JP2006117441A - Method for preparing silicon carbide single crystal - Google Patents

Method for preparing silicon carbide single crystal Download PDF

Info

Publication number
JP2006117441A
JP2006117441A JP2004304132A JP2004304132A JP2006117441A JP 2006117441 A JP2006117441 A JP 2006117441A JP 2004304132 A JP2004304132 A JP 2004304132A JP 2004304132 A JP2004304132 A JP 2004304132A JP 2006117441 A JP2006117441 A JP 2006117441A
Authority
JP
Japan
Prior art keywords
rotation
crystal
crucible
sic
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004304132A
Other languages
Japanese (ja)
Other versions
JP4475091B2 (en
Inventor
Kazuhiko Kusunoki
一彦 楠
Kazuto Kamei
一人 亀井
Masanari Yashiro
将斉 矢代
Akihiro Yanai
昭博 八内
Yoshihisa Ueda
善久 上田
Yutaka Ito
伊藤  豊
Nobuhiro Okada
信宏 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004304132A priority Critical patent/JP4475091B2/en
Priority to PCT/JP2005/015844 priority patent/WO2006025420A1/en
Priority to EP05781299.2A priority patent/EP1806437B1/en
Publication of JP2006117441A publication Critical patent/JP2006117441A/en
Priority to US11/712,841 priority patent/US7635413B2/en
Application granted granted Critical
Publication of JP4475091B2 publication Critical patent/JP4475091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a good quality silicon carbide single crystal free from inclusions at a high crystal growth speed even when the single crystal has such a large size that the diameter is ≥1 in and the thickness is ≥5 μm, in the manufacturing of the silicon carbide single crystal by a solution growth method comprising immersing an SiC seed crystal fixed to a seed stem in a solution of SiC in an Si or Si alloy melt in a rotating crucible, and growing an SiC single crystal layer on the SiC seed crystal by making SiC into a supersaturated state by the supercooling of at least solution around the seed crystal. <P>SOLUTION: In a method for manufacturing the silicon carbide single crystal, the single crystal is grown while utilizing an accelerated crucible rotation technique wherein acceleration of the rotation of the crucible to a prescribed rotation number, retention at the rotation number and deceleration to a low or zero rotation number are repeated. The rotation direction of the crucible may be reversed at every acceleration. Further, the seed stem may be rotated in synchronization with the rotation of the crucible in the direction being the same with or reverse to that of the rotation of the crucible. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光デバイスや電子デバイスの材料として好適な、炭化珪素の良質な単結晶の製造方法に関し、特に溶液成長法により良質な炭化珪素単結晶を確実に高い成長速度で製造することができる方法に関する。   The present invention relates to a method for producing a high-quality silicon carbide single crystal suitable as a material for optical devices and electronic devices, and in particular, a high-quality silicon carbide single crystal can be reliably produced at a high growth rate by a solution growth method. Regarding the method.

炭化珪素 (SiC) は、熱的及び化学的に安定な化合物半導体の1種であり、シリコン (Si) に比べて、バンドギャップが約3倍、絶縁破壊電圧が約10倍、電子飽和速度が約2倍、熱伝導率が約3倍大きいという、Siより有利な物性上の特徴を有している。このような優れた特性から、SiCは、Siデバイスの物理的な限界を打破するパワーデバイスや、高温で動作する耐環境デバイス、といった電子デバイス材料としての応用が期待されている。   Silicon carbide (SiC) is one of the thermally and chemically stable compound semiconductors. Compared to silicon (Si), the band gap is about 3 times, the breakdown voltage is about 10 times, and the electron saturation rate is about. It has characteristics that are more advantageous than Si, about twice as much and about three times as large in thermal conductivity. Due to such excellent characteristics, SiC is expected to be applied as an electronic device material such as a power device that breaks the physical limits of Si devices and an environment-resistant device that operates at high temperatures.

一方、光デバイスにおいては短波長化を目指した窒化物系材料 (GaN、AlN) の開発が行われている。SiCは、窒化物系材料に対する格子不整合が他の化合物半導体材料に比べて格段に小さいので、窒化物系材料のエピタキシャル成長用の基板材料としても注目されている。   On the other hand, for optical devices, nitride-based materials (GaN, AlN) aiming at shorter wavelengths are being developed. SiC is attracting attention as a substrate material for epitaxial growth of nitride-based materials, since the lattice mismatch with respect to nitride-based materials is much smaller than other compound semiconductor materials.

しかし、SiCは結晶多形 (ポリタイプ) を呈する物質としても有名である。結晶多形とは、化学量論的には同じ組成でありながら原子の積層様式がC軸方向にのみ異なる多くの結晶構造を取りうる現象である。SiCの代表的な結晶多形としては、6H型 (6分子を1周期とする六方晶系)、4H型 (4分子を1周期とする六方晶系)、3C型 (3分子を1周期とする立方晶系)などがある。2種以上の結晶形の混在はデバイスへの応用上好ましくない。   However, SiC is also famous as a substance exhibiting a crystalline polymorph (polytype). Crystal polymorphism is a phenomenon that can take many crystal structures in which the stacking mode of atoms differs only in the C-axis direction while having the same stoichiometric composition. Typical crystal polymorphs of SiC are 6H type (hexagonal system with 6 molecules as one period), 4H type (hexagonal system with 4 molecules as 1 period), and 3C type (3 molecules as 1 period). Cubic system). Mixing two or more crystal forms is not preferable for application to a device.

SiCを電子デバイスや光デバイスに応用するには、結晶形が単一で (結晶多形の混在がなく)、かつ欠陥が皆無または非常に少ない、SiCの良質のバルク単結晶およびまたは薄膜が必要となる。   Application of SiC to electronic and optical devices requires high-quality bulk single crystals and / or thin films of SiC that have a single crystal form (no intermingling of polymorphs) and have few or very few defects. It becomes.

従来から知られているSiCの製造方法として、気相成長に属する昇華法および化学気相成長(CVD法)と、液相成長である溶液成長法とが挙げられる。
昇華法では、原料のSiC粉末を2200〜2500℃の高温で昇華させ、低温部に配置したSiC単結晶からなる種(シード)結晶上にSiCの単結晶を再結晶化させる。
Conventionally known SiC production methods include a sublimation method and chemical vapor deposition (CVD method) belonging to vapor phase growth, and a solution growth method which is liquid phase growth.
In the sublimation method, a raw material SiC powder is sublimated at a high temperature of 2200 to 2500 ° C., and a SiC single crystal is recrystallized on a seed crystal composed of a SiC single crystal arranged in a low temperature part.

CVD法では、原料としてシラン系ガスと炭化水素系ガスとを用い、シリコンまたはSiC単結晶からなる基板上にSiC単結晶をエピタキシャル成長させる。
溶液成長法では、シリコンまたはシリコン合金の融液中にカーボンを溶解させて、該融液中にSiCが溶解している溶液を調製する。このSiCが溶解している融液にSiC種結晶を浸漬し、少なくとも種結晶近傍の溶液を過冷却状態にすることによってSiCの過飽和状態を作り出し、SiC単結晶を種結晶上に成長させる。
In the CVD method, a silane-based gas and a hydrocarbon-based gas are used as raw materials, and a SiC single crystal is epitaxially grown on a substrate made of silicon or a SiC single crystal.
In the solution growth method, carbon is dissolved in a silicon or silicon alloy melt to prepare a solution in which SiC is dissolved in the melt. An SiC seed crystal is immersed in a melt in which SiC is dissolved, and at least a solution near the seed crystal is brought into a supercooled state to create a supersaturated state of SiC, and an SiC single crystal is grown on the seed crystal.

溶液成長法には、融液に種結晶近傍の融液温度が他の部分の融液温度より低温になるように温度勾配を設ける、いわゆる温度差法 (種結晶近傍の溶液だけが過飽和となる)と、種結晶を漬けた融液全体を冷却によりSiCの過飽和溶液とする、いわゆる徐冷法とがある。徐冷法はバッチ式であるため、薄膜の単結晶を得る方法として好ましく、一方、バルク単結晶を得るには連続成長である前者の温度差法が好ましい。   In the solution growth method, a temperature gradient is provided in the melt so that the melt temperature in the vicinity of the seed crystal is lower than the melt temperature in the other part, so-called temperature difference method (only the solution in the vicinity of the seed crystal becomes supersaturated. ) And a so-called slow cooling method in which the entire melt soaked with the seed crystal is cooled to form a supersaturated solution of SiC. Since the slow cooling method is a batch method, it is preferable as a method for obtaining a single crystal of a thin film. On the other hand, the former temperature difference method which is continuous growth is preferred for obtaining a bulk single crystal.

昇華法では大型のバルク結晶を得られやすいことから、現在、SiCの単結晶ウエーハの工業的な生産は昇華法によって行われている。しかし、昇華法により成長させたSiC単結晶では、マイクロパイプ欠陥と呼ばれる中空貫通欠陥やらせん転位、積層欠陥などの結晶欠陥が生じやすく、結晶の品質に問題がある。   Since it is easy to obtain large bulk crystals by the sublimation method, industrial production of SiC single crystal wafers is currently performed by the sublimation method. However, SiC single crystals grown by the sublimation method tend to cause crystal defects such as hollow through defects, screw dislocations, and stacking faults, which are called micropipe defects, and have a problem in crystal quality.

CVD法は、比較的成長速度が遅いことから、主に薄膜のSiC結晶の成長に利用されている。薄膜のSiC単結晶は基板の影響を受けるが、主に昇華法で作製されるSiC基板の品質に上記のように問題があるため、薄膜の高品質化には制約がある。   Since the CVD method has a relatively slow growth rate, it is mainly used for the growth of thin-film SiC crystals. Although the thin film SiC single crystal is affected by the substrate, the quality of the SiC substrate produced mainly by the sublimation method has the above-mentioned problems, so that there is a restriction on the high quality of the thin film.

液相成長である溶液成長法では、熱的平衡状態に近い状態で結晶成長が起こるために、気相成長に比べて格段に結晶性の良好な (異なる結晶形の混入がない) 単結晶を得ることができる。SiC溶液の溶媒としては、前述したように、Siの融液またはSi合金の融液が用いられる。   In the solution growth method, which is liquid phase growth, crystal growth occurs in a state close to thermal equilibrium, so a single crystal with significantly better crystallinity (no mixing of different crystal forms) is formed compared to vapor phase growth. Obtainable. As described above, as the solvent for the SiC solution, a Si melt or a Si alloy melt is used.

