JP2011068515A - METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL - Google Patents

METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL Download PDF

Info

Publication number
JP2011068515A
JP2011068515A JP2009221007A JP2009221007A JP2011068515A JP 2011068515 A JP2011068515 A JP 2011068515A JP 2009221007 A JP2009221007 A JP 2009221007A JP 2009221007 A JP2009221007 A JP 2009221007A JP 2011068515 A JP2011068515 A JP 2011068515A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
crucible
sic
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009221007A
Other languages
Japanese (ja)
Other versions
JP5428706B2 (en
Inventor
Hironori Oguro
寛典 大黒
Hidemitsu Sakamoto
秀光 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009221007A priority Critical patent/JP5428706B2/en
Publication of JP2011068515A publication Critical patent/JP2011068515A/en
Application granted granted Critical
Publication of JP5428706B2 publication Critical patent/JP5428706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a SiC single crystal in which the mixing probability of a polycrystal in a single crystal and a void density can be reduced without the need for a special apparatus even when a crystal growth temperature is high. <P>SOLUTION: The method for manufacturing the SiC single crystal which is grown up on a SiC seed crystal from a material solution by the solution method, wherein the ratio (Sc/Ss) of the surface area (Sc) of the SiC seed crystal relative to a solution area (Ss) of a solution interface is 0.13 or less, and atmospheric pressure in a crucible before the starting of a crystal growth is assumed to be 55 kPa or more. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、SiC単結晶の製造方法に関し、さらに詳しくは溶液法によるSiC単結晶の製造方法において溶液界面の面積に対するSiC種結晶の表面積の割合および結晶成長開始前の坩堝内の雰囲気圧力を特定の範囲にしてSiC単結晶を成長させることによって成長SiC結晶中の多結晶の混入確率およびボイド密度を低減し得るSiC単結晶の製造方法に関するものである。   The present invention relates to a method for producing a SiC single crystal, and more specifically, in the method for producing a SiC single crystal by a solution method, the ratio of the surface area of the SiC seed crystal to the area of the solution interface and the atmospheric pressure in the crucible before starting crystal growth are specified. It is related with the manufacturing method of the SiC single crystal which can reduce the mixing probability and the void density of the polycrystal in the grown SiC crystal by growing the SiC single crystal in the range described above.

SiC単結晶は、熱的、化学的に非常に安定であり、機械的強度に優れ、放射線に強く、しかもSi(シリコン)単結晶に比べて高い絶縁破壊電圧、高い熱伝導率などの優れた物性を有し、不純物の添加によってp、n伝導型の電子制御も容易にできるとともに、広い禁制帯幅(4H型の単結晶SiCで約3.3eV、6H型の単結晶SiCで約3.0eV)を有するという特長を備えている。このため、Si単結晶やGaAs(ガリウム砒素)単結晶などの既存の半導体材料では実現できない高温、高周波、耐電圧・耐環境性を実現することが可能であり、次世代の半導体材料として期待が高まっている。   SiC single crystal is very stable thermally and chemically, excellent in mechanical strength, resistant to radiation, and excellent in breakdown voltage and high thermal conductivity compared to Si (silicon) single crystal. It has physical properties and can easily control p- and n-conduction type electrons by adding impurities, and has a wide forbidden band width (about 3.3 eV for 4H-type single crystal SiC and about 3.3 eV for 6H-type single crystal SiC. 0 eV). For this reason, it is possible to realize high temperature, high frequency, withstand voltage and environmental resistance that cannot be realized with existing semiconductor materials such as Si single crystal and GaAs (gallium arsenide) single crystal. It is growing.

従来、SiC単結晶の代表的な成長方法として気相法と溶液法が知られている。気相法としては、通常、昇華法が用いられる。昇華法では、黒鉛製坩堝内にSiC原料粉末とSiC単結晶である種結晶とを対向させて配置し、坩堝を不活性ガス雰囲気中で加熱して、単結晶をエピタキシャルに成長させる。しかし、この気相法では、坩堝内壁から成長してくる多結晶がSiC単結晶の品質に悪影響を及ぼすことが知られている。
また、溶液法では、原料溶液を入れる坩堝、例えば黒鉛坩堝、原料溶液、高周波コイルなどの外部加熱装置、断熱材、昇降可能な種結晶支持部材(例えば、黒鉛軸)および種結晶支持部材の先端に取り付けた種結晶からなる基本的構造を有するSiC単結晶製造装置を用いて、坩堝中、Si融液又はさらに金属を溶解したSi合金融液などのSi含有融液にC(炭素)供給源、例えば黒鉛坩堝からCを溶解させて原料溶液とし、SiC種結晶基板上にSiC単結晶層を溶液析出によって成長させている。
Conventionally, a vapor phase method and a solution method are known as typical growth methods for SiC single crystals. As the gas phase method, a sublimation method is usually used. In the sublimation method, a SiC raw material powder and a seed crystal that is a SiC single crystal are arranged facing each other in a graphite crucible, and the crucible is heated in an inert gas atmosphere to grow the single crystal epitaxially. However, in this vapor phase method, it is known that polycrystals grown from the inner wall of the crucible adversely affect the quality of the SiC single crystal.
In the solution method, a crucible for containing a raw material solution, for example, a graphite crucible, a raw material solution, an external heating device such as a high-frequency coil, a heat insulating material, a liftable seed crystal support member (for example, a graphite shaft), and a tip of the seed crystal support member C (carbon) supply source to Si-containing melt such as Si melt or Si compound financial liquid in which metal is dissolved in crucible using SiC single crystal production apparatus having basic structure consisting of seed crystal attached to For example, C is dissolved from a graphite crucible to obtain a raw material solution, and a SiC single crystal layer is grown on the SiC seed crystal substrate by solution precipitation.

