrate was blocked by the penetration of the melt into the micropipe and the lateral growth of SiC. Therefore, this defect does not propagate in the growth layer, and the obtained crystal does not include a micropipe, and the quality is significantly improved as compared with the seed crystal substrate. Further, since Cr has a low vapor pressure and is not as active as Ti, the growth reaction system was stable even when crystal growth was continued for a long time by the temperature difference method.

計算により得られた2000KでのSi−Cr−C3元系状態図である。It is the Si-Cr-C ternary system phase diagram in 2000K obtained by calculation. 実施例においてSiC単結晶の成長に用いた融液のヒートパターンを示す。The heat pattern of the melt used for the growth of the SiC single crystal in the examples is shown.

Claims (1)

SiとCとCrとを含み、Crのモル濃度を[Cr]、Siのモル濃度を[Si]として、[Cr]/([Cr]+[Si])の値が0.2以上、0.6以下である合金融液に、SiC成長用の種結晶基板を接触させ、少なくとも前記種結晶基板周辺において前記合金融液をSiCの過飽和状態とすることによって、前記種結晶基板上にSiC単結晶を成長させる、SiC単結晶の製造方法。   Including Si, C and Cr, the molar concentration of Cr is [Cr], the molar concentration of Si is [Si], and the value of [Cr] / ([Cr] + [Si]) is 0.2 or more, 0 A seed crystal substrate for SiC growth is brought into contact with a compound financial solution that is less than or equal to .6, and at least the seed crystal substrate is brought into a supersaturated state of SiC at least in the vicinity of the seed crystal substrate. A method for producing a SiC single crystal, wherein crystals are grown.
JP2006087077A 2006-03-28 2006-03-28 Manufacturing method of silicon carbide single crystal Pending JP2007261844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087077A JP2007261844A (en) 2006-03-28 2006-03-28 Manufacturing method of silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087077A JP2007261844A (en) 2006-03-28 2006-03-28 Manufacturing method of silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2007261844A true JP2007261844A (en) 2007-10-11

Family

ID=38635207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087077A Pending JP2007261844A (en) 2006-03-28 2006-03-28 Manufacturing method of silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2007261844A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184879A (en) * 2008-02-06 2009-08-20 Toyota Motor Corp METHOD FOR MANUFACTURING p-TYPE SiC SEMICONDUCTOR SINGLE CRYSTAL
JP2009274894A (en) * 2008-05-13 2009-11-26 Toyota Motor Corp METHOD FOR PRODUCING SiC SINGLE CRYSTAL
WO2010024392A1 (en) * 2008-08-29 2010-03-04 住友金属工業株式会社 Manufacturing method for silicon carbide monocrystals
WO2011007457A1 (en) 2009-07-17 2011-01-20 トヨタ自動車株式会社 Process for producing sic single crystal
JP2011068515A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
KR101152857B1 (en) 2008-01-15 2012-06-12 도요타 지도샤(주) Method for growing silicon carbide single crystal
DE112009005154T5 (en) 2009-07-17 2012-07-19 Toyota Jidosha Kabushiki Kaisha Method for producing a SiC single crystal
US8287644B2 (en) 2008-01-15 2012-10-16 Toyota Jidosha Kabushiki Kaisha Method for growing silicon carbide single crystal
WO2012156792A1 (en) 2011-05-16 2012-11-22 Toyota Jidosha Kabushiki Kaisha Process for producing semiconductor device and semiconductor device
EP2630278A2 (en) * 2010-10-21 2013-08-28 SK Innovation Co., Ltd. Process for growing silicon carbide single crystal and device for the same
US8685163B2 (en) 2007-11-27 2014-04-01 Toyota Jidosha Kabushiki Kaisha Method for growing silicon carbide single crystal
KR20170128081A (en) * 2016-05-12 2017-11-22 도요타 지도샤(주) SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264790A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Production of silicon carbide single crystal
JP2002356397A (en) * 2001-05-31 2002-12-13 Sumitomo Metal Ind Ltd Manufacturing method of silicon carbide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264790A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Production of silicon carbide single crystal
JP2002356397A (en) * 2001-05-31 2002-12-13 Sumitomo Metal Ind Ltd Manufacturing method of silicon carbide