しかし、溶液成長法で大面積のSiC結晶を高品位で、かつ高い成長速度で得るには、いまだに種々の技術課題が残っている。
SiC高品位化に関する技術課題として、例えば、Materials Science and Engineering, B61-62 (1999) 29-39は、Si溶媒とする溶液からのSiC単結晶の成長の際に、SiC結晶内にSiのインクルージョン(inclusion)が発生することが記載されている。このインクルージョンは、形態不安定(morphological instability)と呼ばれる成長界面での不均一面が原因で発生する。この不均一面はマクロステップ構造を有しており、マクロステップ間に入り込んだ、溶媒のSiがステップの横方向の成長によって結晶内に閉じこめられたものと考えられる。
However, various technical problems still remain in order to obtain a large-area SiC crystal with a high quality and a high growth rate by the solution growth method.
For example, Materials Science and Engineering, B61-62 (1999) 29-39 is a technical problem related to SiC high-quality, and includes the inclusion of Si in a SiC crystal during the growth of a SiC single crystal from a solution using a Si solvent. (inclusion) occurs. This inclusion is caused by a non-uniform surface at the growth interface called morphological instability. This non-uniform surface has a macrostep structure, and it is considered that the solvent Si that has entered between the macrosteps is confined in the crystal by the lateral growth of the steps.

一方、J. Crystal Growth 197 (1999) 147-154には、Si-Sc-C 3元系溶液からの液相エピタキシャル成長において、結晶表面に円形の窪み(ピット)が生成し、この窪みは結晶成長時に成長界面に付着したカーボン粒子のような異物により生じたものであることが記載されている。   On the other hand, in J. Crystal Growth 197 (1999) 147-154, in the liquid phase epitaxial growth from the Si-Sc-C ternary system solution, a circular pit (pit) is formed on the crystal surface, and this dent is crystal growth. It is described that it is caused by foreign matters such as carbon particles sometimes attached to the growth interface.

インクルージョンとは、SiC単結晶内に内在する、SiC単結晶とは異なる相の総称である。即ち、SiC単結晶内に混入している異相である。代表的なものとしては、SiやCの小液(ドロップレット)に由来する粒子であるが、その他に、珪化物、炭化物、窒化物、酸化物等も含む。さらに、所定の結晶多形とは異なるSiC結晶、例えば、6H-SiC単結晶に混入した3C-SiC結晶や、結晶内に閉じこめられたガス(気泡)もインクルージョンである。   Inclusion is a general term for phases that are inherent in SiC single crystals and that are different from SiC single crystals. That is, it is a different phase mixed in the SiC single crystal. Typical examples are particles derived from small liquids (droplets) of Si and C, but also include silicides, carbides, nitrides, oxides, and the like. Furthermore, an SiC crystal different from a predetermined crystal polymorph, for example, a 3C—SiC crystal mixed in a 6H—SiC single crystal, or a gas (bubble) confined in the crystal is also included.

本発明者らが行った成長実験において見られた、Si溶媒が結晶内に取り込まれることにより発生したインクルージョンを含むSiC単結晶の断面の光学顕微鏡写真を図1に示す。図中、↓の先に示す黒色部が、溶液が閉じ込められたことに起因して発生したインクルージョンである。   FIG. 1 shows an optical micrograph of a cross section of a SiC single crystal including inclusions generated by incorporation of a Si solvent into the crystal, which was found in a growth experiment conducted by the present inventors. In the figure, the black part shown at the end of ↓ is an inclusion generated due to the confinement of the solution.

インクルージョンや窪み(ピット)の発生は、単結晶にとってはマクロな欠陥であり、デバイス材料としては許容できない欠陥である。これらは、研究レベルの単結晶サイズが2インチ以下の結晶成長においても発生する。また、結晶成長の行われている成長界面において、温度条件や溶質の供給条件が不均一になると、得られる結晶厚みの不均一な分布を引き起こすことがある。特に薄膜単結晶においては、結晶厚みが不均一になると、所望のデバイス性能が達成されなくなるので、このような不均一もデバイス材料には許容できない。   The occurrence of inclusions and depressions (pits) is a macro defect for a single crystal and an unacceptable defect as a device material. These also occur in crystal growth where the research-level single crystal size is 2 inches or less. In addition, if the temperature condition and the solute supply condition are not uniform at the growth interface where the crystal growth is performed, the resulting crystal thickness may be unevenly distributed. Particularly in a thin film single crystal, if the crystal thickness is non-uniform, the desired device performance cannot be achieved, and such non-uniformity is unacceptable for the device material.

一方、SiC単結晶の高速成長に関する技術課題として、結晶品位を高品位に維持しながら成長速度を増大させることが挙げられる。一般に溶液成長法によるSiC単結晶成長においては、成長速度が小さく、例えばSiを溶媒とする溶液成長では、融液温度1650℃で成長速度は、約5〜12ミクロン/hrである。この成長速度は、昇華法に比べると1桁から2桁小さい。このように、溶液成長法においてSiC結晶の成長速度が遅い原因は、溶液内の炭素の溶解度が低いためと考えられている。そこで、本発明者らは、Si−TiまたはSi−Mn溶媒を用いることで溶液内の炭素溶解度を増大させて、SiCバルク単結晶を育成させることに成功した(特開2004−2173号公報)。しかし、この方法でも、成長速度を増大させた場合、前述のインクルージョンや成長速度の結晶面内の不均一性の問題が生じる恐れがあり、結晶品位を維持したまま100ミクロン/hr以上の安定した高速成長を達成することは困難である。   On the other hand, as a technical problem related to high-speed growth of SiC single crystal, increasing the growth rate while maintaining high crystal quality is cited. In general, the growth rate of SiC single crystal by the solution growth method is low. For example, in the case of solution growth using Si as a solvent, the growth rate is about 5 to 12 microns / hr at a melt temperature of 1650 ° C. This growth rate is 1 to 2 orders of magnitude smaller than the sublimation method. Thus, it is thought that the cause of the slow growth rate of the SiC crystal in the solution growth method is that the solubility of carbon in the solution is low. Therefore, the present inventors have succeeded in growing a SiC bulk single crystal by increasing the carbon solubility in the solution by using a Si—Ti or Si—Mn solvent (Japanese Patent Laid-Open No. 2004-2173). . However, even in this method, when the growth rate is increased, there is a possibility that the above-mentioned inclusion and the problem of non-uniformity in the crystal plane of the growth rate may occur, and the stable quality of 100 microns / hr or more is maintained while maintaining the crystal quality. Achieving fast growth is difficult.

以上のように、近年、工業的にはSiC単結晶に大型化を求める要望があるが、結晶の大型化を行うほどインクルージョン、窪み、結晶厚みの不均一といった欠陥が顕著に現われるようになる。そのため、インクルージョンや窪みがなく、成長厚みが均一な、1インチ以上のサイズのSiC単結晶を溶液成長法によって、100ミクロン/hr以上といった高速成長により安定して製造することは困難であると考えられてきた。
Materials Science and Engineering, B61-62 (1999) 29-39 J. Crystal Growth 197 (1999) 147-154 特開2004−2173号公報
As described above, in recent years, there has been a demand for industrially increasing the size of SiC single crystals, but as the size of the crystals increases, defects such as inclusions, depressions, and uneven crystal thickness become more apparent. For this reason, it is difficult to stably produce SiC single crystals having a size of 1 inch or more with no inclusions or depressions and a uniform growth thickness by high-speed growth of 100 microns / hr or more by the solution growth method. Has been.
Materials Science and Engineering, B61-62 (1999) 29-39 J. Crystal Growth 197 (1999) 147-154 JP 2004-2173 A

本発明は、結晶内にインクルージョンが存在しない良質のSiC単結晶の高速での製造が可能なSiC単結晶の製造方法を提供することを課題とする。これにより、従来は実用化が困難であると考えられてきた、溶液成長法により成長させた高品位のSiC単結晶の工業的な製造が可能となる。   An object of the present invention is to provide a method for producing a SiC single crystal capable of producing a high-quality SiC single crystal having no inclusion in the crystal at a high speed. As a result, it is possible to industrially manufacture a high-quality SiC single crystal grown by a solution growth method, which has been considered difficult to put into practical use.

本発明は、回転する坩堝内のSiとCまたはSiとCと1種類以上の金属を含む、SiCが溶解した融液中に、シード軸に固定されたSiCの種結晶を浸漬し、少なくとも前記種結晶周辺における溶液の過冷却によりSiCを過飽和状態とすることによって前記種結晶上にSiC単結晶層を成長させることによる炭化珪素単結晶の製造−即ち、溶液成長法による炭化珪素単結晶の製造−において、坩堝の回転数または回転数および回転方向を周期的に変化させることによって前記融液を攪拌することを特徴とする、炭化珪素単結晶の製造方法である。   In the present invention, a SiC seed crystal fixed to a seed shaft is immersed in a melt containing SiC and containing Si and C or Si and C and one or more metals in a rotating crucible. Production of a silicon carbide single crystal by growing a SiC single crystal layer on the seed crystal by making SiC supersaturated by supercooling the solution around the seed crystal--ie, production of a silicon carbide single crystal by a solution growth method -The method for producing a silicon carbide single crystal, wherein the melt is stirred by periodically changing the number of revolutions or the number of revolutions and the direction of rotation of the crucible.

SiとCと1種類以上の金属を含む融液とは、SiC(固相)と熱力学的に平衡状態となる液相であれば、どのような構成元素の組み合わせでもよいが、好ましくは融液内のSiC溶解量が大きく、かつ液相線の傾きが急峻となる融液である方がよい。このような融液は、SiC結晶を効率的に液相から成長させることができるからである。そのような融液の例としては、Si1-xTix (0.1≦x≦0.25)や、Si1-xMnx (0.1≦x≦0.7) の2元系の融液が挙げられる。Si合金のTi、Mn以外の他の適当な合金元素としてはFeおよびCoがある。合金元素は1種でも2種以上でもよい。 The melt containing Si, C, and one or more metals may be any combination of constituent elements as long as it is a liquid phase that is in thermodynamic equilibrium with SiC (solid phase). It is better that the melt has a large amount of SiC dissolved in the liquid and has a steep inclination of the liquidus. This is because such a melt can efficiently grow SiC crystals from the liquid phase. Examples of such melts include binary melts of Si 1-x Ti x (0.1 ≦ x ≦ 0.25) and Si 1-x Mn x (0.1 ≦ x ≦ 0.7). Fe and Co are other suitable alloy elements other than Ti and Mn of the Si alloy. The alloy element may be one type or two or more types.