この溶液法によるSiC単結晶の成長法では、原料溶液に種結晶基板近傍の溶液温度が他の部分の溶液温度より低温になるように温度勾配を設けて成長させる方法、又は原料溶液全体を徐冷して成長させる方法のいずれかのSiC単結晶成長法が用いられるが、いずれも原料溶液の冷却の際の溶液中の温度分布や濃度分布による単結晶以外の結晶の生成が避けられないことが知られている。
一方、従来の融液から単結晶を成長させる成長法では、得られる結晶中にボイドが形成されることが知られている。このため、結晶中のボイド密度を低減させる種々の検討がされている。
In the growth method of SiC single crystal by this solution method, the raw material solution is grown with a temperature gradient so that the solution temperature in the vicinity of the seed crystal substrate is lower than the solution temperature of other parts, or the entire raw material solution is gradually added. Any of the SiC single crystal growth methods used for cooling and growth are used, but in any case, it is inevitable that crystals other than the single crystal are generated due to temperature distribution and concentration distribution in the solution when the raw material solution is cooled. It has been known.
On the other hand, in a conventional growth method in which a single crystal is grown from a melt, it is known that voids are formed in the resulting crystal. For this reason, various studies for reducing the void density in the crystal have been made.

例えば、特許文献1には、酸化ビスマスと二酸化ゲルマニウムの融液からゲルマニウム酸ビスマス単結晶を引き上げるに際し、種結晶の回転数を坩堝内融液の自然対流が強制対流より優勢になるように制限しながら引き上げを行うことによって結晶中のボイド発生を抑制するゲルマニウム酸ビスマス単結晶の製造方法が記載されている。
特許文献2には、ほう酸リチウムガラス融液よりほう酸リチウム単結晶を生長させる方法において、ほう酸リチウム単結晶の生長雰囲気中の水分含有量を1%以下とするほう酸リチウム単結晶の製造方法が記載されている。そして、前記の方法によれば気泡の少ない単結晶が得られることが記載されている。
For example, in Patent Document 1, when pulling up a bismuth germanate single crystal from a melt of bismuth oxide and germanium dioxide, the rotational speed of the seed crystal is limited so that the natural convection of the melt in the crucible becomes more dominant than forced convection. A method for producing a bismuth germanate single crystal that suppresses the generation of voids in the crystal by pulling up is described.
Patent Document 2 describes a method for producing a lithium borate single crystal in which the water content in the growth atmosphere of the lithium borate single crystal is 1% or less in the method for growing a lithium borate single crystal from a lithium borate glass melt. ing. And it is described that according to the said method, a single crystal with few bubbles can be obtained.

特許文献3には、ガスからなる気泡を含み、気泡中のガスが約0.5%未満の不溶性ガスを含む石英坩堝であって、実質的に結晶空隙の無いシリコン単結晶を製造するために用いられる坩堝が記載されている。しかし、結晶空隙の無いシリコン単結晶を得た具体例は記載されていない。
特許文献4には、単結晶成長時に単結晶成長温度での粘度が750μP(マイクロポアズ)以下である非酸化性雰囲気ガスの条件で融液中に炭化珪素の種結晶を浸漬して炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法が記載されている。そして、前記の方法によって結晶内に取り込まれる気泡発生を完全に抑制できることが記載されている。そして、具体例として、雰囲気ガスとしてHeを用いて結晶成長させて単結晶を得た例が雰囲気ガスとしてArを用いて結晶成長させて単結晶を得た比較例と共に示されている。
特許文献5には、シリコン融液からシリコン単結晶を引き上げて成長させる方法において、ボイド欠陥などを含まない無欠陥領域を高い割合で有する結晶を得るために固液界面の高さをシリコン単結晶の半径との関係で特定の範囲とするシリコン単結晶の製造方法が記載されている。
Patent Document 3 discloses a quartz crucible containing a gas-containing gas bubble and an insoluble gas having a gas content of less than about 0.5% in order to produce a silicon single crystal substantially free of crystal voids. The crucible used is described. However, no specific example of obtaining a silicon single crystal without crystal voids is described.
In Patent Document 4, a silicon carbide seed crystal is immersed in a melt under the condition of a non-oxidizing atmosphere gas having a viscosity at a single crystal growth temperature of 750 μP (micropoise) or less during single crystal growth. A method for producing a silicon carbide single crystal for growing crystals is described. And it is described that the bubble generation taken into the crystal by the above method can be completely suppressed. As a specific example, an example in which a single crystal is obtained by crystal growth using He as an atmospheric gas is shown together with a comparative example in which a single crystal is obtained by crystal growth using Ar as an atmospheric gas.
In Patent Document 5, in a method of pulling and growing a silicon single crystal from a silicon melt, the height of a solid-liquid interface is set to obtain a crystal having a high percentage of defect-free regions that do not contain void defects and the like. Describes a method for producing a silicon single crystal in a specific range in relation to the radius of.

特許文献6には、融液に種結晶基板を接触させて結晶を成長させる際に、欠陥密度の低減したバルク単結晶を成長させるために、単結晶が成長面に対して鏡映対称性を有していない結晶構造を持ち、単結晶の成長面と基板の単結晶成長面の反対側の面との間に電圧を印加しながら不活性雰囲気下で結晶を成長させる単結晶の製造方法が記載されている。そして、具体例として基板にパルス電圧を印加することによって定性的に欠陥の少ないバルク単結晶が得られたことがパルス電圧を印加しない場合の比較例とともに示されている。しかし、得られた結晶中の欠陥を定量的に測定した例は記載されていない。
特許文献7には、Si融液にCrおよびX(XはNi、Coの少なくとも1種)を特定の割合で添加した融液により炭化珪素単結晶を析出成長させる結晶成長層表面のモフォロジーの向上を実現し得る炭化珪素単結晶の成長法が記載されている。
In Patent Document 6, when growing a crystal by bringing a seed crystal substrate into contact with a melt, the single crystal has mirror symmetry with respect to the growth surface in order to grow a bulk single crystal having a reduced defect density. A method of manufacturing a single crystal having a crystal structure that does not have, and growing a crystal in an inert atmosphere while applying a voltage between a growth surface of the single crystal and a surface opposite to the single crystal growth surface of the substrate. Are listed. As a specific example, the fact that a bulk single crystal with few defects is obtained qualitatively by applying a pulse voltage to the substrate is shown together with a comparative example in the case where no pulse voltage is applied. However, no example of quantitatively measuring defects in the obtained crystal is described.
Patent Document 7 describes an improvement in the morphology of the surface of a crystal growth layer in which a silicon carbide single crystal is precipitated and grown by a melt obtained by adding Cr and X (X is at least one of Ni and Co) to a Si melt at a specific ratio. A method of growing a silicon carbide single crystal that can realize the above is described.