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008003497B4 (en) * 2007-11-27 2015-06-25 Toyota Jidosha Kabushiki Kaisha Process for growing a silicon carbide single crystal
US8685163B2 (en) 2007-11-27 2014-04-01 Toyota Jidosha Kabushiki Kaisha Method for growing silicon carbide single crystal
KR101152857B1 (en) 2008-01-15 2012-06-12 도요타 지도샤(주) Method for growing silicon carbide single crystal
DE112009000360B4 (en) * 2008-01-15 2015-06-18 Toyota Jidosha Kabushiki Kaisha Process for growing a silicon carbide single crystal
US8287644B2 (en) 2008-01-15 2012-10-16 Toyota Jidosha Kabushiki Kaisha Method for growing silicon carbide single crystal
US8123857B2 (en) 2008-02-06 2012-02-28 Toyota Jidosha Kabushiki Kaisha Method for producing p-type SiC semiconductor single crystal
JP4586857B2 (en) * 2008-02-06 2010-11-24 トヨタ自動車株式会社 Method for producing p-type SiC semiconductor single crystal
JP2009184879A (en) * 2008-02-06 2009-08-20 Toyota Motor Corp METHOD FOR MANUFACTURING p-TYPE SiC SEMICONDUCTOR SINGLE CRYSTAL
JP2009274894A (en) * 2008-05-13 2009-11-26 Toyota Motor Corp METHOD FOR PRODUCING SiC SINGLE CRYSTAL
US8388752B2 (en) 2008-08-29 2013-03-05 Sumitomo Metal Industries, Ltd. Method of manufacturing a silicon carbide single crystal
WO2010024392A1 (en) * 2008-08-29 2010-03-04 住友金属工業株式会社 Manufacturing method for silicon carbide monocrystals
JP5304793B2 (en) * 2008-08-29 2013-10-02 新日鐵住金株式会社 Method for producing silicon carbide single crystal
WO2011007457A1 (en) 2009-07-17 2011-01-20 トヨタ自動車株式会社 Process for producing sic single crystal
JP5234184B2 (en) * 2009-07-17 2013-07-10 トヨタ自動車株式会社 Method for producing SiC single crystal
DE112009005154T5 (en) 2009-07-17 2012-07-19 Toyota Jidosha Kabushiki Kaisha Method for producing a SiC single crystal
US20120118221A1 (en) * 2009-07-17 2012-05-17 Katsunori Danno Method of production of sic single crystal
US9587327B2 (en) 2009-07-17 2017-03-07 Toyota Jidosha Kabushiki Kaisha Method of production of sic single crystal
JP2011068515A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
EP2630278A2 (en) * 2010-10-21 2013-08-28 SK Innovation Co., Ltd. Process for growing silicon carbide single crystal and device for the same
EP2630278A4 (en) * 2010-10-21 2014-06-18 Sk Innovation Co Ltd Process for growing silicon carbide single crystal and device for the same
US9359690B2 (en) 2010-10-21 2016-06-07 Sk Innovation Co., Ltd. Process for growing silicon carbide single crystal and device for the same
WO2012156792A1 (en) 2011-05-16 2012-11-22 Toyota Jidosha Kabushiki Kaisha Process for producing semiconductor device and semiconductor device
US9508802B2 (en) 2011-05-16 2016-11-29 Toyota Jidosha Kabushiki Kaisha Gettering process for producing semiconductor device
KR20170128081A (en) * 2016-05-12 2017-11-22 도요타 지도샤(주) SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME

Similar Documents

Publication Publication Date Title
JP2007261844A (en) Manufacturing method of silicon carbide single crystal
JP4419937B2 (en) Method for producing silicon carbide single crystal
JP5218348B2 (en) Method for producing silicon carbide single crystal
EP2881499B1 (en) Method for growing silicon carbide crystal
JP4100228B2 (en) Silicon carbide single crystal and manufacturing method thereof
WO2006025420A1 (en) Method for preparing silicon carbide single crystal
JP4645499B2 (en) Method for producing silicon carbide single crystal
JP4736401B2 (en) Method for producing silicon carbide single crystal
JP4934958B2 (en) Method for producing silicon carbide single crystal
WO2010024392A1 (en) Manufacturing method for silicon carbide monocrystals
JP2008100890A (en) Method for producing sic single crystal
JP5983772B2 (en) Method for producing n-type SiC single crystal
JP4475091B2 (en) Method for producing silicon carbide single crystal
WO2016039415A1 (en) Method for producing silicon carbide crystals and crystal production device
JP2002356397A (en) Manufacturing method of silicon carbide
TWI809003B (en) Manufacturing method of silicon carbide single crystal
WO2009090535A1 (en) Method for growing silicon carbide single crystal
JP6181534B2 (en) Crystal growth method of silicon carbide
JP6177676B2 (en) Crystal growth method of silicon carbide
JP6129064B2 (en) Crystal growth method of silicon carbide
JP6129065B2 (en) Crystal growth method of silicon carbide
JP4466293B2 (en) Method for producing silicon carbide single crystal
JP6178227B2 (en) Crystal growth method of silicon carbide
JP6180910B2 (en) Crystal growth method of silicon carbide
WO2003087440A1 (en) Silicon carbide single crystal and method for preparation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Effective date: 20100416

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928