本発明は、溶液成長法による炭化珪素単結晶の製造において、いわゆる坩堝加速回転法(ACRT: accelerated crucible rotation technique)を適用することによって、融液内の攪拌効果を向上させ、それによりインクルージョンの発生を防止すると同時に、予想外にも結晶成長の高速化にも成功したものである。   The present invention improves the stirring effect in the melt by applying a so-called crucible accelerated rotation technique (ACRT) in the production of a silicon carbide single crystal by a solution growth method, thereby generating inclusions. At the same time, the crystal growth was unexpectedly successful.

「ACRT」法とは、単結晶を坩堝中の融液から育成する際に、容器となる坩堝の回転数または回転数と回転方向を変える、すなわち加速変化させる方法である。この方法は、SheelとShulz-DuBoisにより提案され(J. Crystal Growth 8 (1971) 304)、それ自体は既知の技術である。しかし、これまで、ACRTは溶液成長法によるSiC単結晶の成長に適用されたことがなく、前述した種々の問題の解決に有効であるとは考えられていなかった。本発明では、溶液成長法によるSiC単結晶の育成にACRTの技術をはじめて組み合わせたものであり、この組合わせによって、溶液成長法によるSiC単結晶成長と、ACRTという各技術単独からは到底予測しえない顕著な作用効果 (具体的にはインクルージョンの発生防止のみならず、結晶成長速度の著しい増大) が達成されることを確認した。   The “ACRT” method is a method of changing the rotational speed or rotational speed and rotational direction of a crucible serving as a container when growing a single crystal from a melt in a crucible, that is, accelerating change. This method was proposed by Sheel and Shulz-DuBois (J. Crystal Growth 8 (1971) 304) and is a known technique per se. However, until now, ACRT has never been applied to the growth of SiC single crystals by a solution growth method, and has not been considered to be effective in solving the various problems described above. In the present invention, the ACRT technology is combined with the growth of an SiC single crystal by a solution growth method for the first time. By this combination, the SiC single crystal growth by the solution growth method and the ACRT technology alone can be predicted. It was confirmed that a remarkable effect (specifically, not only the occurrence of inclusion but also a significant increase in the crystal growth rate) was achieved.

「少なくとも前記種結晶基板周辺における溶液の過冷却」は、(1) 融液全体を実質的に一様に冷却して過冷却状態にする、いわゆる徐冷法か、または(2) 融液に温度勾配を設けて、種結晶基板の周辺が低温部になるようにして、この部分だけを溶液の過冷却状態にする温度差法 (温度勾配法) のいずれかにより達成することができる。   "At least the solution around the seed crystal substrate is supercooled" is (1) a so-called slow cooling method in which the entire melt is substantially uniformly cooled to a supercooled state, or (2) a temperature gradient in the melt. And a temperature difference method (temperature gradient method) in which the periphery of the seed crystal substrate becomes a low temperature portion and only this portion is in a supercooled state of the solution.

徐冷法では、融液の冷却をその融液の固相線温度より高い温度で終了した後、融液の加熱と冷却を繰り返すことにより過冷却を繰り返し行って、種結晶上へのSiC単結晶の成長を続けることにより、バルク (長尺) の単結晶を得ることも可能である。しかし、加熱と冷却の繰り返しは熱エネルギーの消費量が多いので、バルク単結晶の成長は温度差法の方が有利である。徐冷法は、固相線温度より高い温度までの冷却を1回だけで終了して、バッチ方式でエピタキシャル薄膜単結晶を得るのに適している。本発明によれば、大口径の薄膜をエピタキシャル成長させても、インクルージョンのない薄膜を得ることができる。   In the slow cooling method, the cooling of the melt is finished at a temperature higher than the solidus temperature of the melt, and then the supercooling is repeated by repeating heating and cooling of the melt, so that the SiC single crystal is deposited on the seed crystal. By continuing the growth, it is possible to obtain a bulk (long) single crystal. However, since repeated heating and cooling consumes a large amount of heat energy, the temperature difference method is more advantageous for the growth of bulk single crystals. The slow cooling method is suitable for obtaining an epitaxial thin film single crystal by a batch method by finishing the cooling to a temperature higher than the solidus temperature only once. According to the present invention, even if a large-diameter thin film is epitaxially grown, a thin film without inclusion can be obtained.

温度差法は、連続的に結晶成長が行われるため、バルク単結晶を得るのに適した方法であるが、温度差法でも、成長時間を短時間にすることによりエピタキシャル膜を得ることは可能である。   The temperature difference method is a method suitable for obtaining a bulk single crystal because crystal growth is performed continuously, but it is possible to obtain an epitaxial film by shortening the growth time even with the temperature difference method. It is.

いずれの方法においても、融液中への炭素の供給は、融液を収容する坩堝を炭素質坩堝 (例、黒鉛坩堝) とし、坩堝の溶解により供給する方法と、炭化水素ガスなど気相経由の方法、さらには固体の炭素源を融液に投入して溶解させる方法などが可能である。2以上の方法を組合わせてもよい。   In either method, carbon is supplied into the melt by using a crucible containing the melt as a carbonaceous crucible (eg, a graphite crucible) and by supplying the melt by melting the crucible or through a gas phase such as hydrocarbon gas. In addition, a method in which a solid carbon source is introduced into a melt and dissolved can be used. Two or more methods may be combined.

坩堝加速回転(ACRT)法において、坩堝の回転数のみを周期的に変化させる場合、この回転数の変化は、
(1) 第1の設定回転数A1までの加速、
(2) 第1の回転数A1での回転保持、および
(3) 第2の設定回転数A2(A2<A1)への減速、
を1サイクルとして、このサイクルを繰り返す (但し、各サイクルにおいて回転数A1およびA2の設定値は同一である必要はなく、サイクルごとにこれらの設定値を変動させることができる) ことにより実施することができる。
In the crucible accelerated rotation (ACRT) method, when only the rotation speed of the crucible is changed periodically, the change in the rotation speed is
(1) Acceleration up to the first set speed A1,
(2) rotation holding at the first rotation speed A1, and
(3) Deceleration to the second set rotational speed A2 (A2 <A1),
Repeat this cycle for each cycle (however, the set values of the rotational speeds A1 and A2 do not need to be the same in each cycle, and these set values can be varied from cycle to cycle). Can do.

一方、坩堝の回転数と回転方向の両方を周期的に変化させる場合、この変化は、
(1) 第1回転方向で設定回転数B1までの加速、
(2) 第1回転方向における回転数B1での回転保持、
(3) 回転数0rpmへの減速、
(4) 逆方向の第2回転方向で設定回転数B2 (B2はB1と同一でも異なっていてもよい) までの加速、
(5) 第2回転方向における設定値B2での回転保持、
(6) 回転数0rpmへの減速、
を1サイクルとして、このサイクルを繰り返す (但し、各サイクルにおいて回転数B1およびB2の設定値は同一である必要はなく、サイクルごとにこれらの設定値を変動させることができる) ことにより実施することができる。
On the other hand, when both the rotation speed and the rotation direction of the crucible are changed periodically, this change is
(1) Acceleration up to the set speed B1 in the first rotation direction,
(2) Rotation holding at the rotation speed B1 in the first rotation direction,
(3) Deceleration to 0 rpm,
(4) Acceleration up to the set rotation speed B2 (B2 may be the same as or different from B1) in the second rotation direction in the reverse direction;
(5) Maintaining rotation at the set value B2 in the second rotation direction,
(6) Deceleration to 0 rpm,
, And repeat this cycle (however, the set values of the rotational speeds B1 and B2 do not have to be the same in each cycle, and these set values can be changed for each cycle). Can do.

設定回転数A1、B1、B2は、いずれも大きいほど融液内の攪拌効果が期待できるが、大きすぎると融液面形状が不安定となり、結晶成長に悪影響を及ぼすこともある。A1、B1、B2の好ましい範囲は15〜100 rpmの範囲である。設定回転数A2は、A1より小さければよく、0rpmでもよい。A2の好ましい範囲は0rpmからA1の1/2までである。   As the set rotational speeds A1, B1, and B2 are all larger, the stirring effect in the melt can be expected. However, if the rotational speed is too large, the melt surface shape becomes unstable, and the crystal growth may be adversely affected. A preferable range of A1, B1, and B2 is a range of 15 to 100 rpm. The set rotational speed A2 only needs to be smaller than A1, and may be 0 rpm. A preferable range of A2 is from 0 rpm to 1/2 of A1.

回転数のみを変化させる方式の場合、
(1) 第1の設定回転数A1に到達するまでの加速時間:1秒〜10分
(2) 第1の設定回転数A1での回転保持時間:0秒〜10分
(3) 保持終了から第2の設定回転数A2に到達するまでの減速時間:1秒〜10分
とすることが好ましい。A1への加速時間が1秒より短いのは実質的に実現困難であり、10分より長いと、加速度が小さいため強制攪拌効果が減少する。A1での回転保持時間は、長いほど攪拌効果を得ることができるが、10分より長いと攪拌効果が低下する。この保持時間は瞬間的、即ち、実質的に0秒であってもよい。A1からA2への減速時間の範囲も、A1への加速時間と同様の理由により上記範囲が好ましい。この減速時にも、加速時と同様に大きな強制攪拌効果が得られる。
In the case of a method that changes only the rotation speed,
(1) Acceleration time to reach the first set speed A1: 1 second to 10 minutes
(2) Rotation holding time at the first set rotational speed A1: 0 seconds to 10 minutes
(3) It is preferable that the deceleration time from the end of holding until reaching the second set rotational speed A2 is 1 second to 10 minutes. It is substantially difficult to realize that the acceleration time to A1 is shorter than 1 second, and when it is longer than 10 minutes, the acceleration is small and the forced stirring effect is reduced. The longer the rotation holding time at A1, the longer the stirring effect can be obtained. This holding time may be instantaneous, ie substantially 0 seconds. The range of the deceleration time from A1 to A2 is also preferable for the same reason as the acceleration time to A1. A large forced stirring effect can be obtained during deceleration as well as during acceleration.