特開平2−239183号公報JP-A-2-239183 特開平7−33580号公報JP 7-33580 A 特表2001−519752号公報Special table 2001-519752 gazette 特開2006−69861号公報JP 2006-69861 A 特開2007−290907号公報JP 2007-290907 A 特開2008−280225号公報JP 2008-280225 A 特開2009−126770号公報JP 2009-126770 A

上記の各特許文献に記載の単結晶の製造方法によれば欠陥の少ない単結晶が得られるとされるが、いずれも特別の装置が必要であるとか、2000℃程度の高い結晶成長温度であってもSiC単結晶を成長させてボイド抑制の効果が達成されるのか不明であり、高い結晶成長温度で特別な装置を必要とせず成長したSiC単結晶中の多結晶の混入確率の低減とともにボイド密度を低減し得るSiC単結晶の製造方法が必要とされている。
従って、本発明の目的は、高い結晶成長温度であっても特別な装置を必要とせず成長結晶中の多結晶の混入確率を低減するとともにボイド密度を低減し得るSiC単結晶の製造方法を提供することである。
According to the single crystal manufacturing methods described in the above patent documents, single crystals with few defects can be obtained. However, all of them require special equipment or have a high crystal growth temperature of about 2000 ° C. However, it is unclear whether the effect of suppressing voids can be achieved by growing SiC single crystals, and voids are reduced along with a reduction in the probability of polycrystals in SiC single crystals grown without the need for special equipment at high crystal growth temperatures. There is a need for a method of producing a SiC single crystal that can reduce the density.
Accordingly, an object of the present invention is to provide a method for producing an SiC single crystal that can reduce the probability of mixing polycrystals in the grown crystal and reduce the void density without requiring a special apparatus even at a high crystal growth temperature. It is to be.

本発明者らは、溶液法によるSiC単結晶の製造方法について検討を行った結果、単結晶中のボイドの生成は種結晶にガスが付着することが原因の1つであることを見出しさらに検討を行った結果、本発明を完成した。
本発明は、溶液法により原料溶液からSiC種結晶(SiC種結晶基板)上にSiC単結晶を成長させる方法であって、溶液界面の面積(Ss)に対するSiC種結晶の表面積(Sc)の割合(Sc/Ss)を0.13以下、結晶成長開始前の坩堝内の雰囲気圧力を55kPa以上とすることを特徴とするSiC単結晶の製造方法に関する。
本発明において、溶液界面の面積(Ss)およびSiC種結晶の表面積(Sc)とは後述の実施例の欄に詳述される各々の面積である。
また、本発明において、結晶成長開始前の坩堝内の雰囲気圧力とはSiC種結晶に原料溶液(融液ともいう)を接触させる前であって後述の実施例の欄に詳述される時点での坩堝内の雰囲気圧力を意味する。
As a result of examining the manufacturing method of the SiC single crystal by the solution method, the present inventors have found that the generation of voids in the single crystal is one of the causes due to gas adhering to the seed crystal. As a result, the present invention was completed.
The present invention is a method for growing a SiC single crystal on a SiC seed crystal (SiC seed crystal substrate) from a raw material solution by a solution method, and the ratio of the surface area (Sc) of the SiC seed crystal to the area (Ss) of the solution interface The present invention relates to a method for producing an SiC single crystal, characterized in that (Sc / Ss) is 0.13 or less and the atmospheric pressure in the crucible before starting crystal growth is 55 kPa or more.
In the present invention, the area (Ss) of the solution interface and the surface area (Sc) of the SiC seed crystal are each area described in detail in the column of Examples described later.
In the present invention, the atmospheric pressure in the crucible before the start of crystal growth is the time before the raw material solution (also referred to as melt) is brought into contact with the SiC seed crystal, and is described in detail in the section of Examples below. Means the atmospheric pressure in the crucible.

本発明によれば、高い結晶成長温度であっても特別な装置を必要とせず成長結晶中の多結晶の混入確率を低減するとともに単結晶中のボイド密度を容易に低減し得る。   According to the present invention, a special apparatus is not required even at a high crystal growth temperature, and the probability of mixing polycrystals in the grown crystal can be reduced and the void density in the single crystal can be easily reduced.

図1は、本発明の実施例における溶液界面の面積(Ss)に対する種結晶面積(Sc)との割合(Sc/Ss)と得られた成長SiC結晶中のボイド密度の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the ratio (Sc / Ss) of the seed crystal area (Sc) to the area (Ss) of the solution interface in the example of the present invention and the void density in the obtained grown SiC crystal. . 図2は、実施例で得られた成長SiC結晶の結晶表面画像を示す写真の写しである。FIG. 2 is a copy of a photograph showing a crystal surface image of the grown SiC crystal obtained in the example. 図3は、本発明の実施例における坩堝内の雰囲気圧力(結晶成長開始前と成長開始以後)と得られた成長SiC結晶中のボイド密度の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the atmospheric pressure in the crucible (before and after the start of crystal growth) and the void density in the obtained grown SiC crystal in the example of the present invention. 図4は、本発明の実施例における坩堝内の雰囲気圧力(結晶成長開始前と成長開始以後)と得られた成長SiC結晶中の多結晶混入確率を示すグラフである。FIG. 4 is a graph showing the atmospheric pressure in the crucible (before the start of crystal growth and after the start of growth) and the polycrystal mixing probability in the obtained grown SiC crystal in the example of the present invention. 図5は、比較例で得られた成長SiC結晶の結晶透過画像を示す写真の写しである。FIG. 5 is a copy of a photograph showing a crystal transmission image of the grown SiC crystal obtained in the comparative example. 図6は、本発明の実施例において用いた溶液法によるSiC単結晶成長用実験装置の模式図である。FIG. 6 is a schematic diagram of an experimental apparatus for growing a SiC single crystal by a solution method used in an example of the present invention.