回転数と回転方向の両方を変化させる方式においても、上記方式と同様の理由で、
(1) 第1方向の設定回転数B1に到達するまでの加速時間:1秒〜10分
(2) 第1方向の設定回転数B1での回転保持時間:0秒〜10分
(3) 第1方向の回転保持終了から0rpmに到達するまでの減速時間:1秒〜10分
(4) 逆の第2方向の設定回転数B2に到達するまでの加速時間:1秒〜10分
(5) 第2方向の設定回転数B2での回転保持時間:0秒〜10分
(6) 第2方向の回転保持終了から0rpmに到達するまでの減速時間:1秒〜10分
とすることが好ましい。
In the method of changing both the rotation speed and the rotation direction, for the same reason as the above method,
(1) Acceleration time to reach the set rotation speed B1 in the first direction: 1 second to 10 minutes
(2) Rotation holding time at the set rotation speed B1 in the first direction: 0 seconds to 10 minutes
(3) Deceleration time from the end of rotation holding in the first direction until reaching 0 rpm: 1 second to 10 minutes
(4) Acceleration time to reach the set rotation speed B2 in the reverse second direction: 1 second to 10 minutes
(5) Rotation holding time at the set rotation speed B2 in the second direction: 0 seconds to 10 minutes
(6) Deceleration time from the end of rotation holding in the second direction until reaching 0 rpm is preferably 1 second to 10 minutes.

後者の方式では、反転する分だけ、前者に比べて融液内の攪拌効果が増大する。
本発明の方法では、坩堝の加速回転により融液内の攪拌が促進されるが、種結晶を固定しているシード軸 (種結晶保持治具) も、坩堝の回転方向と同じ方向かまたは逆方向に回転させてもよい。シード軸の回転は、好ましくは、坩堝の回転と同期した加速回転とする。それにより、融液内の攪拌をより一層高めることができる。
In the latter method, the stirring effect in the melt is increased by the amount of inversion compared to the former.
In the method of the present invention, the stirring in the melt is promoted by the accelerated rotation of the crucible, but the seed shaft (seed crystal holding jig) for fixing the seed crystal is also in the same direction as or opposite to the rotation direction of the crucible. It may be rotated in the direction. The rotation of the seed shaft is preferably an acceleration rotation synchronized with the rotation of the crucible. Thereby, the stirring in the melt can be further increased.

本発明の方法によれば、面積が1インチ径以上で、厚みが5ミクロン以上のサイズの結晶内にインクルージョンが存在しないSiC単結晶を安定して確実に高い結晶成長速度で製造することができる。これにより、従来は実用化が困難とされてきた、溶液成長法による高品位のSiC単結晶の高速成長が可能となる。   According to the method of the present invention, an SiC single crystal having an area of 1 inch diameter or more and a thickness of 5 microns or more and having no inclusions can be stably and reliably produced at a high crystal growth rate. . As a result, a high-quality SiC single crystal can be grown at a high speed by a solution growth method, which has been difficult to put into practical use.

本発明により、従来は困難であった、インクルージョンが存在しない1インチ径サイズ以上、厚み5ミクロン以上のSiC単結晶の工業的な製造が可能となる。厚みが200ミクロン以下の場合、基板となるSiC単結晶上にエピタキシャル成長した薄膜 (エピ膜) として使用され、厚みが200ミクロン以上になると、必要に応じて種結晶を除去して、基板材料として使用することが可能となる。すなわち、本発明により得られる単結晶は、基板用途のためのバルク単結晶として使用することもできるし、種結晶を基板としてデバイス用途のエピタキシャル結晶としても使用可能である。   According to the present invention, it is possible to industrially manufacture a SiC single crystal having a diameter of 1 inch or more and a thickness of 5 microns or more, which is difficult in the past and does not include inclusions. When the thickness is 200 microns or less, it is used as a thin film (epi film) epitaxially grown on the SiC single crystal used as the substrate. When the thickness is 200 microns or more, the seed crystal is removed as needed and used as a substrate material. It becomes possible to do. That is, the single crystal obtained by the present invention can be used as a bulk single crystal for substrate use, or can be used as an epitaxial crystal for device use using a seed crystal as a substrate.

インクルージョンとは、何らかの作用により結晶内に取り込まれた結晶とは異なる全てのものを包含する。例えば、溶媒が結晶成長中に結晶内に捕捉されたものをいい、これは結晶成長界面における不均一性によって起こる。特に、SiC結晶を溶液から成長させる場合、SiまたはSi合金の融液中のSiCの溶解度が小さく、従って溶液の過飽和度が低いことが多いので、ステップバンチングを起こしやすく、容易にステップ間に溶媒が取り残されてしまい、インクルージョンとなる。また、溶媒の他に、気泡や、溶液中に混入した黒鉛粒子などが代表的なインクルージョンである。インクルージョンが混入するとデバイスを使用目的に用いることができない。   Inclusion includes everything that is different from a crystal taken into the crystal by some action. For example, the solvent is trapped within the crystal during crystal growth, which is caused by inhomogeneities at the crystal growth interface. In particular, when growing SiC crystals from a solution, the solubility of SiC in the melt of Si or Si alloy is small, and therefore the degree of supersaturation of the solution is often low. Is left behind and becomes inclusion. In addition to the solvent, bubbles, graphite particles mixed in the solution, and the like are typical inclusions. If inclusions are mixed, the device cannot be used for its intended purpose.

以下に示す実施例では、図2に示した結晶成長装置を用いて実験を行った。図示の装置は、高温のSiC溶液を収容した、回転可能な高純度黒鉛坩堝を備える。坩堝内の溶液には、坩堝蓋を貫通して坩堝内に挿入された回転可能なシード軸に取り付けられている種結晶が浸漬されている。黒鉛坩堝は断熱材で包囲され、この断熱材の周囲には高周波誘導加熱用の加熱コイルが配置されている。そして、以上の要素の全体が水冷チャンバに収容されている。水冷チャンバは、ガス導入口とガス排出口とを備え、結晶成長の雰囲気ガスの組成および圧力を制御することができる。図示していないが、黒鉛坩堝2の側部背面は二色高温計のような高温計により直接測温される。高温計は上下に複数個設置して、上下の異なる位置での融液温度を測定してもよい。   In the following examples, experiments were conducted using the crystal growth apparatus shown in FIG. The illustrated apparatus includes a rotatable high-purity graphite crucible containing a high-temperature SiC solution. The solution in the crucible is immersed with a seed crystal attached to a rotatable seed shaft that passes through the crucible lid and is inserted into the crucible. The graphite crucible is surrounded by a heat insulating material, and a heating coil for high frequency induction heating is disposed around the heat insulating material. The entirety of the above elements is accommodated in the water cooling chamber. The water-cooled chamber includes a gas inlet and a gas outlet, and can control the composition and pressure of the atmosphere gas for crystal growth. Although not shown, the back surface of the side of the graphite crucible 2 is directly measured by a pyrometer such as a two-color pyrometer. A plurality of pyrometers may be installed at the top and bottom to measure the melt temperature at different positions on the top and bottom.

実験では、黒鉛坩堝に溶媒となるSiまたはSiおよび合金元素のTiを仕込み、高周波コイルに通電して高周波誘導加熱により仕込んだ材料を融解させ、融液を形成した。Cは容器である高純度黒鉛坩堝の溶解によって融液内に供給した。黒鉛坩堝と高周波コイルの相対的な位置関係を調整することによって、融液内を均熱状態にすることも、あるいは適当な温度勾配を形成することもできる。従って、図示の装置は、徐冷法と温度差法のいずれの方法でもSiC結晶成長を実施することができる。   In the experiment, Si or Si serving as a solvent and Ti of an alloy element were charged in a graphite crucible, and the material charged by high-frequency induction heating was melted by energizing a high-frequency coil to form a melt. C was supplied into the melt by melting a high-purity graphite crucible as a container. By adjusting the relative positional relationship between the graphite crucible and the high-frequency coil, the melt can be brought into a soaking state, or an appropriate temperature gradient can be formed. Accordingly, the illustrated apparatus can perform SiC crystal growth by either the slow cooling method or the temperature difference method.

坩堝およびシード軸はそれぞれ、少なくとも種結晶を溶液に浸漬する直前には、加速回転を始め、種結晶が浸漬し、種結晶上に新たなSiC結晶が成長する際には、加速回転が行われているようにする。   Each of the crucible and the seed shaft starts accelerated rotation at least immediately before immersing the seed crystal in the solution, and when the seed crystal is immersed and a new SiC crystal grows on the seed crystal, the accelerated rotation is performed. To be.

実施例には、温度差法による成長実験を例示するが、徐冷法でも同様の結果が得られる。溶液は、種結晶が位置する溶液の液面近傍が溶液内部 (下部)に比べて低温になるように温度調整を行い、液面近傍の相対的に低温の領域に種結晶を5時間浸漬した。種結晶には1インチ径の単結晶を用いた。実験後、種結晶を融液から引き上げ、種結晶を回収した。種結晶は、フッ硝酸にて洗浄を行い、付着している融液の凝固物を除去した。種結晶上に新たに溶液成長した単結晶の成長厚みから成長速度を求めた。また、得られた単結晶のインクルージョンの発生状況を調べた。   In the examples, growth experiments by the temperature difference method are illustrated, but similar results can be obtained by the slow cooling method. The temperature of the solution is adjusted so that the vicinity of the liquid surface of the solution where the seed crystal is located is lower in temperature than the inside (lower part) of the solution, and the seed crystal is immersed in a relatively low temperature region near the liquid surface for 5 hours. . A 1-inch diameter single crystal was used as a seed crystal. After the experiment, the seed crystal was pulled up from the melt and the seed crystal was recovered. The seed crystal was washed with hydrofluoric acid to remove the adhering melt coagulum. The growth rate was obtained from the growth thickness of a single crystal newly grown on the seed crystal. In addition, the occurrence state of inclusion of the obtained single crystal was examined.

その結果、坩堝加速回転 (ACRT) 法をSiC単結晶の溶液成長法に適用すると、従来の溶液成長法では、インクルージョンの含有しない結晶は、数ミリ角程度の非常に小さな結晶成長でしか実現できなかったのに対し、1インチ径以上の大型の結晶において、インクルージョンが存在しない単結晶が成長することが判明した。   As a result, when the crucible accelerated rotation (ACRT) method is applied to the SiC single crystal solution growth method, the conventional solution growth method can realize crystals that do not contain inclusions with very small crystal growth of about several millimeters square. In contrast, it has been found that single crystals having no inclusions grow in large crystals having a diameter of 1 inch or more.

これは、坩堝加速回転により融液に強制的な流動が起こるため、種結晶への溶質の均一供給が促進されるためと考えられる。この結果、成長界面での溶質の不均一供給が著しく改善され、ステップバンチングは抑制され、ステップ間への溶媒の取り込みは完全に抑制することができ、それに起因するインクルージョンの発生が防止されるものと推測される。   This is presumably because the forced flow of the melt occurs due to the accelerated rotation of the crucible, so that the uniform supply of the solute to the seed crystal is promoted. As a result, uneven solute supply at the growth interface is remarkably improved, step bunching is suppressed, solvent uptake between steps can be completely suppressed, and the occurrence of inclusions is prevented It is guessed.

また、溶質の成長界面への供給が均一化したことで、得られる結晶の面内厚み分布は大幅に改善されることが判明した。さらに強制流動による溶質の供給は、SiCのように溶質の成長界面への輸送が律促過程となる結晶成長においては、結晶成長速度の増大をもたらし、ACRT法を適用しない成長に比べて、少なくとも2倍程度の成長速度の増大が確認された。原子レベルでの均一なステップフロー成長が大面積下において実現するため、ACRT法を適用して得られたSiC単結晶の表面モフォロジーは、cmオーダーの結晶長さで成長させても、目視においては鏡面を保持していることも確認された。   It was also found that the in-plane thickness distribution of the resulting crystal was greatly improved by the uniform supply of the solute to the growth interface. Furthermore, the supply of the solute by forced flow brings about an increase in the crystal growth rate in the crystal growth in which the transport to the growth interface of the solute is the limiting process like SiC, and at least compared with the growth not applying the ACRT method. An increase in the growth rate of about 2 times was confirmed. Since uniform step flow growth at the atomic level is realized under a large area, the surface morphology of the SiC single crystal obtained by applying the ACRT method is visually observed even when grown with a crystal length of cm order. It was also confirmed that the mirror surface was held.

ACRT法により、インクルージョンの防止のみならず、結晶成長速度の著しい増大が得られることは、これまではほとんど知られておらず、SiC単結晶の成長に特有の予期しえない効果である。これは、上記のように、溶質であるSiCの溶解度が非常に小さく、強制流動によって溶質の成長界面への供給が著しく増大するためである。   The fact that the ACRT method not only prevents the inclusion but also provides a significant increase in the crystal growth rate has been hardly known so far, which is an unexpected effect unique to the growth of SiC single crystals. This is because, as described above, the solubility of SiC, which is a solute, is very small, and supply to the growth interface of the solute is significantly increased by forced flow.

融液内に強制流動を発生させる手法としては、黒鉛坩堝の回転数のみを変化させる
第1の方式 (同方向回転方式) と、黒鉛坩堝の回転数と回転方向を変化させる第2の方式 (反転方式) の両方を実施した。
As a method for generating forced flow in the melt, there are a first method for changing only the rotation speed of the graphite crucible (same direction rotation method) and a second method for changing the rotation speed and rotation direction of the graphite crucible ( Both of them were carried out.

第1の方式では、
(1) 第1の設定回転数A1までの加速、
(2) 第1回転数A1での回転保持、および
(3) 第2の設定回転数A2(A2<A1)までの減速、
を1サイクルとして、このサイクルを繰り返した。
In the first method,
(1) Acceleration up to the first set speed A1,
(2) Rotation holding at the first rotation speed A1, and
(3) Deceleration to the second set rotational speed A2 (A2 <A1),
This cycle was repeated with 1 cycle.

第2の方式では、
(1) 第1回転方向の設定回転数B1までの加速、
(2) 回転数B1での回転保持、
(3) 回転数0rpmまでの減速、
(4) 逆方向の第2回転方向設定回転数B2 (B2はB1と異なっていてもよいが、実験では同一とした) までの加速、
(5) 設定値B2での回転保持、
(6) 回転数0rpmまでの減速、
を1サイクルとして、このサイクルを繰り返した。
In the second method,
(1) Acceleration up to the set rotational speed B1 in the first rotational direction,
(2) Rotation holding at rotation speed B1,
(3) Deceleration to 0 rpm
(4) Acceleration up to the second rotational direction setting rotational speed B2 in the reverse direction (B2 may be different from B1, but the same in the experiment)
(5) Rotation holding at set value B2,
(6) Deceleration to 0 rpm,
This cycle was repeated with 1 cycle.

坩堝の加速回転により融液内の攪拌が促進されるが、一部の実施例では、攪拌をより一層高めるために、種結晶を取り付けたシード軸を坩堝回転に同期させて加速回転させることも行った。   Agitation in the melt is accelerated by the accelerated rotation of the crucible, but in some embodiments, in order to further increase the stirring, the seed shaft on which the seed crystal is attached may be rotated at an accelerated speed in synchronization with the rotation of the crucible. went.

本実施例は、図2に示した結晶育成装置を用いたSiC単結晶の溶液成長法による製造を例示する。本例では、黒鉛坩堝のみを反転回転させる方式で坩堝加速回転を実施した。
結晶成長装置は融液を収容した内径80mm、高さ150mmの黒鉛坩堝を備え、この坩堝は水冷ステンレス鋼チャンバ内に配置されている。黒鉛坩堝の外周は断熱材により保温されており、さらにその外周に誘導加熱用の高周波コイルが設けられている。結晶成長装置内の雰囲気は、ガス導入口とガス排出口を利用して調整される。
This example illustrates the production of an SiC single crystal by the solution growth method using the crystal growth apparatus shown in FIG. In this example, the crucible accelerated rotation was performed by rotating only the graphite crucible.
The crystal growth apparatus includes a graphite crucible having an inner diameter of 80 mm and a height of 150 mm containing a melt, and this crucible is arranged in a water-cooled stainless steel chamber. The outer periphery of the graphite crucible is kept warm by a heat insulating material, and a high frequency coil for induction heating is provided on the outer periphery. The atmosphere in the crystal growth apparatus is adjusted using the gas inlet and the gas outlet.

黒鉛坩堝にSi0.8Ti0.2となる組成の合金原料を装入し、融解した。高周波コイルと黒鉛坩堝との相対的な位置調整により、融液の深さ方向に温度勾配を設けた。結晶成長界面近傍の温度は約1700℃、溶液底部は約1750℃になるように温度勾配を調整した。SiC種結晶 (1インチ径の6H−SiC) をシード軸に取り付けた。 An alloy raw material having a composition of Si 0.8 Ti 0.2 was charged into a graphite crucible and melted. A temperature gradient was provided in the depth direction of the melt by adjusting the relative positions of the high-frequency coil and the graphite crucible. The temperature gradient was adjusted so that the temperature near the crystal growth interface was about 1700 ° C. and the bottom of the solution was about 1750 ° C. A SiC seed crystal (1 inch diameter 6H-SiC) was attached to the seed shaft.

種結晶 (シード軸) は回転させず、坩堝を左回転に回転させた。坩堝の到達回転数を30 rpmに設定し、設定回転数に達するまでの時間は5秒とした。坩堝の回転数が設定回転数に到達した後、10秒間はその回転数で回転を行い、その後、5秒で回転を停止した。次に、坩堝の回転方向を右回転に反転させて、上記と同様に、5秒で30 rpmに到達させ、30 rpmの回転を10秒間保持した後、5秒で回転を停止した。以上を1サイクルとして、結晶成長中は前記サイクルを繰り返した。本例では、シード軸は無回転で、黒鉛坩堝のみを反転回転させた。1サイクルの時間は40秒である。   The crucible was rotated counterclockwise without rotating the seed crystal (seed shaft). The ultimate rotation speed of the crucible was set to 30 rpm, and the time required to reach the set rotation speed was 5 seconds. After the number of rotations of the crucible reached the set number of rotations, the rotation was performed for 10 seconds, and then the rotation was stopped in 5 seconds. Next, the direction of rotation of the crucible was reversed to the right, and in the same manner as described above, 30 rpm was reached in 5 seconds, the rotation at 30 rpm was held for 10 seconds, and then the rotation was stopped in 5 seconds. With the above as one cycle, the cycle was repeated during crystal growth. In this example, the seed shaft was not rotated, and only the graphite crucible was rotated in reverse. The time for one cycle is 40 seconds.

種結晶浸漬後、5時間経過したところでシード軸を上昇させて結晶を融液から引き離して成長を終了させた。その後、坩堝の回転を停止した。
坩堝を室温まで徐冷した後、結晶をシード軸から回収した。種結晶上に新たにSiC単結晶が成長しており、その成長面積は種結晶と同じ1インチ径であった。成長した結晶内のインクルージョンの発生の有無は、結晶の表面および断面から光学顕微鏡(×200)により詳細に観察して調べた。×200の倍率があればミクロンオーダーのインクルージョンは判別可能である。
After 5 hours from the seed crystal immersion, the seed axis was raised and the crystal was pulled away from the melt to terminate the growth. Thereafter, the rotation of the crucible was stopped.
After gradually cooling the crucible to room temperature, the crystal was recovered from the seed shaft. A SiC single crystal was newly grown on the seed crystal, and its growth area was the same 1 inch diameter as the seed crystal. The presence or absence of inclusion in the grown crystal was examined by observing in detail with an optical microscope (× 200) from the surface and cross section of the crystal. If there is a magnification of × 200, the inclusion of micron order can be distinguished.

判定は、成長結晶の全面積において
インクルージョンが存在しないものを○、
インクルージョンが存在しているものを×
とした。
Judgment is that the inclusion does not exist in the total area of the grown crystal,
X where inclusions exist
It was.

また、成長速度については、成長厚みを断面からの光学顕微鏡観察で求め、成長時間で除して求めた。ACRTを適用しない同一成長条件(後述の比較例1)に対して2倍以上の成長速度が得られたものについて◎、1倍以上、2倍以下について○、1倍以下について×とした。結果は表1にまとめて示す。   The growth rate was determined by determining the growth thickness by observation with an optical microscope from a cross section and dividing by the growth time. For the case where a growth rate of 2 times or more was obtained with respect to the same growth condition (Comparative Example 1 described later) to which ACRT is not applied, ◎, 1 time or more, 2 times or less, ○, 1 time or less. The results are summarized in Table 1.