本発明においては、溶液法によりSiC単結晶を成長させる際に、溶液界面の面積(Ss)に対するSiC種結晶の表面積(Sc)の割合(Sc/Ss)を0.13以下、例えば0.01〜0.13、且つ結晶成長開始前の坩堝内の雰囲気圧力を55kPa以上、例えば55〜200kPaの範囲とすることによって、1800〜2100℃の高い結晶成長温度であっても特別な装置を使用することなく、成長結晶中の多結晶の混入確率を低減するとともに成長SiC単結晶中のボイド密度を低減し得る。さらに、結晶成長開始以後の坩堝内の雰囲気圧力を150kPa以下、例えば20〜150kPaの範囲、特に20〜125kPaの範囲とすることによって、成長SiC単結晶中のボイド密度を大幅に低減し得る。
なお、前記の記載において特別な装置を使用することなくとは、通常のSiC結晶成長および反応装置技術において適用される装置以外の各製造条件の制御が当業者に周知ではない装置のことをいう。
In the present invention, when the SiC single crystal is grown by the solution method, the ratio (Sc / Ss) of the surface area (Sc) of the SiC seed crystal to the area (Ss) of the solution interface is 0.13 or less, for example, 0.01 A special apparatus is used even at a high crystal growth temperature of 1800 to 2100 ° C. by setting the atmospheric pressure in the crucible in the crucible before starting crystal growth to 55 kPa or more, for example, 55 to 200 kPa. Therefore, it is possible to reduce the probability of polycrystals in the grown crystal and to reduce the void density in the grown SiC single crystal. Furthermore, by setting the atmospheric pressure in the crucible after the start of crystal growth to 150 kPa or less, for example, in the range of 20 to 150 kPa, particularly in the range of 20 to 125 kPa, the void density in the grown SiC single crystal can be significantly reduced.
In the above description, “without using a special apparatus” means an apparatus whose control of each manufacturing condition other than the apparatus applied in the normal SiC crystal growth and reactor technology is not well known to those skilled in the art. .

以下、本発明について、図1〜5を参照して説明する。
本発明においては、溶液法によって前記のSc/Ssを0.13以下、且つ結晶成長開始前の坩堝内の雰囲気圧力を55kPa以上としてSiC単結晶を成長することによって図4に示すように結晶中の多結晶混入が無い乃至は少なく、図1および図2に示すように成長SiC単結晶中のボイド密度を低減し得る。
特に、前記Sc/Ssおよび結晶成長開始前の坩堝内の雰囲気圧力に関する条件を満足するとともに、さらに結晶成長開始以後の坩堝内の雰囲気圧力を150kPa以下、例えば20〜150kPaの範囲、特に20〜125kPaの範囲としてSiC単結晶を成長させることによって、図3に示すように成長SiC単結晶中のボイド密度をさらに無くす乃至は低減して、図4に示すように成長SiC単結晶中の多結晶混入確率を無くす乃至は低減し得る。
Hereinafter, the present invention will be described with reference to FIGS.
In the present invention, a SiC single crystal is grown by a solution method at a Sc / Ss of 0.13 or less and the atmospheric pressure in the crucible before the start of crystal growth is 55 kPa or more as shown in FIG. As shown in FIGS. 1 and 2, the void density in the grown SiC single crystal can be reduced.
In particular, the conditions regarding the Sc / Ss and the atmospheric pressure in the crucible before the start of crystal growth are satisfied, and the atmospheric pressure in the crucible after the start of crystal growth is 150 kPa or less, for example, in the range of 20 to 150 kPa, particularly 20 to 125 kPa. As shown in FIG. 3, the void density in the grown SiC single crystal is further eliminated or reduced by growing the SiC single crystal as shown in FIG. 3, and the polycrystalline inclusion in the grown SiC single crystal as shown in FIG. Probability can be eliminated or reduced.

これに対して、坩堝内の結晶成長開始前の雰囲気圧力が本発明における前記範囲外、例えば20kPaとして結晶成長を行うと、図5に示すように成長SiC単結晶中に目的とする種結晶(例えば、図5では4H−SiC)と同じ4H−SiC以外に3C−SiC、4H−SiCおよび6H−SiCなどの多結晶混入が確認される。
この坩堝内の結晶成長開始前の雰囲気圧力が多結晶混入にどのような影響を及ぼすかについての理論的な解明は未だされていないが、結晶成長開始時に坩堝内が過度に負圧あるいは低圧であると溶液の蒸気が種結晶に付着して目的とする単結晶(例えば、図5では4H−SiC)以外の結晶多形(例えば、種結晶が4H−SiCの場合、6H−SiCや3C−SiCなど)が核発生して成長することを促すと考えられる。
On the other hand, when the crystal growth is performed with the atmospheric pressure before the start of crystal growth in the crucible being outside the above range in the present invention, for example, 20 kPa, as shown in FIG. 5, the target seed crystal ( For example, in addition to 4H-SiC, which is the same as 4H-SiC in FIG. 5, polycrystals such as 3C-SiC, 4H-SiC, and 6H-SiC are confirmed.
Although the theoretical elucidation of how the atmospheric pressure before the start of crystal growth in the crucible has an effect on the incorporation of polycrystals has not yet been made, the crucible inside the crucible is exposed to excessively negative pressure or low pressure. In some cases, the vapor of the solution adheres to the seed crystal and a crystal polymorphism other than the target single crystal (for example, 4H-SiC in FIG. 5) (for example, when the seed crystal is 4H-SiC, 6H-SiC or 3C- It is thought that SiC and the like) promote nucleation and growth.

本発明においてSiC単結晶を成長させるための原料溶液としては、SiとCとを必須成分とする任意の溶液を挙げることができ、例えば、成長結晶の品質の観点から、原料溶液として前記成分にさらにTiおよび/又はCrを含むものが挙げられる。   In the present invention, the raw material solution for growing the SiC single crystal can include any solution containing Si and C as essential components. For example, from the viewpoint of the quality of the grown crystal, Furthermore, the thing containing Ti and / or Cr is mentioned.

前記の原料溶液の温度は1600〜2100℃の範囲、例えば1800〜2100℃の範囲、その中でも1800〜2050℃、特に1850〜2050℃程度であり得る。
前記の原料溶液の温度の制御は、例え高周波誘導加熱によって加熱し、例えば放射温度計による原料溶液面の温度観察および/又は炭素棒内側に設置した熱電対、例えばW−Re(タングステン/レニューム)熱電対を用いて温度測定を行って求められた測定温度に基いて温度制御装置によって行うことができる。
The temperature of the raw material solution may be in the range of 1600 to 2100 ° C., for example, in the range of 1800 to 2100 ° C., among which 1800 to 2050 ° C., particularly about 1850 to 2050 ° C.
The temperature of the raw material solution is controlled by high-frequency induction heating, for example, observation of the temperature of the raw material solution surface by a radiation thermometer and / or a thermocouple installed inside the carbon rod, for example, W-Re (tungsten / renium) The temperature can be measured by a temperature controller based on the measured temperature obtained by measuring the temperature using a thermocouple.