本例は、黒鉛坩堝と種結晶 (シード軸) の回転方向が同方向になるように反転回転させた坩堝加速回転によるSiC単結晶の成長を例示する。
種結晶と坩堝は、まず同じ左回転に回転させた。種結晶と坩堝の到達回転数を30 rpmに設定し、設定回転数に達するまでの時間を5秒とした。到達回転数に到達した後、10秒間はその回転数で回転を行い、その後、5秒で回転を停止した。次に、種結晶と坩堝の回転方向を右回転に反転させて、上記と同様に、5秒で30 rpmに到達させ、30 rpmの回転を10秒間保持した後、5秒で回転を停止した。以上を1サイクルとして、結晶成長中は前記サイクルを繰り返した。シード軸と坩堝は常に同じ回転方向になるように同期させながら反転回転を繰り返した。1サイクルの時間は40秒である。
This example illustrates the growth of a SiC single crystal by crucible acceleration rotation in which the rotation direction of the graphite crucible and the seed crystal (seed axis) is reversed so as to be the same direction.
The seed crystal and the crucible were first rotated to the same left rotation. The arrival speed of the seed crystal and the crucible was set to 30 rpm, and the time required to reach the set speed was 5 seconds. After reaching the reached rotation speed, the rotation was performed for 10 seconds, and then the rotation was stopped in 5 seconds. Next, the direction of rotation of the seed crystal and the crucible was reversed to the right, and reached 30 rpm in 5 seconds, and the rotation at 30 rpm was held for 10 seconds, and then the rotation was stopped in 5 seconds. . With the above as one cycle, the cycle was repeated during crystal growth. The seed shaft and the crucible were repeatedly rotated in reverse while being synchronized so as to always have the same rotational direction. The time for one cycle is 40 seconds.

上記の回転条件以外は実施例1と同様にして、溶液成長法によるSiCの結晶成長を行った。種結晶浸漬後、5時間経過したところでシード軸を上昇させて結晶を融液から引き離して成長を終了させた。その後、シード軸と坩堝の回転を停止した。   Except for the above rotation conditions, SiC crystal growth was performed by the solution growth method in the same manner as in Example 1. After 5 hours from the seed crystal immersion, the seed axis was raised and the crystal was pulled away from the melt to terminate the growth. Thereafter, the rotation of the seed shaft and the crucible was stopped.

坩堝を室温まで徐冷した後、結晶をシード軸から回収した。種結晶上に新たにSiC単結晶が成長しており、その成長面積は種結晶と同じ1インチ径であった。成長した結晶内のインクルージョンの発生の有無と結晶成長速度を実施例1と同様にして調査した結果を表1に示す。   After gradually cooling the crucible to room temperature, the crystal was recovered from the seed shaft. A SiC single crystal was newly grown on the seed crystal, and its growth area was the same 1 inch diameter as the seed crystal. Table 1 shows the results of investigating the presence or absence of inclusion in the grown crystal and the crystal growth rate in the same manner as in Example 1.

本例は、黒鉛坩堝と種結晶 (シード軸) の回転方向が逆方向 (反対) になるように反転回転させた坩堝加速回転によるSiC単結晶の成長を例示する。
即ち、まず種結晶は右回転、坩堝は左回転に回転させた。それぞれの到達回転数を30 rpmに設定し、設定回転数に達するまでの時間を5秒とした。設定回転数に到達した後、10秒間はその回転数で回転を行い、その後、5秒で回転を停止した。次に、回転方向を反転させて、シード軸を左回転、坩堝を右回転にして、上記と同様に、5秒で30 rpmに到達させ、30 rpmの回転を10秒間保持した後、5秒で回転を停止した。以上を1サイクルとして、結晶成長中は前記サイクルを繰り返した。シード軸と坩堝の回転を、回転方向が常に互いに反対になるようにして、回転を同期させながら反転回転を繰り返した。この状況を図3に示す。図示のように1サイクルの時間は40秒である。
This example illustrates the growth of a SiC single crystal by crucible acceleration rotation in which the rotation direction of the graphite crucible and the seed crystal (seed axis) is reversed (opposite).
That is, first, the seed crystal was rotated clockwise and the crucible was rotated counterclockwise. Each reached rotation speed was set to 30 rpm, and the time to reach the set rotation speed was 5 seconds. After reaching the set rotation speed, the rotation was performed at the rotation speed for 10 seconds, and then the rotation was stopped at 5 seconds. Next, the direction of rotation is reversed, the seed shaft is rotated to the left, the crucible is rotated to the right, and 30 rpm is reached in 5 seconds, and the rotation at 30 rpm is held for 10 seconds. The rotation stopped at. With the above as one cycle, the cycle was repeated during crystal growth. The rotation of the seed shaft and the crucible was repeatedly reversed while synchronizing the rotation so that the rotation directions were always opposite to each other. This situation is shown in FIG. As shown in the figure, the time for one cycle is 40 seconds.

上記の回転条件以外は実施例1と同様にして、溶液成長法によるSiCの結晶成長を行った。種結晶浸漬後、5時間経過したところでシード軸を上昇させて結晶を融液から引き離して成長を終了させた。その後、シード軸と坩堝の回転を停止した。   Except for the above rotation conditions, SiC crystal growth was performed by the solution growth method in the same manner as in Example 1. After 5 hours from the seed crystal immersion, the seed axis was raised and the crystal was pulled away from the melt to terminate the growth. Thereafter, the rotation of the seed shaft and the crucible was stopped.

坩堝を室温まで徐冷した後、結晶をシード軸から回収した。種結晶上に新たにSiC単結晶が成長しており、その成長面積は種結晶と同じ1インチ径であった。成長した結晶内のインクルージョンの発生の有無と結晶成長速度を実施例1と同様にして調査した結果を表1に示す。   After gradually cooling the crucible to room temperature, the crystal was recovered from the seed shaft. A SiC single crystal was newly grown on the seed crystal, and its growth area was the same 1 inch diameter as the seed crystal. Table 1 shows the results of investigating the presence or absence of inclusion in the grown crystal and the crystal growth rate in the same manner as in Example 1.

本例は、黒鉛坩堝と種結晶 (シード軸) の回転方向が同一方向で、かつ回転方向を反転させずに同一方向の回転を保持したまま加速と減速を繰り返す同方向回転方式の坩堝加速回転によるSiC単結晶の成長を例示する。   In this example, the rotation direction of the graphite crucible and the seed crystal (seed axis) is the same direction, and the same direction rotation type crucible acceleration rotation that repeats acceleration and deceleration while maintaining the rotation in the same direction without reversing the rotation direction. 3 illustrates the growth of a SiC single crystal by the above.

種結晶 (シード軸) と坩堝の両方を左回転に回転させ、それぞれの到達回転数は30 rpmに設定した。設定回転数に達するまでの時間は5秒とした。到達回転数に到達した後、10秒間はその回転数で回転を行い、その後、5秒で回転数を0rpmまで減速した (即ち、回転を停止した)。回転停止後、直ちに、同じ左回転のまま、回転数を5秒で30 rpmに加速し、30 rpmの回転を10秒間保持した後、5秒で回転を停止した。本例では、30 rpmへの加速、30 rpmでの回転保持、0rpmへの減速が1サイクルとなるので、1サイクルの時間は20秒である。シード軸と坩堝の回転は、常に互いに同じ回転方向で同期させた。   Both the seed crystal (seed shaft) and the crucible were rotated counterclockwise, and the number of revolutions reached was set to 30 rpm. The time required to reach the set rotational speed was 5 seconds. After reaching the reached rotation speed, the rotation was performed at the rotation speed for 10 seconds, and then the rotation speed was reduced to 0 rpm in 5 seconds (that is, the rotation was stopped). Immediately after the rotation stopped, the rotation speed was accelerated to 30 rpm in 5 seconds while maintaining the same left rotation, and the rotation was stopped in 5 seconds after maintaining the rotation at 30 rpm for 10 seconds. In this example, acceleration to 30 rpm, rotation holding at 30 rpm, and deceleration to 0 rpm are one cycle, so the time for one cycle is 20 seconds. The rotation of the seed shaft and the crucible was always synchronized in the same rotation direction.

上記の回転条件以外は実施例1と同様にして、溶液成長法によるSiCの結晶成長を行った。種結晶浸漬後、5時間経過したところでシード軸を上昇させて結晶を融液から引き離して成長を終了させた。その後、シード軸と坩堝の回転を停止した。   Except for the above rotation conditions, SiC crystal growth was performed by the solution growth method in the same manner as in Example 1. After 5 hours from the seed crystal immersion, the seed axis was raised and the crystal was pulled away from the melt to terminate the growth. Thereafter, the rotation of the seed shaft and the crucible was stopped.

坩堝を室温まで徐冷した後、結晶をシード軸から回収した。種結晶上に新たにSiC単結晶が成長しており、その成長面積は種結晶と同じ1インチ径であった。成長した結晶内のインクルージョンの発生の有無と結晶成長速度を実施例1と同様にして調査した結果を表1に示す。   After gradually cooling the crucible to room temperature, the crystal was recovered from the seed shaft. A SiC single crystal was newly grown on the seed crystal, and its growth area was the same 1 inch diameter as the seed crystal. Table 1 shows the results of investigating the presence or absence of inclusion in the grown crystal and the crystal growth rate in the same manner as in Example 1.

黒鉛坩堝にSiのみを充填した以外は、実施例1と同様にして、種結晶上にSiC単結晶を製造した。即ち、シード軸は回転させず、黒鉛坩堝のみを反転回転させた。これまでの実施例では溶媒はSi−Ti合金であったが、本例ではSiである。   A SiC single crystal was produced on the seed crystal in the same manner as in Example 1 except that the graphite crucible was filled only with Si. That is, the seed shaft was not rotated, and only the graphite crucible was rotated in reverse. In the examples so far, the solvent is a Si—Ti alloy, but in this example, it is Si.

種結晶浸漬後、5時間経過したところでシード軸を上昇させて結晶を融液から引き離して成長を終了させた。その後、坩堝の回転を停止した。
坩堝を室温まで徐冷した後、結晶をシード軸から回収した。種結晶上に新たにSiC単結晶が成長しており、その成長面積は種結晶と同じ1インチ径であった。成長した結晶内のインクルージョンの発生の有無を実施例1と同様にして調査した結果を表1に示す。
After 5 hours from the seed crystal immersion, the seed axis was raised and the crystal was pulled away from the melt to terminate the growth. Thereafter, the rotation of the crucible was stopped.
After gradually cooling the crucible to room temperature, the crystal was recovered from the seed shaft. A SiC single crystal was newly grown on the seed crystal, and its growth area was the same 1 inch diameter as the seed crystal. Table 1 shows the results of investigating the occurrence of inclusions in the grown crystal in the same manner as in Example 1.

なお、表1に示すように、本例では結晶成長速度が実施例1〜4より低くなっているが、これはSiC溶液の溶媒が、実施例1〜4ではSi−Ti合金であったのに対し、本例ではSi単独であり、溶液中のSiCの濃度が低くなるためである。溶媒がSi単独であって、加速回転を行わない場合と比べると、本例においても結晶成長速度は2倍以上になっている。
[比較例1]
As shown in Table 1, in this example, the crystal growth rate was lower than in Examples 1 to 4, but this was because the solvent of the SiC solution was Si—Ti alloy in Examples 1 to 4. In contrast, in this example, Si alone is used, and the concentration of SiC in the solution is lowered. Compared with the case where the solvent is Si alone and acceleration rotation is not performed, the crystal growth rate in this example is also twice or more.
[Comparative Example 1]

本例では、実施例3と同様に、種結晶は右回転、坩堝は左回転で、互いに逆方向に回転させた。但し、結晶成長中の回転数は、種結晶と坩堝のそれぞれを30 rpmの一定に保持し、加速回転は行わなかった。それ以外は実施例3と同様にして、溶液成長法によるSiCの結晶成長を行った。   In this example, as in Example 3, the seed crystal was rotated to the right and the crucible was rotated to the left to rotate in opposite directions. However, the number of rotations during crystal growth was kept constant at 30 rpm for the seed crystal and the crucible, and accelerated rotation was not performed. Other than that was carried out similarly to Example 3, and performed the crystal growth of SiC by the solution growth method.

種結晶浸漬後、5時間経過したところでシード軸を上昇させて結晶を融液から引き離して成長を終了させた。その後、シード軸と坩堝の回転を停止した。坩堝を室温まで徐冷した後、結晶をシード軸から回収した。種結晶上に新たにSiC単結晶が成長しており、その成長面積は種結晶と同じ1インチ径であった。成長した結晶内のインクルージョンの発生の有無を実施例1と同様にして調査した結果を表1に示す。
種結晶上に新たにSiC単結晶を成長させた。
After 5 hours from the seed crystal immersion, the seed axis was raised and the crystal was pulled away from the melt to terminate the growth. Thereafter, the rotation of the seed shaft and the crucible was stopped. After gradually cooling the crucible to room temperature, the crystal was recovered from the seed shaft. A SiC single crystal was newly grown on the seed crystal, and its growth area was the same 1 inch diameter as the seed crystal. Table 1 shows the results of investigating the occurrence of inclusions in the grown crystal in the same manner as in Example 1.
A new SiC single crystal was grown on the seed crystal.

Figure 2006117441
Figure 2006117441

表1に示すように、坩堝加速回転を実施しなかった比較例1では、図1に示すようなインクルージョンが結晶内に見られた。一方、本発明に従って坩堝加速回転を適用すると、溶媒の種類(SiまたはSi合金)、回転方式(回転方向を反転させるか、同一方向のままとするか)、あるいはシード軸(種結晶)の回転の有無、にかかわらず、いずれの回転条件下でも、インクルージョンのない結晶を、加速回転しない場合の2倍以上の高速で成長させることができた。特に、溶媒がSi合金であると、結晶品位を良好に維持しながら、150ミクロン/hr以上、最高では200ミクロン/hr以上の高い結晶成長速度を達成することができた。   As shown in Table 1, in Comparative Example 1 in which the crucible accelerated rotation was not performed, the inclusion as shown in FIG. 1 was observed in the crystal. On the other hand, when applying crucible accelerated rotation according to the present invention, the type of solvent (Si or Si alloy), rotation method (reversing the rotation direction or keeping it in the same direction), or rotation of the seed axis (seed crystal) Regardless of the presence or absence of the crystal, the inclusion-free crystal could be grown at a speed twice as high as that without acceleration rotation under any rotation condition. In particular, when the solvent was a Si alloy, it was possible to achieve a high crystal growth rate of 150 microns / hr or more, and at most 200 microns / hr or more, while maintaining good crystal quality.

以上に、本発明を特定の形態について説明したが、ここに開示した実施形態および実施例はすべての点で例示であって制限的なものではない。本発明の範囲には、特許請求の範囲と均等な意味および範囲内でのすべての変更例が含まれる。   As mentioned above, although this invention was demonstrated about the specific form, embodiment and the Example which were disclosed here are illustrations in all the points, Comprising: It is not restrictive. The scope of the present invention includes meanings equivalent to the claims and all modifications within the scope.

従来の溶液成長法により成長させたインクルージョンを含むSiC結晶の断面の光学顕微鏡写真である。It is an optical microscope photograph of the section of SiC crystal containing inclusion grown by the conventional solution growth method. 本発明の方法に使用するのに適した溶液成長法による単結晶成長装置を示す略式説明図である。It is a schematic explanatory drawing which shows the single crystal growth apparatus by the solution growth method suitable for using for the method of this invention. 本発明の実施例において採用された坩堝とシード軸の回転プロファイルを示す図である。It is a figure which shows the rotation profile of the crucible and seed shaft which were employ | adopted in the Example of this invention.

Claims (5)

回転する坩堝内のSiとCまたはSiとCと1種類以上の金属を含む、SiCが溶解した融液中に、シード軸に固定されたSiCの種結晶を浸漬し、少なくとも前記種結晶周辺における溶液の過冷却によりSiCを過飽和状態とすることによって前記種結晶上にSiC単結晶層を成長させることによる炭化珪素単結晶の製造において、坩堝の回転数または回転数および回転方向を周期的に変化させることによって前記融液を攪拌することを特徴とする、炭化珪素単結晶の製造方法。   A SiC seed crystal fixed to a seed shaft is immersed in a melt containing SiC and containing Si and C or Si and C and one or more metals in a rotating crucible, and at least around the seed crystal. In the manufacture of a silicon carbide single crystal by growing a SiC single crystal layer on the seed crystal by making SiC supersaturated by supercooling the solution, the rotational speed or rotational speed and rotational direction of the crucible are periodically changed. The method for producing a silicon carbide single crystal, wherein the melt is stirred. 坩堝の回転数を、
(1) 第1の設定回転数A1までの加速、
(2) 第1の回転数A1での回転保持、および
(3) 第2の設定回転数A2(A2<A1)への減速、
を1サイクルとして、このサイクルを繰り返す (但し、サイクルごとに回転数A1およびA2の設定値は変動させうる) ことにより周期的に変化させる、請求項1記載の方法。
The number of revolutions of the crucible,
(1) Acceleration up to the first set speed A1,
(2) rotation holding at the first rotation speed A1, and
(3) Deceleration to the second set rotational speed A2 (A2 <A1),
The method according to claim 1, wherein the cycle is periodically changed by repeating the cycle (however, the set values of the rotational speeds A1 and A2 can be changed for each cycle).
坩堝の回転数および回転方向を、
(1) 第1回転方向で設定回転数B1まで加速、
(2) 回転数B1での第1回転方向における回転保持、
(3) 回転数0rpmへの減速、
(4) 逆方向の第2回転方向で設定回転数B2 (B2はB1と同一でも異なっていてもよい) までの加速、
(5) 設定値B2での第2回転方向における回転保持、
(6) 回転数0rpmへの減速、
を1サイクルとして、このサイクルを繰り返す (但し、サイクルごとに回転数B1およびB2の設定値を変動させうる) ことにより周期的に変化させる、請求項1記載の方法。
The rotation speed and rotation direction of the crucible
(1) Accelerate to the set speed B1 in the first rotation direction,
(2) Rotation holding in the first rotation direction at the rotation speed B1,
(3) Deceleration to 0 rpm,
(4) Acceleration up to the set rotation speed B2 (B2 may be the same as or different from B1) in the second rotation direction in the reverse direction;
(5) Maintaining rotation in the second rotational direction at the set value B2.
(6) Deceleration to 0 rpm,
The method according to claim 1, wherein the cycle is periodically changed by repeating this cycle (however, the set values of the rotation speeds B <b> 1 and B <b> 2 can be changed for each cycle).
坩堝の回転と一緒に、前記シード軸も坩堝と同一または逆方向に回転させる、請求項1〜3のいずれかに記載の方法。   The method according to any one of claims 1 to 3, wherein the seed shaft is rotated in the same or opposite direction as the crucible together with the rotation of the crucible. シード軸の回転を坩堝の回転と同期させる、請求項4記載の方法。   The method according to claim 4, wherein the rotation of the seed shaft is synchronized with the rotation of the crucible.
JP2004304132A 2004-09-03 2004-10-19 Method for producing silicon carbide single crystal Expired - Lifetime JP4475091B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004304132A JP4475091B2 (en) 2004-10-19 2004-10-19 Method for producing silicon carbide single crystal
PCT/JP2005/015844 WO2006025420A1 (en) 2004-09-03 2005-08-31 Method for preparing silicon carbide single crystal
EP05781299.2A EP1806437B1 (en) 2004-09-03 2005-08-31 Method for preparing silicon carbide single crystal
US11/712,841 US7635413B2 (en) 2004-09-03 2007-03-01 Method for preparing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304132A JP4475091B2 (en) 2004-10-19 2004-10-19 Method for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2006117441A true JP2006117441A (en) 2006-05-11
JP4475091B2 JP4475091B2 (en) 2010-06-09