本発明においては、結晶成長開始前および好適にはさらに結晶成長開始以後の坩堝内の雰囲気圧力を制御する必要があるため、反応容器として図6に示すように密閉系の反応容器を使用することが適当である。
前記の坩堝内の雰囲気圧力の制御法としては、反応装置における周知の制御技術を用い得る。例えば、坩堝内の雰囲気として、限定されないが例えば不活性ガス雰囲気を用いる場合には、不活性ガス貯蔵容器、例えば不活性ガスボンベ、該ボンベから坩堝内に不活性ガスを供給するパイプ、坩堝内に不活性ガスを導入する導入口、坩堝から不活性ガスを排出する排出口、坩堝からガスを排出する真空ポンプ、坩堝内の雰囲気圧力を制御する装置、例えば圧力計などの装置を坩堝に設けることによって適宜行うことができる。
本発明においては、結晶成長開始前の坩堝内の雰囲気圧力を制御する必要があるが、結晶成長開始前と結晶成長開始以後の雰囲気圧力は同一であっても異なってもよく、通常は同一であってよく、これらの圧力を変える場合は前記の雰囲気圧力の制御法によって適宜行い得る。
In the present invention, since it is necessary to control the atmospheric pressure in the crucible before the start of crystal growth and preferably after the start of crystal growth, a closed reaction vessel is used as the reaction vessel as shown in FIG. Is appropriate.
As a method for controlling the atmospheric pressure in the crucible, a known control technique in the reaction apparatus can be used. For example, the atmosphere in the crucible is not limited. For example, when an inert gas atmosphere is used, an inert gas storage container, for example, an inert gas cylinder, a pipe for supplying an inert gas from the cylinder to the crucible, and the crucible A crucible is provided with an inlet for introducing an inert gas, a discharge port for discharging the inert gas from the crucible, a vacuum pump for discharging the gas from the crucible, a device for controlling the atmospheric pressure in the crucible, such as a pressure gauge. Can be appropriately performed.
In the present invention, it is necessary to control the atmospheric pressure in the crucible before starting crystal growth, but the atmospheric pressure before starting crystal growth and after starting crystal growth may be the same or different, and usually the same. In order to change these pressures, it can be appropriately performed by the above-mentioned control method of atmospheric pressure.

本発明の溶液法によるSiCの製造方法において、前記のSc/Ss、結晶成長開始前の坩堝内の雰囲気圧力および結晶成長開始以後の坩堝内の雰囲気圧力以外の条件、例えば黒鉛坩堝の形状、加熱方法、加熱時間、昇温速度および冷却速度については溶液法における従来公知の条件の中から最適条件を適宜選択することによって行い得る。
例えば、高周波誘導加熱による加熱時間(原料の仕込みからSiC飽和濃度に達するまでの凡その時間)としては坩堝の大きさにもよるが20分間〜10時間程度(例えば3〜7時間程度)で、雰囲気としては希ガス、例えばHe、Ne、Arなどの不活性ガスや前記不活性ガスとNやメタンガスとの混合ガスが挙げられる。
In the method for producing SiC by the solution method of the present invention, conditions other than the Sc / Ss, the atmospheric pressure in the crucible before the start of crystal growth, and the atmospheric pressure in the crucible after the start of crystal growth, such as the shape of the graphite crucible, heating The method, heating time, heating rate and cooling rate can be determined by appropriately selecting optimum conditions from conventionally known conditions in the solution method.
For example, the heating time by high-frequency induction heating (the approximate time from the preparation of raw materials until reaching the SiC saturation concentration) is about 20 minutes to 10 hours (for example, about 3 to 7 hours), depending on the size of the crucible, The atmosphere includes a rare gas, for example, an inert gas such as He, Ne, or Ar, or a mixed gas of the inert gas and N 2 or methane gas.

前記の本発明における溶液法によるSiC単結晶成長によって、高温で長時間、例えば2時間以上、成長SiC単結晶中のボイド密度を低減し、多結晶の成長を防止乃至は抑制してSiC単結晶を成長させることができる。   The SiC single crystal growth by the solution method in the present invention described above reduces the void density in the grown SiC single crystal at a high temperature for a long time, for example, 2 hours or more, thereby preventing or suppressing the growth of the polycrystalline SiC single crystal. Can grow.

以下、実施例及び比較例を挙げ、本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
以下の各例において、SiC単結晶の成長は図6に示す溶液法によるSiC単結晶製造用の実験装置(ボンベ、配管、ガス出口、ガス入口、圧力計、真空ポンプは図示せず)を用いて行った。また、原料溶液の高温における温度確認は表面温度を測定する態様によって行った。放射温度計は溶液面を直接観察可能な溶液上方の観察窓に設置し、溶液に種結晶を接触させる前後の温度を測定した。また、単結晶成長用種結晶軸内側(種結晶から2mmの位置)に熱電対を設置し原料溶液接触直後からの温度を測定した。
Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely, the present invention is not limited to the following examples.
In each of the following examples, the SiC single crystal is grown by using an experimental apparatus (cylinder, piping, gas outlet, gas inlet, pressure gauge, vacuum pump not shown) for producing the SiC single crystal by the solution method shown in FIG. I went. Moreover, the temperature confirmation in the high temperature of a raw material solution was performed by the aspect which measures surface temperature. The radiation thermometer was installed in the observation window above the solution where the solution surface can be directly observed, and the temperature before and after contacting the seed crystal with the solution was measured. In addition, a thermocouple was installed inside the seed crystal axis for single crystal growth (position 2 mm from the seed crystal), and the temperature immediately after contact with the raw material solution was measured.