Family

ID=36535693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304132A Expired - Lifetime JP4475091B2 (en) 2004-09-03 2004-10-19 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4475091B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189246A (en) * 2009-02-20 2010-09-02 Toyota Motor Corp METHOD FOR ADHERING SiC SINGLE CRYSTAL AND SOLUTION GROWTH METHOD OF SiC SINGLE CRYSTAL
WO2010103387A1 (en) 2009-03-12 2010-09-16 Toyota Jidosha Kabushiki Kaisha Method of producing sic single crystal
JP2011068515A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
WO2012090946A1 (en) 2010-12-27 2012-07-05 住友金属工業株式会社 APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2012136388A (en) * 2010-12-27 2012-07-19 Sumitomo Metal Ind Ltd APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL AND CRUCIBLE USED FOR THE SAME
JP2013056807A (en) * 2011-09-08 2013-03-28 National Institute Of Advanced Industrial Science & Technology METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY
JP2013056806A (en) * 2011-09-08 2013-03-28 National Institute Of Advanced Industrial Science & Technology METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY
WO2013062130A1 (en) * 2011-10-28 2013-05-02 京セラ株式会社 Method for producing crystal
WO2014013773A1 (en) 2012-07-19 2014-01-23 トヨタ自動車株式会社 SiC SINGLE CRYSTAL INGOT AND PRODUCTION METHOD THEREFOR
WO2014013305A2 (en) 2012-07-18 2014-01-23 Toyota Jidosha Kabushiki Kaisha APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL BY SOLUTION GROWTH METHOD, AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL BY USING THE PRODUCTION APPARATUS AND CRUCIBLE USED IN THE PRODUCTION APPARATUS
WO2014038172A1 (en) * 2012-09-04 2014-03-13 新日鐵住金株式会社 APPARATUS AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
KR20150046236A (en) 2012-09-04 2015-04-29 신닛테츠스미킨 카부시키카이샤 Single crystal production device, crucible used in same, and single crystal production method
KR101622858B1 (en) 2011-10-31 2016-05-19 도요타지도샤가부시키가이샤 SiC SINGLE CRYSTAL MANUFACTURING METHOD
JP2017095311A (en) * 2015-11-25 2017-06-01 トヨタ自動車株式会社 PRODUCTION METHOD OF SiC SINGLE CRYSTAL
WO2018040897A1 (en) * 2016-08-31 2018-03-08 台州市一能科技有限公司 Silicon carbide single crystal manufacturing apparatus
KR101847923B1 (en) * 2016-12-29 2018-04-11 한국세라믹기술원 Elimination method of adsorbed droplet from the surface of single crystal grown by top seeded solution growth
US10100432B2 (en) 2012-07-19 2018-10-16 Toyota Jidosha Kabushiki Kaisha Apparatus for producing SiC single crystal and method for producing SiC single crystal
CN112663140A (en) * 2020-12-07 2021-04-16 山东大学 Mold device for preparing quaternary halide crystal and preparation method
CN114941176A (en) * 2022-05-17 2022-08-26 苏州燎塬半导体有限公司 Thermal field design and single crystal growth method for preparing silicon carbide single crystal by solution method

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189246A (en) * 2009-02-20 2010-09-02 Toyota Motor Corp METHOD FOR ADHERING SiC SINGLE CRYSTAL AND SOLUTION GROWTH METHOD OF SiC SINGLE CRYSTAL
US9080254B2 (en) 2009-03-12 2015-07-14 Toyota Jidosha Kabushiki Kaisha Method of producing SiC single crystal
WO2010103387A1 (en) 2009-03-12 2010-09-16 Toyota Jidosha Kabushiki Kaisha Method of producing sic single crystal
DE112010001116T5 (en) 2009-03-12 2012-09-27 Toyota Jidosha K.K. Process for producing a SiC single crystal
JP2011068515A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
WO2012090946A1 (en) 2010-12-27 2012-07-05 住友金属工業株式会社 APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2012136388A (en) * 2010-12-27 2012-07-19 Sumitomo Metal Ind Ltd APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL AND CRUCIBLE USED FOR THE SAME
US9617655B2 (en) 2010-12-27 2017-04-11 Nippon Steel & Sumitomo Metal Corporation Manufacturing apparatus of SiC single crystal and method for manufacturing SiC single crystal
JP2013056807A (en) * 2011-09-08 2013-03-28 National Institute Of Advanced Industrial Science & Technology METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY
JP2013056806A (en) * 2011-09-08 2013-03-28 National Institute Of Advanced Industrial Science & Technology METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY
JP5318300B1 (en) * 2011-10-28 2013-10-16 京セラ株式会社 Crystal production method
JP2018080107A (en) * 2011-10-28 2018-05-24 京セラ株式会社 Production of crystal
US9777396B2 (en) 2011-10-28 2017-10-03 Kyocera Corporation Method for producing crystal
JP2014028750A (en) * 2011-10-28 2014-02-13 Kyocera Corp Method for producing crystal
US10151045B2 (en) 2011-10-28 2018-12-11 Kyocera Corporation Method for producing crystal
WO2013062130A1 (en) * 2011-10-28 2013-05-02 京セラ株式会社 Method for producing crystal
KR101622858B1 (en) 2011-10-31 2016-05-19 도요타지도샤가부시키가이샤 SiC SINGLE CRYSTAL MANUFACTURING METHOD
US9624599B2 (en) 2011-10-31 2017-04-18 Toyota Jidosha Kabushiki Kaisha SiC single crystal manufacturing method using alternating states of supersaturation
WO2014013305A2 (en) 2012-07-18 2014-01-23 Toyota Jidosha Kabushiki Kaisha APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL BY SOLUTION GROWTH METHOD, AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL BY USING THE PRODUCTION APPARATUS AND CRUCIBLE USED IN THE PRODUCTION APPARATUS
US9783911B2 (en) 2012-07-18 2017-10-10 Toyota Jidosha Kabushiki Kaisha Apparatus for producing SiC single crystal by solution growth method, and method for producing SiC single crystal by using the production apparatus and crucible used in the production apparatus
WO2014013773A1 (en) 2012-07-19 2014-01-23 トヨタ自動車株式会社 SiC SINGLE CRYSTAL INGOT AND PRODUCTION METHOD THEREFOR
US10100432B2 (en) 2012-07-19 2018-10-16 Toyota Jidosha Kabushiki Kaisha Apparatus for producing SiC single crystal and method for producing SiC single crystal
KR20150023031A (en) 2012-07-19 2015-03-04 도요타 지도샤(주) SiC SINGLE CRYSTAL INGOT AND PRODUCTION METHOD THEREFOR
US9523156B2 (en) 2012-07-19 2016-12-20 Toyota Jidosha Kabushiki Kaisha SiC single crystal ingot and production method therefor
JP2014019614A (en) * 2012-07-19 2014-02-03 Toyota Motor Corp SiC SINGLE CRYSTAL INGOT AND METHOD FOR PRODUCING THE SAME
KR20150046268A (en) 2012-09-04 2015-04-29 신닛테츠스미킨 카부시키카이샤 APPARATUS AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
KR101707349B1 (en) * 2012-09-04 2017-02-15 신닛테츠스미킨 카부시키카이샤 Single crystal production device, crucible used in same, and single crystal production method
KR101707350B1 (en) * 2012-09-04 2017-02-15 신닛테츠스미킨 카부시키카이샤 APPARATUS AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JPWO2014038166A1 (en) * 2012-09-04 2016-08-08 新日鐵住金株式会社 Single crystal manufacturing apparatus, crucible used therefor, and single crystal manufacturing method
JP5863977B2 (en) * 2012-09-04 2016-02-17 新日鐵住金株式会社 SiC single crystal manufacturing apparatus and manufacturing method
KR20150046236A (en) 2012-09-04 2015-04-29 신닛테츠스미킨 카부시키카이샤 Single crystal production device, crucible used in same, and single crystal production method
WO2014038172A1 (en) * 2012-09-04 2014-03-13 新日鐵住金株式会社 APPARATUS AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2017095311A (en) * 2015-11-25 2017-06-01 トヨタ自動車株式会社 PRODUCTION METHOD OF SiC SINGLE CRYSTAL
WO2018040897A1 (en) * 2016-08-31 2018-03-08 台州市一能科技有限公司 Silicon carbide single crystal manufacturing apparatus
KR101847923B1 (en) * 2016-12-29 2018-04-11 한국세라믹기술원 Elimination method of adsorbed droplet from the surface of single crystal grown by top seeded solution growth
CN112663140A (en) * 2020-12-07 2021-04-16 山东大学 Mold device for preparing quaternary halide crystal and preparation method
CN114941176A (en) * 2022-05-17 2022-08-26 苏州燎塬半导体有限公司 Thermal field design and single crystal growth method for preparing silicon carbide single crystal by solution method
CN114941176B (en) * 2022-05-17 2023-11-14 苏州燎塬半导体有限公司 Thermal field design and single crystal growth method for preparing silicon carbide single crystal by solution method

Also Published As

Publication number Publication date
JP4475091B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4475091B2 (en) Method for producing silicon carbide single crystal
US7635413B2 (en) Method for preparing silicon carbide single crystal
JP4853449B2 (en) SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device
JP4100228B2 (en) Silicon carbide single crystal and manufacturing method thereof
JP5483216B2 (en) SiC single crystal and method for producing the same
JP4736401B2 (en) Method for producing silicon carbide single crystal
JP5218348B2 (en) Method for producing silicon carbide single crystal
WO2016039415A1 (en) Method for producing silicon carbide crystals and crystal production device
US7520930B2 (en) Silicon carbide single crystal and a method for its production
JP4419937B2 (en) Method for producing silicon carbide single crystal
JP5983772B2 (en) Method for producing n-type SiC single crystal
JP2007261844A (en) Manufacturing method of silicon carbide single crystal
TWI809003B (en) Manufacturing method of silicon carbide single crystal
JP4934958B2 (en) Method for producing silicon carbide single crystal
KR101152857B1 (en) Method for growing silicon carbide single crystal
JP4645499B2 (en) Method for producing silicon carbide single crystal
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
EP3388560B1 (en) Method for preparing sic single crystal
JP4466293B2 (en) Method for producing silicon carbide single crystal
EP1498518B1 (en) Method for the production of silicon carbide single crystal
JP7552540B2 (en) Method for producing SiC single crystal and method for suppressing dislocations in SiC single crystal
JP2018080063A (en) METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
WO2017086449A1 (en) SiC SINGLE CRYSTAL PRODUCTION METHOD AND SiC SINGLE CRYSTAL INGOT
JP2006143489A (en) Crystal growth device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350