以下の各例において、結晶成長開始前の坩堝内の雰囲気圧力は、種結晶基板に溶液を接触させる前の1分時点での坩堝内の雰囲気圧力を装置内の圧力計によって確認した値を示し、結晶成長以後の坩堝内の雰囲気圧力は種結晶基板に溶液を接触させて2〜5分(ガス導入にかかる時間)後時点での坩堝内の雰囲気圧力を装置内の圧力計によって確認した値を示し、
また、以下の各例において、溶液界面の面積(Ss)およびSiC種結晶の表面積(Sc)は以下に記載に基いて算出した表面積である。
Ss:種結晶面(C面)の面積
Sc:溶液界面部の面積
また、以下の各例において、得られた成長SiC結晶中のボイドおよび多結晶の混入確認は以下の方法によって結晶を観察して測定した。
ボイド:光学顕微鏡で成長結晶の表面画像測定し、透過拡大画像(×20)の全面積での目視計測
多結晶混入確率の測定:光学顕微鏡およびラマン分光法で成長結晶の透過画像測定
In each of the following examples, the atmospheric pressure in the crucible before the start of crystal growth indicates a value obtained by confirming the atmospheric pressure in the crucible at one minute before contacting the solution with the seed crystal substrate using a pressure gauge in the apparatus. The atmospheric pressure in the crucible after crystal growth is a value obtained by confirming the atmospheric pressure in the crucible with a pressure gauge in the apparatus after 2 to 5 minutes (time required for gas introduction) after contacting the solution with the seed crystal substrate. Indicate
Moreover, in each following example, the area (Ss) of a solution interface and the surface area (Sc) of a SiC seed crystal are the surface areas computed based on the following description.
Ss: Area of the seed crystal plane (C plane) Sc: Area of the solution interface In each of the following examples, the inclusion of voids and polycrystals in the obtained grown SiC crystal was confirmed by the following method. Measured.
Void: Measure the surface image of the grown crystal with an optical microscope, and visually measure the entire transmission enlarged image (× 20) over the entire area. Measure the probability of polycrystal contamination: Measure the transmitted image of the grown crystal with an optical microscope and Raman spectroscopy.

実施例1〜4
黒鉛坩堝にSi次いでCrおよびNiを同時に加え、不活性ガス(Ar)雰囲気中で、2〜3時間程加熱を続けて設定温度(1800〜2100℃)に維持した後、黒鉛坩堝からCが溶解してSiC飽和濃度に達したら、種結晶として4H−SiCを用いて、成長温度1800〜2100℃で成長させた。SiC種結晶にSiC単結晶を成長させる際の結晶成長開始前および結晶成長開始以後の雰囲気圧力をいずれも180kPaとした。黒鉛坩堝径と種結晶径との割合を変化させることによってSc/Ssを0.03〜0.13の範囲で変化させて実験を行い、得られた成長結晶中の多結晶混入確率および結晶中のボイド密度を求めた。
Sc/Srと成長単結晶中のボイド密度との関係をまとめて図1に示す。
成長結晶中には多結晶混入がないことが確認された。
また、実施例3(Sc/Ss=0.1)で得られた結晶の結晶表面画像を図2に示す。
Examples 1-4
Si and Cr and Ni are simultaneously added to the graphite crucible, and heating is continued for 2 to 3 hours in an inert gas (Ar) atmosphere to maintain the set temperature (1800 to 2100 ° C.), and then C dissolves from the graphite crucible. When the SiC saturation concentration was reached, 4H—SiC was used as a seed crystal and growth was performed at a growth temperature of 1800 to 2100 ° C. The atmospheric pressure before the start of crystal growth and after the start of crystal growth at the time of growing the SiC single crystal on the SiC seed crystal was 180 kPa. Experiments were performed by changing the ratio of the graphite crucible diameter and the seed crystal diameter to change Sc / Ss in the range of 0.03 to 0.13. The void density was determined.
FIG. 1 shows the relationship between Sc / Sr and the void density in the grown single crystal.
It was confirmed that there was no polycrystal contamination in the grown crystal.
Moreover, the crystal surface image of the crystal obtained in Example 3 (Sc / Ss = 0.1) is shown in FIG.

比較例1
Sc/Ssを0.15とした他は実施例1と同様にして実験を行い、得られた成長結晶中のボイド密度を求めた。
Sc/Ssと成長単結晶中のボイド密度との関係を実施例1の結果とまとめて図1に示す。
Comparative Example 1
The experiment was performed in the same manner as in Example 1 except that Sc / Ss was set to 0.15, and the void density in the obtained grown crystal was obtained.
The relationship between Sc / Ss and the void density in the grown single crystal is shown together with the results of Example 1 in FIG.

実施例5
不活性ガス(Ar)雰囲気中で、種結晶として4H−SiCを用いて、成長温度1800〜2100℃とし、黒鉛坩堝径と種結晶径との割合を調節してSc/Ss=0.1とし、坩堝内の雰囲気圧力(結晶成長開始前および結晶成長開始以後の雰囲気圧力いずれも)を80kPaとしてSiC単結晶を結晶成長させた。得られた成長結晶中のボイド密度、多結晶混入確率を測定した。
坩堝内の雰囲気圧力と成長単結晶中のボイド密度との関係を他の結果とまとめて図3に示す。
坩堝内の雰囲気圧力と成長単結晶の多結晶混入確率との関係を他の結果とまとめて図4に示す。
Example 5
In an inert gas (Ar) atmosphere, 4H—SiC is used as a seed crystal, the growth temperature is 1800 to 2100 ° C., and the ratio of the graphite crucible diameter to the seed crystal diameter is adjusted to be Sc / Ss = 0.1. The SiC single crystal was grown by setting the atmospheric pressure in the crucible (before and after starting crystal growth) to 80 kPa. The void density and polycrystal mixing probability in the obtained grown crystal were measured.
FIG. 3 shows the relationship between the atmospheric pressure in the crucible and the void density in the grown single crystal together with other results.
FIG. 4 shows the relationship between the atmospheric pressure in the crucible and the polycrystal mixing probability of the grown single crystal together with other results.

実施例6
坩堝内の雰囲気圧力(結晶成長開始前および結晶成長開始以後の雰囲気圧力いずれも)を120kPaとした他は実施例5と同様にして、SiC単結晶を結晶成長させた。得られた成長結晶中のボイド密度、多結晶混入確率を測定した。
坩堝内の雰囲気圧力と成長単結晶中のボイド密度との関係を他の結果とまとめて図3に示す。
坩堝内の雰囲気圧力と成長単結晶の多結晶混入確率との関係を他の結果とまとめて図4に示す。
Example 6
A SiC single crystal was grown in the same manner as in Example 5 except that the atmospheric pressure in the crucible (both the atmospheric pressure before the start of crystal growth and the atmospheric pressure after the start of crystal growth) was 120 kPa. The void density and polycrystal mixing probability in the obtained grown crystal were measured.
FIG. 3 shows the relationship between the atmospheric pressure in the crucible and the void density in the grown single crystal together with other results.
FIG. 4 shows the relationship between the atmospheric pressure in the crucible and the polycrystal mixing probability of the grown single crystal together with other results.

実施例7
坩堝内の雰囲気圧力として、結晶成長開始前の圧力を180kPaおよび結晶成長開始以後の圧力を20kPaとした他は実施例5と同様にして、SiC単結晶を結晶成長させた。得られた成長結晶中のボイド密度、多結晶混入確率を測定した。
成長単結晶中のボイド密度は72個/cm2であり成長単結晶の多結晶混入確率は0%であった。
Example 7
A SiC single crystal was grown in the same manner as in Example 5 except that the atmospheric pressure in the crucible was set to 180 kPa before starting crystal growth and 20 kPa after starting crystal growth. The void density and polycrystal mixing probability in the obtained grown crystal were measured.
The void density in the grown single crystal was 72 / cm 2 , and the probability of polycrystal contamination in the grown single crystal was 0%.

比較例2
坩堝内の雰囲気圧力(結晶成長開始前および結晶成長開始以後の雰囲気圧力いずれも)を20kPaとした他は実施例5と同様にして、SiC単結晶を結晶成長させた。得られた成長結晶中のボイド密度、多結晶混入確率を測定した。
成長結晶中のボイド密度は10個/cm2であった。結晶中の多結晶混入確率を他の結果とまとめて図4に、また結晶表面画像を図5に示す。
図5から、坩堝内の結晶成長開始前および結晶成長開始以後の雰囲気圧力いずれもが20kPaでは、結晶中に多結晶混入が認められた。
Comparative Example 2
A SiC single crystal was grown in the same manner as in Example 5 except that the atmospheric pressure in the crucible (both the atmospheric pressure before the start of crystal growth and the atmospheric pressure after the start of crystal growth) was 20 kPa. The void density and polycrystal mixing probability in the obtained grown crystal were measured.
The void density in the grown crystal was 10 / cm 2 . FIG. 4 shows the polycrystal mixing probability in the crystal together with other results, and FIG. 5 shows the crystal surface image.
FIG. 5 shows that polycrystals were mixed in the crystal when the atmospheric pressure before and after the start of crystal growth in the crucible was 20 kPa.

図1から、Sc/Ssが増加するとボイド密度が増加する傾向があり、Sc/Ssが0.13以下の範囲では結晶中のボイド密度は少ないが、Sc/Ssが0.13より大であると結晶中のボイド密度が急激に増加することが確認された。
また、図3から、結晶成長開始以後の坩堝内の雰囲気圧力が20kPa、80kPa、120kPaにてSiC単結晶を成長させることによって、成長SiC単結晶中のボイド密度を大幅に低減したことが確認された。
また、図4から、結晶成長開始前の坩堝内の雰囲気圧力が20kPa(比較例2)であると成長結晶中の多結晶混入確率が80%程度であるが、結晶成長開始前の坩堝内の雰囲気圧力が80kPa(実施例5)、120kPa(実施例6)、180kPa(実施例7)であると成長結晶中の多結晶混入確率が0%であることが確認された。
従って、結晶成長開始前の坩堝内の雰囲気圧力が55kPa以上であれば成長結晶中の多結晶混入確率が低いと推定される。
また、実施例7から、結晶成長開始前の圧力が比較的高い圧力であれば結晶成長開始以後の圧力20kPaであっても成長結晶中の多結晶混入確率が低い。
From FIG. 1, when Sc / Ss increases, the void density tends to increase. When Sc / Ss is 0.13 or less, the void density in the crystal is small, but Sc / Ss is larger than 0.13. It was confirmed that the void density in the crystal increased rapidly.
In addition, it is confirmed from FIG. 3 that the void density in the grown SiC single crystal has been greatly reduced by growing the SiC single crystal at an atmospheric pressure of 20 kPa, 80 kPa, and 120 kPa after starting the crystal growth. It was.
Also, from FIG. 4, when the atmospheric pressure in the crucible before the start of crystal growth is 20 kPa (Comparative Example 2), the probability of polycrystals mixing in the grown crystal is about 80%, but in the crucible before the start of crystal growth, When the atmospheric pressure was 80 kPa (Example 5), 120 kPa (Example 6), and 180 kPa (Example 7), it was confirmed that the probability of mixing polycrystals in the grown crystal was 0%.
Therefore, if the atmospheric pressure in the crucible before the start of crystal growth is 55 kPa or more, it is estimated that the probability of polycrystals mixing in the grown crystal is low.
Further, from Example 7, if the pressure before the start of crystal growth is a relatively high pressure, the probability of polycrystal mixing in the grown crystal is low even at a pressure of 20 kPa after the start of crystal growth.

本発明の方法によれば、高い結晶成長温度であっても特別な装置を必要とせず単結晶中の多結晶の混入確率およびボイド密度を容易に低減して次世代の半導体材料として期待されるSiC単結晶を製造することが可能となる。   According to the method of the present invention, it is expected as a next-generation semiconductor material by easily reducing the probability of mixing polycrystals and void density in a single crystal without requiring a special apparatus even at a high crystal growth temperature. It becomes possible to produce a SiC single crystal.

Claims (6)

溶液法により原料溶液からSiC種結晶上にSiC単結晶を成長させる方法であって、溶液界面の面積(Ss)に対するSiC種結晶の表面積(Sc)の割合(Sc/Ss)を0.13以下、結晶成長開始前の坩堝内の雰囲気圧力を55kPa以上とすることを特徴とするSiC単結晶の製造方法。   A method of growing a SiC single crystal on a SiC seed crystal from a raw material solution by a solution method, wherein the ratio (Sc / Ss) of the surface area (Sc) of the SiC seed crystal to the area (Ss) of the solution interface is 0.13 or less A method for producing a SiC single crystal, wherein the atmospheric pressure in the crucible before the start of crystal growth is 55 kPa or more. 結晶成長開始以後の坩堝内の雰囲気圧力を150kPa以下とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the atmospheric pressure in the crucible after the start of crystal growth is 150 kPa or less. 結晶成長開始前の坩堝内の雰囲気圧力が55〜200kPaの範囲内で、結晶成長開始後の坩堝内の雰囲気圧力が20〜150kPaの範囲内である請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein the atmospheric pressure in the crucible before the start of crystal growth is in a range of 55 to 200 kPa, and the atmospheric pressure in the crucible after the start of crystal growth is in a range of 20 to 150 kPa. 結晶成長温度が1800〜2100℃の範囲内の温度である請求項1〜3のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the crystal growth temperature is a temperature within a range of 1800 to 2100 ° C. 坩堝が、黒鉛坩堝である請求項1〜4のいずれか1項に記載の製造方法。   The manufacturing method according to claim 1, wherein the crucible is a graphite crucible. 原料溶液が、Si−Cr−X−C系(XはNiおよび/又はCo)である請求項1〜5のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 5, wherein the raw material solution is a Si-Cr-X-C system (X is Ni and / or Co).
JP2009221007A 2009-09-25 2009-09-25 Method for producing SiC single crystal Expired - Fee Related JP5428706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009221007A JP5428706B2 (en) 2009-09-25 2009-09-25 Method for producing SiC single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009221007A JP5428706B2 (en) 2009-09-25 2009-09-25 Method for producing SiC single crystal

Publications (2)

Publication Number Publication Date
JP2011068515A true JP2011068515A (en) 2011-04-07
JP5428706B2 JP5428706B2 (en) 2014-02-26

Family

ID=44014184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009221007A Expired - Fee Related JP5428706B2 (en) 2009-09-25 2009-09-25 Method for producing SiC single crystal

Country Status (1)

Country Link
JP (1) JP5428706B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056807A (en) * 2011-09-08 2013-03-28 National Institute Of Advanced Industrial Science & Technology METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY
JP2013056806A (en) * 2011-09-08 2013-03-28 National Institute Of Advanced Industrial Science & Technology METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY
WO2016117266A1 (en) * 2015-01-23 2016-07-28 株式会社豊田自動織機 Method for producing sic crystals

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117441A (en) * 2004-10-19 2006-05-11 Sumitomo Metal Ind Ltd Method for preparing silicon carbide single crystal
JP2006131433A (en) * 2004-11-02 2006-05-25 Sumitomo Metal Ind Ltd Method of producing silicon carbide single crystal
JP2007076986A (en) * 2005-09-16 2007-03-29 Sumitomo Metal Ind Ltd Method for manufacturing silicon carbide single crystal
JP2007126335A (en) * 2005-11-04 2007-05-24 Toyota Motor Corp Manufacturing facility for manufacturing silicon carbide single crystal by means of solution method
JP2007261844A (en) * 2006-03-28 2007-10-11 Sumitomo Metal Ind Ltd Manufacturing method of silicon carbide single crystal
JP2008280225A (en) * 2007-05-14 2008-11-20 Sumitomo Metal Ind Ltd Method and apparatus for producing single crystal
JP2009126770A (en) * 2007-11-27 2009-06-11 Toyota Motor Corp Method for growing silicon carbide single crystal
WO2010024392A1 (en) * 2008-08-29 2010-03-04 住友金属工業株式会社 Manufacturing method for silicon carbide monocrystals

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117441A (en) * 2004-10-19 2006-05-11 Sumitomo Metal Ind Ltd Method for preparing silicon carbide single crystal
JP2006131433A (en) * 2004-11-02 2006-05-25 Sumitomo Metal Ind Ltd Method of producing silicon carbide single crystal
JP2007076986A (en) * 2005-09-16 2007-03-29 Sumitomo Metal Ind Ltd Method for manufacturing silicon carbide single crystal
JP2007126335A (en) * 2005-11-04 2007-05-24 Toyota Motor Corp Manufacturing facility for manufacturing silicon carbide single crystal by means of solution method
JP2007261844A (en) * 2006-03-28 2007-10-11 Sumitomo Metal Ind Ltd Manufacturing method of silicon carbide single crystal
JP2008280225A (en) * 2007-05-14 2008-11-20 Sumitomo Metal Ind Ltd Method and apparatus for producing single crystal
JP2009126770A (en) * 2007-11-27 2009-06-11 Toyota Motor Corp Method for growing silicon carbide single crystal
WO2010024392A1 (en) * 2008-08-29 2010-03-04 住友金属工業株式会社 Manufacturing method for silicon carbide monocrystals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056807A (en) * 2011-09-08 2013-03-28 National Institute Of Advanced Industrial Science & Technology METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY
JP2013056806A (en) * 2011-09-08 2013-03-28 National Institute Of Advanced Industrial Science & Technology METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY
WO2016117266A1 (en) * 2015-01-23 2016-07-28 株式会社豊田自動織機 Method for producing sic crystals
JP2016135721A (en) * 2015-01-23 2016-07-28 株式会社豊田自動織機 MANUFACTURING METHOD OF SiC CRYSTAL

Also Published As

Publication number Publication date
JP5428706B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5304792B2 (en) Method and apparatus for producing SiC single crystal film
KR101666596B1 (en) Sic single crystal and method for producing same
KR101960209B1 (en) Method for producing silicon carbide single crystal ingot and silicon carbide single crystal ingot
US20120304916A1 (en) Method of producing silicon carbide single crystal
US7520930B2 (en) Silicon carbide single crystal and a method for its production
JP5218348B2 (en) Method for producing silicon carbide single crystal
JP2010095397A (en) Silicon carbide single crystal and silicon carbide single crystal wafer
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
JP2007076986A (en) Method for manufacturing silicon carbide single crystal
JP2009126770A (en) Method for growing silicon carbide single crystal
JP2009167044A (en) Method for growing silicon carbide single crystal
EP2940196A1 (en) METHOD FOR PRODUCING n-TYPE SiC SINGLE CRYSTAL
JP2006290635A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
EP2891732A1 (en) Method for producing sic single crystal
JP2006131433A (en) Method of producing silicon carbide single crystal
WO2009090535A1 (en) Method for growing silicon carbide single crystal
JP5359796B2 (en) Method for producing SiC single crystal
WO2014189008A1 (en) Silicon carbide single crystal and manufacturing method therefor
CN111819311A (en) Method for producing silicon carbide single crystal
JP5310493B2 (en) Method for producing single crystal by solution method
JP5428706B2 (en) Method for producing SiC single crystal
JP4987784B2 (en) Method for producing silicon carbide single crystal ingot
EP1498518B1 (en) Method for the production of silicon carbide single crystal
Bickermann et al. Vapor transport growth of wide bandgap materials
JP2009274894A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees