JP4853449B2 - SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device - Google Patents

SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device Download PDF

Info

Publication number
JP4853449B2
JP4853449B2 JP2007265717A JP2007265717A JP4853449B2 JP 4853449 B2 JP4853449 B2 JP 4853449B2 JP 2007265717 A JP2007265717 A JP 2007265717A JP 2007265717 A JP2007265717 A JP 2007265717A JP 4853449 B2 JP4853449 B2 JP 4853449B2
Authority
JP
Japan
Prior art keywords
sic
substrate
single crystal
solution
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007265717A
Other languages
Japanese (ja)
Other versions
JP2009091222A (en
Inventor
一彦 楠
将斉 矢代
一人 亀井
亮 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Sumitomo Metal Industries Ltd
Original Assignee
Mitsubishi Electric Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Sumitomo Metal Industries Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2007265717A priority Critical patent/JP4853449B2/en
Publication of JP2009091222A publication Critical patent/JP2009091222A/en
Application granted granted Critical
Publication of JP4853449B2 publication Critical patent/JP4853449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子デバイス、光学デバイス用基板材料として好適な炭化珪素単結晶の製造方法に関する。本発明では、特に{0001}面から傾斜した結晶面を有する炭化珪素単結晶からなる種結晶基板の表面に、結晶欠陥の少ない(すなわち、低結晶欠陥の)良質な炭化珪素単結晶を溶液成長法によって安定して成長させることができる炭化珪素単結晶の製造方法に関する。本発明の方法を活用することにより、低結晶欠陥の表面を有する結晶面傾斜型の炭化珪素単結晶基板、低結晶欠陥の炭化珪素単結晶エピタキシャルウエハー、ならびに高信頼性・高生産性の炭化珪素電子デバイスといった製品を実現することができる。本発明はこのような製品にも関する。   The present invention relates to a method for producing a silicon carbide single crystal suitable as a substrate material for electronic devices and optical devices. In the present invention, a high-quality silicon carbide single crystal with few crystal defects (ie, low crystal defects) is grown on a surface of a seed crystal substrate made of a silicon carbide single crystal having a crystal plane inclined from the {0001} plane. The present invention relates to a method for producing a silicon carbide single crystal that can be stably grown by a method. By utilizing the method of the present invention, a crystal plane inclined silicon carbide single crystal substrate having a surface with low crystal defects, a silicon carbide single crystal epitaxial wafer with low crystal defects, and silicon carbide with high reliability and high productivity Products such as electronic devices can be realized. The invention also relates to such products.

炭化珪素(SiC)は、広いバンドギャップ、大きな熱伝導率、低い誘電率を有し、熱的、機械的に安定した特性を持っている。従って、SiCを用いた半導体素子は、従来のシリコン(Si)を用いた半導体素子よりも高い性能を持つ。その優れた材料特性によりSiCは、動作損失の少ない電力制御用パワーデバイス材料、高耐圧な高周波デバイス材料、高温の環境で使用される耐環境デバイス材料、耐放射線デバイス材料、といった広い範囲においてデバイス材料としての応用が期待されている。   Silicon carbide (SiC) has a wide band gap, a large thermal conductivity, and a low dielectric constant, and has thermally and mechanically stable characteristics. Therefore, a semiconductor element using SiC has higher performance than a conventional semiconductor element using silicon (Si). Due to its excellent material properties, SiC is a device material in a wide range of power control materials for power control with low operating loss, high-voltage high-frequency device materials, environmental-resistant device materials used in high-temperature environments, and radiation-resistant device materials. Application as is expected.

SiCの結晶構造については、閃亜鉛鉱構造の3Cに加えて、2H、4H、6Hなどを含む200種類を越えるポリタイプを有するウルツ鉱構造が確認されており、SiCの用途や目的に応じて様々な結晶構造の選択が可能である。   Regarding the crystal structure of SiC, in addition to 3C of zinc blende structure, wurtzite structure having over 200 types of polytypes including 2H, 4H, 6H, etc. has been confirmed, depending on the use and purpose of SiC. Various crystal structures can be selected.

代表的な例として、高出力パワーデバイスには、高濃度n型の4H−SiC(4分子層周期の六方晶)の基板上に高耐圧動作のための低濃度n型の4H−SiC結晶層をCVD法(化学的気相成長法)によりエピタキシャル成長させた半導体素子が用いられる。この場合、CVD法によるSiCのエピタキシャル成長はステップフロー成長を基本とするため、基板表面の面方位が(0001)面から(11−20)方向に数度だけ傾斜した基板が使用される。 As a typical example, a high-output power device includes a low-concentration n-type 4H—SiC crystal layer for high breakdown voltage operation on a high-concentration n-type 4H—SiC (tetragonal hexagonal crystal) substrate. A semiconductor element obtained by epitaxially growing the substrate by CVD (chemical vapor deposition) is used. In this case, since epitaxial growth of SiC by the CVD method is based on step flow growth, a substrate whose surface orientation is inclined by several degrees from the ( 0001) plane to the (11-20) direction is used.

一方、高周波デバイスでは、高熱伝導性、低誘電率の性質が必要となり、高純度で高抵抗な4Hまたは6H−SiC基板上に窒化物系材料(GaN,AlN等)によるHEMT(High Electron Mobility Transistor)構造をヘテロエピタキシャル成長により積層することにより、これを実現している。   On the other hand, high-frequency devices require properties of high thermal conductivity and low dielectric constant, and HEMT (High Electron Mobility Transistor) made of a nitride-based material (GaN, AlN, etc.) on a high purity, high resistance 4H or 6H-SiC substrate. This is achieved by stacking the structures by heteroepitaxial growth.

また、青色から紫外光に向けた短波長化を目指した光デバイスが、他の半導体結晶基板に比べてGaN系結晶に対する格子不整が小さい高濃度n型の6H−SiC基板を使用し、この基板上に窒化物系材料のへテロ・エピタキシャル層を積層することにより作成されている。   Further, an optical device aiming at shortening the wavelength from blue to ultraviolet light uses a high-concentration n-type 6H—SiC substrate that has a smaller lattice irregularity with respect to a GaN-based crystal than other semiconductor crystal substrates. It is formed by laminating a heteroepitaxial layer of a nitride material on top.

SiC単結晶の製造方法として従来から知られている主な方法は、気相成長に属する昇華再結晶化法と、液相成長に属する溶液成長法である。
昇華再結晶化法は、比較的高速成長(〜1mm/hr)が可能であることから、基板として利用できるバルク単結晶の成長に適しており、SiC単結晶基板の製造に現在最も広く採用されている。この方法は、原料のSiC粉末を種結晶(SiC単結晶)と対向させて黒鉛製の成長坩堝内に配置し、不活性ガス雰囲気中で1800〜2400℃にSiC原料を加熱し、加熱により発生したSiCの昇華ガスを、結晶成長に適した温度域に保持された種結晶上にてSiC単結晶として再結晶化させるものである。
The main methods conventionally known as methods for producing SiC single crystals are a sublimation recrystallization method belonging to vapor phase growth and a solution growth method belonging to liquid phase growth.
The sublimation recrystallization method is suitable for growing a bulk single crystal that can be used as a substrate because it can be grown at a relatively high speed (up to 1 mm / hr), and is currently most widely used for the production of SiC single crystal substrates. ing. In this method, the raw SiC powder is placed in a graphite growth crucible facing the seed crystal (SiC single crystal), and the SiC raw material is heated to 1800-2400 ° C. in an inert gas atmosphere. The SiC sublimation gas is recrystallized as an SiC single crystal on a seed crystal maintained in a temperature range suitable for crystal growth.

一方、溶液成長法は、シリコン(珪素、Si)またはシリコン合金(Si−M合金)の融液中に炭素を溶解させて、該融液中にSiCが溶解している高温のSiC溶液(溶媒はSiまたはSi合金の融液)を調製する。このSiCの高温溶液にSiC種結晶(SiC単結晶基板)を浸漬し、少なくとも種結晶近傍の溶液を過冷却状態にすることによって種結晶近傍にSiCの過飽和状態を作り出し、SiC単結晶を種結晶上に成長させる。   On the other hand, in the solution growth method, carbon is dissolved in a melt of silicon (silicon, Si) or silicon alloy (Si-M alloy), and a high-temperature SiC solution (solvent) in which SiC is dissolved in the melt. Prepare a melt of Si or Si alloy. An SiC seed crystal (SiC single crystal substrate) is immersed in this high temperature solution of SiC, and at least the solution near the seed crystal is brought into a supercooled state, thereby creating a supersaturated state of SiC near the seed crystal. Grow up.

溶液成長法には、成長界面であるSiC固相表面の温度が種結晶近傍の溶液温度に比べて低温になるような温度勾配を設ける温度差法(種結晶近傍の溶液だけが過冷却状態となる)と、種結晶を浸漬した溶液全体を冷却により過飽和溶液とする徐冷法とがある。   In the solution growth method, a temperature difference method in which a temperature gradient is set such that the temperature of the SiC solid phase surface, which is the growth interface, is lower than the solution temperature in the vicinity of the seed crystal (only the solution in the vicinity of the seed crystal is in a supercooled state). And a slow cooling method in which the entire solution in which the seed crystals are immersed is cooled to a supersaturated solution.

昇華再結晶化法で成長させたSiC単結晶には、種結晶から引き継がれる転位やマイクロパイプ欠陥が含まれる上、結晶成長中に発生したと考えられる多数の転位が存在するという問題がある。結晶成長中に新たに発生する転位の生成原因としては、昇華再結晶化法が基本的に炭素坩堝内の閉鎖系内で進行する反応であるため、SiC原料の昇華によって供給される昇華ガスの成分が結晶成長中に変動すること、固相・気相反応であるため成長環境に大きな温度勾配が存在し、その結果、結晶中に大きな熱応力が発生してしまうこと、結晶成長に伴って成長界面が坩堝内を移動するために温度環境、原料である昇華ガス濃度が経時的に変化することなどが考えられている。成長に伴い、先に述べた不適正な結晶成長条件や成長条件の変動により欠陥が新たに発生することから、昇華再結晶化法では種結晶を大幅に上回る品質の結晶を得ることは極めて困難である。   The SiC single crystal grown by the sublimation recrystallization method has a problem that it includes dislocations inherited from the seed crystal and micropipe defects, and a large number of dislocations that are considered to have occurred during crystal growth. The reason for the generation of new dislocations that occur during crystal growth is that the sublimation recrystallization method is basically a reaction that proceeds in a closed system in a carbon crucible, so that the sublimation gas supplied by sublimation of the SiC raw material There are large temperature gradients in the growth environment due to the fact that the components fluctuate during crystal growth, and because of the solid phase / gas phase reaction. As a result, a large thermal stress is generated in the crystal. It is considered that the temperature environment and the concentration of sublimation gas as a raw material change with time because the growth interface moves in the crucible. Along with the growth, new defects are generated due to the above-mentioned inappropriate crystal growth conditions and fluctuations in growth conditions, so it is extremely difficult to obtain crystals with quality significantly higher than the seed crystal by the sublimation recrystallization method. It is.

昇華再結晶化法によるSiC単結晶の欠陥を低減させるための取り組みが従来から精力的になされている。欠陥の少ない良質な種結晶を得る方法としては、種結晶に由来する欠陥であるマイクロパイプや或る種の転位が伝搬方向に特異性が存在することに着目して、成長方位を変化させるSiC単結晶成長方法が知られている。しかし、これらの方法では、結晶成長方向に直交する方向にインゴットを切断することで種結晶を得るために、大口径の種結晶を得るためには、その口径以上の長さのインゴットを成長させる必要がある。前述したとおり、昇華再結晶化法においては、成長に伴って温度環境やガス組成が変動しやすいため、長尺なインゴットに対して完全結晶を得ることは極めて困難である。   Efforts to reduce defects in SiC single crystals by the sublimation recrystallization method have been energetically made. As a method for obtaining a high-quality seed crystal with few defects, attention is paid to the fact that micropipe, which is a defect derived from the seed crystal, and certain dislocations have singularities in the propagation direction. Single crystal growth methods are known. However, in these methods, in order to obtain a seed crystal by cutting the ingot in a direction perpendicular to the crystal growth direction, in order to obtain a large-diameter seed crystal, an ingot having a length longer than the diameter is grown. There is a need. As described above, in the sublimation recrystallization method, the temperature environment and the gas composition are likely to fluctuate with growth, so that it is very difficult to obtain a complete crystal for a long ingot.

一方、結晶成長中の転位発生を抑制する方法として、成長速度を低く抑えて結晶欠陥発生率を低下させる、あるいは昇華ガス成分の変動が大きくならないように成長時間を短くするといった結晶性向上のための対策が行われてきたが、これらの手法では、未だ実用に供しうるSiC単結晶の品質や生産性が実現されるには至っていない。   On the other hand, as a method for suppressing the occurrence of dislocations during crystal growth, the crystal growth rate is reduced by reducing the growth rate to reduce the crystal defect occurrence rate, or shortening the growth time so that the fluctuation of the sublimation gas component does not increase. However, these methods have not yet achieved the quality and productivity of SiC single crystals that can be put to practical use.

液相成長である溶液成長法では、昇華再結晶化法に比べて500℃〜1000℃程度も成長温度を低くすることができることから、昇華再結晶化法に比べると温度制御性に優れている。そのため、結晶中の熱応力を極めて小さくすることができ、転位の発生を抑制することができる。さらに溶液組成などの結晶成長中における変動要因を、実質的になくすことが可能である。これらの結果、結晶成長中に新たに発生する転位を皆無にすることができる。   In the solution growth method, which is liquid phase growth, the growth temperature can be lowered by about 500 ° C. to 1000 ° C. compared with the sublimation recrystallization method, and therefore, the temperature controllability is excellent compared with the sublimation recrystallization method. . Therefore, the thermal stress in the crystal can be made extremely small, and the occurrence of dislocations can be suppressed. In addition, it is possible to substantially eliminate fluctuation factors such as solution composition during crystal growth. As a result, no dislocations newly generated during crystal growth can be eliminated.

Journal of Electronic Materials 27 (1998) p.292には、昇華再結晶化法で作製したオン・アクシス(0001)SiC単結晶を種結晶として、当該種結晶上にSiC単結晶を溶液成長させると、種結晶中に含有されていたマイクロパイプ欠陥および転位が低減しながら結晶成長が進行することが報告されており、種結晶の転位低減によって種結晶の結晶品質を向上させることが可能であることを示されている。   In Journal of Electronic Materials 27 (1998) p.292, when an on-axis (0001) SiC single crystal produced by a sublimation recrystallization method is used as a seed crystal, a SiC single crystal is grown on the seed crystal as a solution. It has been reported that crystal growth proceeds while reducing micropipe defects and dislocations contained in the seed crystal, and it is possible to improve the crystal quality of the seed crystal by reducing the dislocation of the seed crystal. It is shown.

米国特許5679153号には、昇華再結晶化法で作製されたマイクロパイプ欠陥を含む結晶(欠陥密度:50〜400cm−2)上にSiC単結晶を溶液成長させると、成長途中でマイクロパイプ欠陥が閉塞されていくことを利用して、表層のマイクロパイプ欠陥が低減した(欠陥密度0〜50cm−2)SiC単結晶層を作製する方法が開示されている。この米国特許に記載の方法は、結晶品質に問題のある昇華再結晶化法で作製されたSiC単結晶基板の表層の結晶品質を溶液成長法により改善する(欠陥を低減させる)方法であると考えられる。 In US Pat. No. 5,679,153, when a SiC single crystal is grown on a crystal (defect density: 50 to 400 cm −2 ) containing micropipe defects produced by a sublimation recrystallization method, micropipe defects are generated during the growth. A method for producing a SiC single crystal layer in which micropipe defects on the surface layer are reduced (defect density 0 to 50 cm −2 ) by utilizing blocking is disclosed. The method described in this US patent is a method for improving (reducing defects) the crystal quality of the surface layer of a SiC single crystal substrate produced by a sublimation recrystallization method having a problem in crystal quality by a solution growth method. Conceivable.

しかし、パワーデバイス等の電子デバイス用のSiC素子の製造においてCVD法によるSiCエピタキシャル層の成長に適している、基板表面の面方位が{0001}面から(11−20)方向に傾斜した(すなわち、オフ面の)SiC単結晶基板を用いて、米国特許5679153号に開示された技術に従ってSiC単結晶の溶液成長を行った場合、このような面方位の傾斜がない{0001}ジャスト面上での成長とは異なり、成長界面に不安定性が生じて3次元成長が起こり、結果として安定した2次元層成長は見込めないという問題が存在することが判明した。 However, the surface orientation of the substrate surface, which is suitable for the growth of a SiC epitaxial layer by a CVD method in the manufacture of a SiC element for an electronic device such as a power device, is inclined in the ( 11-20) direction from the {0001} plane (that is, When a SiC single crystal solution is grown according to the technique disclosed in US Pat. No. 5,679,153 using a SiC single crystal substrate (off-plane), on a {0001} just plane that does not have such a plane orientation inclination. In contrast to the above growth, it has been found that there is a problem that instability occurs at the growth interface and three-dimensional growth occurs, and as a result, stable two-dimensional layer growth cannot be expected.

本発明者等が行った8°オフ[{0001}面から8°傾斜]のSiC結晶面を持つ4H−SiCの単結晶基板上へのSiC単結晶の溶液成長実験において見られた、3次元成長したSiC単結晶の断面光学顕微鏡写真を図1に示す。溶液成長直後は、2次元層成長によって結晶成長が進行しているが、やがて成長界面に不安定性が生じ、3次元成長に移行していることが分かる。   The three-dimensionality observed in a solution growth experiment of a SiC single crystal on a 4H-SiC single crystal substrate having a SiC crystal plane of 8 ° off [8 ° tilt from {0001} plane] conducted by the present inventors. A cross-sectional optical micrograph of the grown SiC single crystal is shown in FIG. Immediately after solution growth, crystal growth proceeds by two-dimensional layer growth, but it can be seen that instability occurs at the growth interface and the transition to three-dimensional growth occurs.

Applied Surface Science 184 (2001) p.27には、昇華再結晶化法により作製された{0001}面から8°傾斜したSiC単結晶基板上へ0.1、1、および5μm厚の溶液成長を行った結果が記載されている。5μm厚の溶液成長結晶層には基板からの結晶欠陥がそのまま引き継がれている。また、5μmの結晶厚みにもかかわらず、結晶表面は凹凸が生じ、既に3次元成長に移行し始めていることが示されている。
Journal of Electronic Materials 27 (1998) p.292 Applied Surface Science 184 (2001) p.27 米国特許5679153号明細書
Applied Surface Science 184 (2001) p.27 describes the growth of 0.1, 1 and 5 μm thick solutions on SiC single crystal substrates tilted 8 ° from the {0001} plane produced by sublimation recrystallization. The results are shown. Crystal defects from the substrate are inherited as they are in the 5 μm thick solution grown crystal layer. Further, it is shown that the crystal surface is uneven and the surface has already started to shift to three-dimensional growth despite the crystal thickness of 5 μm.
Journal of Electronic Materials 27 (1998) p.292 Applied Surface Science 184 (2001) p.27 US Pat. No. 5,679,153

以上のように、電子デバイス用基板として好適な{0001}面から傾斜したSiC単結晶基板については、溶液成長法により高品質のSiC単結晶を表面に成長させて基板表層の品質を改善する目的で、この基板を種結晶基板とし、3次元成長を抑制しつつ表面の品質改善効果が発現する結晶厚を確保することができるSiC単結晶の成長方法の開発が求められていた。   As described above, the SiC single crystal substrate tilted from the {0001} plane suitable as the substrate for electronic devices is intended to improve the surface quality of the substrate by growing a high-quality SiC single crystal on the surface by the solution growth method. Thus, there has been a demand for the development of a method for growing a SiC single crystal that can secure a crystal thickness that exhibits a surface quality improvement effect while suppressing three-dimensional growth using this substrate as a seed crystal substrate.

本発明の課題は、電子デバイス用基板として好適な、結晶面が{0001}面から傾斜したSiC単結晶基板の表層の品質改善を安定して行うための技術を提供することである。具体的には、結晶面が{0001}面から傾斜したSiC単結晶基板上に、溶液成長法によって基板よりも高品質なSiC単結晶層を安定して成長させることができる製造方法を提供することと、それらを活用することで実現される、従来技術では実現しえなかった低結晶欠陥の表面を有する結晶面傾斜SiC単結晶基板、低結晶欠陥SiC単結晶エピタキシャルウエハー、ならびに高信頼性・高生産性SiC電子デバイスを提供することが、本発明の課題である。   The subject of this invention is providing the technique for performing stably the quality improvement of the surface layer of the SiC single crystal substrate suitable as a substrate for electronic devices, and the crystal plane inclined from the {0001} plane. Specifically, the present invention provides a manufacturing method capable of stably growing a SiC single crystal layer having a higher quality than that of a substrate on a SiC single crystal substrate whose crystal plane is inclined from the {0001} plane by a solution growth method. And a crystal plane inclined SiC single crystal substrate having a surface of low crystal defects that could not be realized by conventional techniques, a low crystal defect SiC single crystal epitaxial wafer, and high reliability It is an object of the present invention to provide a highly productive SiC electronic device.

本発明は、Si金属またはSi−M合金(MはSi以外の1種類以上の金属)の融液を溶媒とするSiC溶液に、{0001}面から傾斜した結晶面を有するSiC種結晶基板を浸漬し、少なくとも基板近傍を過冷却により過飽和状態とすることによって、該基板上にSiC単結晶を成長させることからなるSiC単結晶の製造方法に関する。すなわち、本発明は溶液成長法によって、前記傾斜結晶面を有するSiC種結晶基板上にSiC単結晶を成長させる方法に関する。   The present invention provides an SiC seed crystal substrate having a crystal plane inclined from the {0001} plane in an SiC solution using a melt of Si metal or Si-M alloy (M is one or more metals other than Si) as a solvent. The present invention relates to a method for producing a SiC single crystal, which comprises immersing and allowing at least the vicinity of the substrate to be supersaturated by supercooling to grow a SiC single crystal on the substrate. That is, the present invention relates to a method for growing a SiC single crystal on a SiC seed crystal substrate having the inclined crystal plane by a solution growth method.

1態様において、溶液成長法によるSiC単結晶の成長を温度差法により行う。この場合、種結晶基板の近傍が低温となる温度勾配をSiC溶液に形成することにより基板近傍に過飽和状態を創出するが、この該温度勾配を5℃/cm以下とする。温度差法では、単結晶の成長を持続して行うことができる。温度勾配は、溶液を収容する坩堝が備える加熱手段の制御によって、基板が浸漬される溶液上部が低温、溶液下部が高温となるように垂直(高さ)方向に形成してもよい。或いは、種結晶基板を支持する基板保持具を介して種結晶基板を冷却(基板保持具を介して基板から抜熱)することにより、基板周辺の溶液を局部的に低温とする、水平垂直両方向の温度勾配を形成することもできる。もちろん、その両者を併用してもよい。   In one embodiment, the growth of the SiC single crystal by the solution growth method is performed by the temperature difference method. In this case, a supersaturated state is created in the vicinity of the substrate by forming a temperature gradient in the SiC solution at a low temperature in the vicinity of the seed crystal substrate, and this temperature gradient is set to 5 ° C./cm or less. In the temperature difference method, the single crystal can be continuously grown. The temperature gradient may be formed in the vertical (height) direction so that the upper part of the solution in which the substrate is immersed is at a low temperature and the lower part of the solution is at a high temperature by controlling the heating means provided in the crucible for storing the solution. Alternatively, the seed crystal substrate is cooled via a substrate holder that supports the seed crystal substrate (heat is removed from the substrate via the substrate holder), so that the solution around the substrate is locally cooled to both the horizontal and vertical directions. It is also possible to form a temperature gradient. Of course, you may use both together.

別の態様では、結晶成長の駆動力となる過飽和状態を、溶液全体を冷却する徐冷法により実現する。この場合は、SiC溶液の全体を冷却して過飽和状態を創出し、その時の冷却速度を0.05℃/分以上、1℃/分以下とする。徐冷法は基本的にはバッチ成長である。しかし、徐冷法においても、SiC溶液の冷却をこの溶液の固相線温度よりも高い温度で終了した後、溶液の加熱と冷却(過冷却温度への)を繰り返すことにより過飽和状態を繰り返して創出し、基板上でのSiC単結晶の成長を続けることができる。   In another aspect, a supersaturated state that is a driving force for crystal growth is realized by a slow cooling method that cools the entire solution. In this case, the entire SiC solution is cooled to create a supersaturated state, and the cooling rate at that time is set to 0.05 ° C./min or more and 1 ° C./min or less. The slow cooling method is basically batch growth. However, even in the slow cooling method, after the cooling of the SiC solution is finished at a temperature higher than the solidus temperature of the solution, the supersaturated state is repeatedly created by repeatedly heating and cooling the solution (to the supercooling temperature). The growth of the SiC single crystal on the substrate can be continued.

いずれの方法においても、SiC溶液中に浸漬したSiC種結晶基板は、この基板への単結晶成長を開始する前に、基板表層を溶液中に溶解させることが好ましい。これは、種結晶基板として使用するバルク単結晶から切り出されたSiC基板の表層には、加工変質層や自然酸化膜などが存在しているためであり、結晶成長前にこれらを除去することが結晶品質の向上に効果的である。溶解する厚みは、種結晶基板となるSiC単結晶基板の表面の加工状態によって変わるが、およそ5〜50μmである。溶解厚みが5μmより薄いと、加工状態により前記加工変質層や自然酸化膜を十分に除去することができず安定な品質を実現できないことがある。   In any of the methods, the SiC seed crystal substrate immersed in the SiC solution is preferably dissolved in the substrate surface layer before starting single crystal growth on the substrate. This is because the surface layer of a SiC substrate cut out from a bulk single crystal used as a seed crystal substrate has a work-affected layer, a natural oxide film, etc., which can be removed before crystal growth. Effective for improving crystal quality. Although the thickness which melt | dissolves changes with the processing state of the surface of the SiC single crystal substrate used as a seed crystal substrate, it is about 5-50 micrometers. If the dissolution thickness is less than 5 μm, the processed deteriorated layer and the natural oxide film may not be sufficiently removed depending on the processing state, and stable quality may not be realized.

種結晶基板の表層の溶解は、種結晶基板近傍の溶液温度が高温となるような温度勾配、すなわち、単結晶成長とは逆方向の温度勾配、を溶液に形成することにより実現できる。SiC単結晶成長を徐冷法により行い、溶液を収容した坩堝が備える加熱手段でこの温度勾配を形成できない場合でも、例えば、種結晶基板を支持する基板保持具を介して種結晶基板を加熱することにより、必要な温度勾配を溶液に形成することができる。基板表層の溶解時の温度勾配は、5℃/cm以上、50℃/cm以下とすることが好ましい。温度勾配が5℃/cm以下であると、基板表層の溶解速度が遅くなるので結晶成長開始までに時間がかかる。温度勾配が50℃/cm以上であると、溶解速度が速すぎて溶解量を制御することが難しくなる。   Dissolution of the surface layer of the seed crystal substrate can be realized by forming, in the solution, a temperature gradient in which the solution temperature in the vicinity of the seed crystal substrate is high, that is, a temperature gradient opposite to the single crystal growth. Even if SiC single crystal growth is performed by a slow cooling method and this temperature gradient cannot be formed by the heating means provided in the crucible containing the solution, for example, by heating the seed crystal substrate via a substrate holder that supports the seed crystal substrate. The required temperature gradient can be formed in the solution. The temperature gradient during dissolution of the substrate surface layer is preferably 5 ° C./cm or more and 50 ° C./cm or less. If the temperature gradient is 5 ° C./cm or less, the dissolution rate of the substrate surface layer becomes slow, so it takes time to start crystal growth. When the temperature gradient is 50 ° C./cm or more, the dissolution rate is too fast and it becomes difficult to control the amount of dissolution.

種結晶基板の表層の溶解は、溶液に温度勾配を形成せず、液相線温度より高温に加熱された溶液に種結晶基板を浸漬し続けることでも達成することができる。この場合、溶液温度が高くなるほど、溶解速度は高まるが、溶解量の制御が難しくなり、温度が低いと溶解速度が遅くなる。   Dissolution of the surface layer of the seed crystal substrate can also be achieved by continuously immersing the seed crystal substrate in a solution heated to a temperature higher than the liquidus temperature without forming a temperature gradient in the solution. In this case, the higher the solution temperature, the higher the dissolution rate, but it becomes difficult to control the amount of dissolution, and the lower the temperature, the slower the dissolution rate.

種結晶基板表面での単結晶成長時の成長界面の面内温度分布における最大温度差は、後で実施例において例証するように、2℃以下であることが好ましい。それにより、結晶成長時の3次元成長をより効果的に抑制できる。この面内温度分布を小さくする手段については後述する。{0001}ジャスト面上にSiC単結晶を成長させる場合は、成長界面の面内温度分布が大きくなっても、3次元成長が起こりにくく、2次元成長が持続する。しかし、オフ面の基板上に溶液法によりSiC単結晶を成長させる場合には、2次元成長を持続できる成長温度条件のプロセスウインドウが狭いことが明らかとなった。そのため、成長界面の面内温度分布を小さくすることが2次元成長の持続に有利に作用する。   The maximum temperature difference in the in-plane temperature distribution of the growth interface during single crystal growth on the seed crystal substrate surface is preferably 2 ° C. or less, as will be exemplified later in Examples. Thereby, the three-dimensional growth at the time of crystal growth can be suppressed more effectively. Means for reducing the in-plane temperature distribution will be described later. When a SiC single crystal is grown on the {0001} just plane, even if the in-plane temperature distribution at the growth interface increases, the three-dimensional growth hardly occurs and the two-dimensional growth is sustained. However, it has been clarified that when a SiC single crystal is grown on an off-plane substrate by a solution method, a process window under a growth temperature condition that can sustain two-dimensional growth is narrow. Therefore, reducing the in-plane temperature distribution at the growth interface has an advantageous effect on sustaining two-dimensional growth.

成長界面は、成長開始前は種結晶基板の表面であるので、成長界面温度は実質的に基板温度と同じである。従って、基板の背面側で測定した基板の温度分布を成長界面における面内温度分布とし、こうして測定された基板温度の最高温度と最低温度の温度差が2℃以下になるようにすればよい。   Since the growth interface is the surface of the seed crystal substrate before the start of growth, the growth interface temperature is substantially the same as the substrate temperature. Therefore, the temperature distribution of the substrate measured on the back side of the substrate may be the in-plane temperature distribution at the growth interface, and the temperature difference between the maximum temperature and the minimum temperature thus measured may be 2 ° C. or less.

SiC溶液の溶媒となる融液は、Si金属よりもSi−M合金である方が、Cの溶解量が高く、従って、SiCの溶解度を高めることができるので好ましい。特に好ましいSi−M合金はSi−Ti合金である。   The melt serving as the solvent for the SiC solution is preferably a Si-M alloy rather than Si metal because the amount of C dissolved is higher and therefore the solubility of SiC can be increased. A particularly preferred Si-M alloy is a Si-Ti alloy.

種結晶基板は、結晶面の{0001}面からの傾斜角(オフ角ともいう)が0.2°以上、10°以下の昇華再結晶化法により作製されたSiC基板であることが好ましい。この傾斜角が0.2°より小さいと、{0001}ジャスト面とほぼ同じ2次元成長モードで結晶成長が進行するために、本発明の方法を適用する必要性がない。一方、この傾斜角が大きくなると、基板作製時のカットロスが多くなり、CVDエピタキシャル成長において8°の傾斜角で実用上充分に平坦な結晶面が得られていることから、傾斜角が10°以上のSiC基板は実質的に使用されることがないので、やはり本発明の方法を適用する必要性がない。種結晶基板の結晶形は好ましくは4H−SiCである。   The seed crystal substrate is preferably a SiC substrate manufactured by a sublimation recrystallization method in which an inclination angle (also referred to as an off angle) of the crystal plane from the {0001} plane is 0.2 ° or more and 10 ° or less. If this inclination angle is smaller than 0.2 °, crystal growth proceeds in almost the same two-dimensional growth mode as that of the {0001} just plane, so there is no need to apply the method of the present invention. On the other hand, when this tilt angle is increased, the cut loss during the production of the substrate increases, and a crystal plane that is practically sufficiently flat is obtained at a tilt angle of 8 ° in CVD epitaxial growth. Therefore, the tilt angle is 10 ° or more. Since the SiC substrate is not practically used, there is no need to apply the method of the present invention. The crystal form of the seed crystal substrate is preferably 4H—SiC.

昇華再結晶化法により作製されたオフ角を有するSiC単結晶基板の表面改質を目的として、この基板上に本発明の方法に従ってSiC単結晶の層を成長させる場合、成長させるSiC単結晶層の厚みは、10μm以上、100μm以下とすることが好ましい。10μm以上の厚みまで溶液成長させないと、本発明に従った溶液成長法による種結晶基板の表面品質の改善効果が十分には発現しない。溶液成長させる結晶厚みの上限は特にないが、昇華再結晶化法で作製されたSiC単結晶基板の表層の品質改善を目的とする場合、結晶厚みは100μmあれば十分である。   For the purpose of surface modification of a SiC single crystal substrate having an off angle produced by a sublimation recrystallization method, a SiC single crystal layer to be grown is grown on this substrate according to the method of the present invention. The thickness is preferably 10 μm or more and 100 μm or less. Unless the solution is grown to a thickness of 10 μm or more, the effect of improving the surface quality of the seed crystal substrate by the solution growth method according to the present invention is not sufficiently exhibited. There is no particular upper limit on the crystal thickness for solution growth, but when the purpose is to improve the quality of the surface layer of the SiC single crystal substrate produced by the sublimation recrystallization method, a crystal thickness of 100 μm is sufficient.

本発明によれば、上記方法により製造されたSiC単結晶の層を、{0001}面からの結晶面傾斜角が0.2°以上、10°以下の昇華再結晶化法により作製された、口径が50mm以上、100mm以下のSiC基板の表面に有することを特徴とする、デバイス作製用のSiC単結晶基板が提供される。このSiC単結晶基板は、{0001}面から8°または4°傾斜した基板上で計測される転位に起因したエッチピット密度の合計が、下地のSiC種結晶基板に比べて低減していることで実証される、改善された表面結晶品質を有する。   According to the present invention, the SiC single crystal layer produced by the above method was produced by a sublimation recrystallization method in which the crystal plane inclination angle from the {0001} plane was 0.2 ° or more and 10 ° or less. An SiC single crystal substrate for device fabrication is provided, which is provided on the surface of an SiC substrate having a diameter of 50 mm or more and 100 mm or less. In this SiC single crystal substrate, the total etch pit density due to dislocations measured on a substrate tilted 8 ° or 4 ° from the {0001} plane is reduced as compared to the underlying SiC seed crystal substrate. With improved surface crystal quality as demonstrated by

本発明はまた、このSiC単結晶基板上に、CVD法によりエピタキシャル成長させたSiC単結晶の薄膜を有するSiC単結晶エピタキシャルウエハー、ならびにこのSiC単結晶エピタキシャルウエハーを用いて作製されたSiC半導体デバイスも提供する。   The present invention also provides an SiC single crystal epitaxial wafer having an SiC single crystal thin film epitaxially grown on the SiC single crystal substrate by a CVD method, and an SiC semiconductor device manufactured using the SiC single crystal epitaxial wafer. To do.

本発明によれば、電子デバイス応用のためのCVD法によるエピタキシャル成長用基板として好適な{0001}面から傾斜した結晶面を持つSiC単結晶基板上にSiC単結晶を溶液成長法により成長させて基板表面の品質改善を行う場合に、3次元成長を抑制し、高品位な2次元成長を安定して進行させることができるので、昇華再結晶法で作製されたSiC単結晶基板の表層の品質改善を効率的に行うことが可能となる。   According to the present invention, a SiC single crystal is grown by a solution growth method on a SiC single crystal substrate having a crystal plane inclined from the {0001} plane suitable as a substrate for epitaxial growth by CVD for electronic device applications. When surface quality is improved, three-dimensional growth can be suppressed and high-quality two-dimensional growth can be carried out stably, improving the quality of the surface layer of a SiC single crystal substrate fabricated by sublimation recrystallization. Can be performed efficiently.

本発明者らは、SiまたはSi−Ti合金の融液にほぼ飽和濃度までCを溶解させて準備したSiCの高温溶液に、結晶面が{0001}面から傾斜しているオフ角SiC種結晶基板を浸漬して、溶液成長法により少なくとも該SiC種結晶基板周辺の溶液を過冷却して過飽和状態とすることで新たなSiCを種結晶基板上に成長させる(以下、SiCの溶液成長ともいう)SiC単結晶の成長について、3次元成長を抑制する条件について検討を重ねた。   The present inventors have prepared an off-angle SiC seed crystal whose crystal plane is inclined from the {0001} plane in a high-temperature solution of SiC prepared by dissolving C to a nearly saturated concentration in a melt of Si or Si—Ti alloy. By immersing the substrate and supercooling at least the solution around the SiC seed crystal substrate by a solution growth method to bring it into a supersaturated state, new SiC is grown on the seed crystal substrate (hereinafter also referred to as SiC solution growth). ) Regarding the growth of the SiC single crystal, the conditions for suppressing the three-dimensional growth were studied repeatedly.

その結果、SiC溶液成長の成長温度条件を最適化することで、結晶品位の低下をもたらす3次元成長を大幅に抑制することが可能であり、高品位なSiC単結晶を成長させることが可能であることを見出した。   As a result, by optimizing the growth temperature conditions for the SiC solution growth, it is possible to significantly suppress the three-dimensional growth that leads to a decrease in crystal quality, and it is possible to grow a high-quality SiC single crystal. I found out.

{0001}面から傾斜したオフ角SiC種結晶基板の表面に溶液成長法により新たなSiCを成長させる溶液成長では、{0001}面(ジャスト面)上の溶液成長とは異なり、ステップバンチングが発生しやすいという問題がある。このステップバンチングは、成長時間の延長とともにマクロステップ化し、成長界面には段差が生じてしまう。このようにして、一旦、成長界面が3次元化すると、溶液側に突き出した部分における結晶成長が優先的に進行してしまい、結晶成長の遅れた箇所との結晶の隙間に溶媒成分が取り込まれてしまうため、良質なSiC単結晶を得ることができなくなってしまう。   Unlike the solution growth on the {0001} plane (just plane), step bunching occurs in the solution growth in which new SiC is grown on the surface of the off-angle SiC seed crystal substrate inclined from the {0001} plane by the solution growth method. There is a problem that it is easy to do. This step bunching becomes a macro step as the growth time is extended, and a step is generated at the growth interface. In this way, once the growth interface becomes three-dimensional, crystal growth in the portion protruding to the solution side proceeds preferentially, and the solvent component is taken into the gap between the crystal and the portion where the crystal growth is delayed. As a result, a high-quality SiC single crystal cannot be obtained.

本発明に従って、結晶成長時に、種結晶から溶液側に種結晶の方が低温になるような温度勾配を形成する場合には該温度勾配を5℃/cm以下とすることにより、また結晶成長の駆動力を徐冷却によって与える場合は、溶液全体の冷却速度を0.05℃/分以上、1℃/分以下にすることによって、安定した2次元層成長を継続させることが可能となる。これは、ステップの前進速度をステップ間で揃えることができ、ステップバンチングが実質的に起こらないようにすることができるためであると考えられる。   According to the present invention, when forming a temperature gradient such that the temperature of the seed crystal is lower from the seed crystal to the solution side during crystal growth, the temperature gradient is set to 5 ° C./cm or less, and When the driving force is applied by slow cooling, stable two-dimensional layer growth can be continued by setting the cooling rate of the entire solution to 0.05 ° C./min or more and 1 ° C./min or less. This is considered to be because the step forward speed can be made uniform between steps, and step bunching can be substantially prevented.

溶液成長法によるSiC単結晶の製造に使用される単結晶製造装置の1例を図2に模式的に示す。図示の単結晶製造装置は、SiまたはSi−M合金の融液中にSiCが溶解してなる高温溶液1を収容した坩堝2を備え、昇降可能なシード軸(基板保持具)3の先端に保持された種結晶基板4がこの高温溶液の液面付近に浸漬されている。図示のように、坩堝2とシード軸3は回転させることが好ましい。   An example of a single crystal manufacturing apparatus used for manufacturing a SiC single crystal by the solution growth method is schematically shown in FIG. The illustrated single crystal manufacturing apparatus includes a crucible 2 containing a high-temperature solution 1 in which SiC is dissolved in a melt of Si or Si-M alloy, and is attached to the tip of a seed shaft (substrate holder) 3 that can be moved up and down. The held seed crystal substrate 4 is immersed in the vicinity of the liquid surface of this high temperature solution. As shown, the crucible 2 and the seed shaft 3 are preferably rotated.

高温溶液1はSiまたはSi−M合金の融液(原料を坩堝に投入し、加熱融解させて調製)にC(炭素)を溶解させることによって調製される。図示例では、坩堝を黒鉛坩堝などの炭素質坩堝またはSiC坩堝とすることによって、坩堝の溶解によりCが融液中に溶解し、SiC溶液が形成される。こうすると、高温溶液中に未溶解のCが存在せず、未溶解のCへのSiC単結晶の析出によるSiCの浪費が防止できる。Cの供給は、例えば、炭化水素ガスの吹込み、固体のC供給源を融液原料と一緒に投入するといった別の方法を利用するか、これと坩堝の溶解とを併用して行ってもよい。   The high temperature solution 1 is prepared by dissolving C (carbon) in a melt of Si or Si-M alloy (prepared by putting raw materials into a crucible and heating and melting them). In the illustrated example, the crucible is a carbonaceous crucible such as a graphite crucible or an SiC crucible, so that C is dissolved in the melt by melting the crucible and an SiC solution is formed. In this way, undissolved C does not exist in the high-temperature solution, and waste of SiC due to precipitation of the SiC single crystal in the undissolved C can be prevented. The supply of C may be performed by using another method such as injection of hydrocarbon gas or charging a solid C supply source together with the melt raw material, or by combining this with melting of the crucible. Good.

坩堝2は、シード軸が貫通する坩堝蓋5により実質的に閉鎖され、保温のために坩堝2の外周は、断熱材6で覆われている。断熱材6の外周には、坩堝および高温溶液を誘導加熱するための高周波コイル7が配置されている。   The crucible 2 is substantially closed by a crucible lid 5 through which the seed shaft passes, and the outer periphery of the crucible 2 is covered with a heat insulating material 6 for heat insulation. A high frequency coil 7 for inductively heating the crucible and the high temperature solution is disposed on the outer periphery of the heat insulating material 6.

結晶成長を温度差法により行う場合には、高周波コイルの巻き数や間隔、さらには高周波コイル7と坩堝2との高さ方向の位置関係を調整することによって、高温溶液に高さ方向(垂直方向)の温度勾配を形成することができる。この時の温度勾配は、前述したように、5℃/cm以下とする。それにより、安定して2次元成長を続けることができる。温度勾配の好ましい範囲は1〜3℃/cmである。   When crystal growth is performed by the temperature difference method, the height direction (vertical) of the high-temperature solution is adjusted by adjusting the number of windings and intervals of the high-frequency coil and the positional relationship between the high-frequency coil 7 and the crucible 2 in the height direction. Direction) temperature gradient. The temperature gradient at this time is 5 ° C./cm or less as described above. Thereby, two-dimensional growth can be continued stably. A preferable range of the temperature gradient is 1 to 3 ° C./cm.

これらの坩堝2、断熱材6、高周波コイル7は、高温になるので、水冷チャンバー8の内部に配置される。水冷チャンバー8は、装置内の雰囲気調整可能にするために、ガス導入口9とガス排気口10とを備える。高周波コイルの隙間を通り、断熱材6を貫通して複数のパイロメーター(高温計)を配置し、坩堝2の複数の高さ地点での側面温度を測定できるようにしてもよい。坩堝の側面温度は実質的に高温溶液温度に等しいので、温度の測定値により高周波コイル7による加熱を調整することができる。また、坩堝底における径方向の温度測定は、坩堝を保持する坩堝軸を中空にして複数の熱電対を挿入し測定することができる。   Since these crucible 2, heat insulating material 6, and high-frequency coil 7 become high temperature, they are disposed inside the water-cooled chamber 8. The water cooling chamber 8 includes a gas introduction port 9 and a gas exhaust port 10 so that the atmosphere in the apparatus can be adjusted. A plurality of pyrometers (pyrometers) may be disposed through the heat insulating material 6 through the gaps of the high frequency coil so that the side surface temperatures at a plurality of height points of the crucible 2 can be measured. Since the side temperature of the crucible is substantially equal to the high temperature solution temperature, the heating by the high frequency coil 7 can be adjusted by the measured temperature value. In addition, the radial temperature measurement at the crucible bottom can be performed by inserting a plurality of thermocouples with the crucible shaft holding the crucible hollow.

単結晶成長時の成長界面の面内温度分布については、高温溶液に浸漬する種結晶基板背面と接するシード軸の面内温度を測定することで得ることができる。種結晶基板背面と接するシード軸の面内温度は、中空状のシード軸に複数の熱電対を挿入することで測定することが可能である。成長面内の温度分布の調整は、例えば、高温溶液1の自由表面の上部に断熱材構造を配置したり、シード軸内部の断熱材構造を付加することによって可能である。   The in-plane temperature distribution at the growth interface during single crystal growth can be obtained by measuring the in-plane temperature of the seed axis in contact with the back surface of the seed crystal substrate immersed in the high temperature solution. The in-plane temperature of the seed shaft in contact with the seed crystal substrate back surface can be measured by inserting a plurality of thermocouples into the hollow seed shaft. The temperature distribution in the growth surface can be adjusted, for example, by arranging a heat insulating material structure above the free surface of the high temperature solution 1 or adding a heat insulating material structure inside the seed shaft.

高温溶液1の溶媒を構成するのは、Si金属またはSi−M合金である。金属Mの種類は、SiC(固相)と熱力学的に平衡状態となる液相(溶液)を形成できれば特に制限されない。適当な金属Mの例としては、Ti、Mn、Cr、Co、V、Feなどが挙げられる。好ましいのはTiおよびMnであり、特にTiが好ましい。好ましい合金元素Mの原子比は、Si−M合金の組成をSi1-xxで表して、MがTiの場合0.1≦x≦0.25、MがMnの場合は0.1≦x≦0.7である。 The solvent of the high temperature solution 1 is composed of Si metal or Si-M alloy. The type of the metal M is not particularly limited as long as it can form a liquid phase (solution) in thermodynamic equilibrium with SiC (solid phase). Examples of suitable metals M include Ti, Mn, Cr, Co, V, Fe and the like. Ti and Mn are preferable, and Ti is particularly preferable. The preferable atomic ratio of the alloy element M is expressed as Si 1-x M x in the composition of the Si—M alloy, and 0.1 ≦ x ≦ 0.25 when M is Ti, and 0.1 when M is Mn. ≦ x ≦ 0.7.

結晶成長の駆動力となる過飽和状態を、前記温度差法によって実現する他に、種結晶を浸漬した溶液全体の徐冷によって実現することも可能である。徐冷法での冷却速度は前述したように、0.05℃/分以上、1℃/分以下である。溶液全体の冷却速度を1℃/分以下にすると、安定した2次元層成長を継続させることが可能となる。この冷却速度が0.05℃/分以下になると、1バッチあたりの成長時間がかかりすぎる。冷却速度の好ましい範囲は0.1〜1℃/分である。   In addition to realizing the supersaturated state, which is the driving force for crystal growth, by the temperature difference method, it is also possible to realize it by gradually cooling the entire solution in which the seed crystal is immersed. As described above, the cooling rate in the slow cooling method is 0.05 ° C./min or more and 1 ° C./min or less. When the cooling rate of the whole solution is 1 ° C./min or less, stable two-dimensional layer growth can be continued. When this cooling rate is 0.05 ° C./min or less, it takes too much growth time per batch. A preferable range of the cooling rate is 0.1 to 1 ° C./min.

徐冷法はバッチ式であるが、高温溶液の徐冷却をその溶液の固相線温度よりも高い温度で終了した後、高温溶液の加熱と徐冷却を繰り返すことにより、過飽和状態を繰り返して創出し、基板上でのSiC単結晶の成長を続けることができる。   The slow cooling method is a batch type, but after the slow cooling of the high temperature solution is finished at a temperature higher than the solidus temperature of the solution, the supersaturated state is repeatedly created by repeating the heating and slow cooling of the high temperature solution, The growth of the SiC single crystal on the substrate can be continued.

いずれの方法においても、前述したように、高温溶液中に浸漬したSiC単結晶は、成長前にその表層を高温溶液中に溶解させて除去することが好ましい。
種結晶基板はSiC単結晶基板であれば特に制限されないが、本発明のSiC単結晶の製造方法を基板表面の結晶品質改善の目的で利用する場合には、前述したように、CVD法によるSiCのエピタキシャル成長に適した、結晶面が0.2°以上、10°以下の傾斜角を有するオフ角基板である。
In any method, as described above, the SiC single crystal immersed in the high temperature solution is preferably removed by dissolving the surface layer in the high temperature solution before the growth.
The seed crystal substrate is not particularly limited as long as it is a SiC single crystal substrate. However, when the method for producing a SiC single crystal of the present invention is used for the purpose of improving the crystal quality of the substrate surface, as described above, the SiC by the CVD method is used. This is an off-angle substrate suitable for epitaxial growth of which the crystal plane has an inclination angle of 0.2 ° to 10 °.

口径50〜100mmの、昇華再結晶化法により作製された上記オフ角を有するSiC単結晶基板に表面に、本発明の方法に従ってSiC単結晶の層を10〜100μm厚で成長させることにより、昇華再結晶化法により作成された基板表面に必然的に発生する欠陥(エッチピット密度で表すことができる)を低減させることができる。こうして表面結晶品質が改質されたSiC単結晶基板上に公知のCVD法によりSiC単結晶の薄膜をエピタキシャル成長させることにより、高品質のSiC単結晶エピタキシャルウエハーを製造することができる。このウエハーはSiC半導体デバイスの製造に利用される。SiC半導体デバイスの製造も公知方法に従って実施すればよい。   A SiC single crystal layer is grown on a surface of a SiC single crystal substrate having a diameter of 50 to 100 mm and having the above-described off-angle produced by a sublimation recrystallization method according to the method of the present invention to a thickness of 10 to 100 μm. Defects (which can be expressed by etch pit density) that inevitably occur on the surface of the substrate prepared by the recrystallization method can be reduced. A high-quality SiC single crystal epitaxial wafer can be manufactured by epitaxially growing a SiC single crystal thin film on the SiC single crystal substrate whose surface crystal quality has been modified in this manner by a known CVD method. This wafer is used for the manufacture of SiC semiconductor devices. The manufacture of the SiC semiconductor device may be performed according to a known method.

本実施例では、図1に示した単結晶製造装置を用いて、温度差法によるSiC単結晶の溶液成長実験を行った。坩堝2に収容した高温溶液1には、溶液を収容する坩堝が備える加熱手段の制御によって、基板が浸漬される溶液上部が低温、溶液下部が高温となるように垂直(高さ)方向の温度勾配が形成されており、種結晶基板4の近傍が低温になっている。この溶液の温度勾配により、基板近傍の溶液が過飽和状態となり、SiC単結晶の成長が進行する。   In this example, a solution growth experiment of a SiC single crystal by a temperature difference method was performed using the single crystal manufacturing apparatus shown in FIG. The high-temperature solution 1 stored in the crucible 2 is controlled in the vertical (height) direction so that the upper part of the solution in which the substrate is immersed is at a low temperature and the lower part of the solution is at a high temperature by controlling the heating means provided in the crucible for storing the solution. A gradient is formed, and the vicinity of the seed crystal substrate 4 is at a low temperature. Due to the temperature gradient of this solution, the solution near the substrate becomes supersaturated, and the growth of the SiC single crystal proceeds.

この単結晶製造装置は、溶液1を収容した内径130mm、高さ150mmの高純度黒鉛坩堝2を備え、坩堝2は水冷ステンレスチャンバー8内に配置されている。黒鉛坩堝の外周は断熱材6により保温されており、さらにその外周に誘導加熱用の高周波コイル7が設けられている。単結晶製造装置内の雰囲気は、ガス導入口9とガス排気口10を利用して調整される。   The single crystal manufacturing apparatus includes a high-purity graphite crucible 2 having an inner diameter of 130 mm and a height of 150 mm that contains the solution 1, and the crucible 2 is disposed in a water-cooled stainless steel chamber 8. The outer periphery of the graphite crucible is kept warm by a heat insulating material 6, and a high frequency coil 7 for induction heating is provided on the outer periphery. The atmosphere in the single crystal manufacturing apparatus is adjusted using the gas inlet 9 and the gas outlet 10.

高純度黒鉛坩堝2に、SiとTiとをモル比で80:20の割合で融液原料として仕込み、高周波コイル7に通電して誘導加熱により坩堝内の原料を融解し、Si−Ti合金の融液を形成した。加熱中に容器である黒鉛坩堝の溶解によって炭素が高温溶液に融解し、SiCの高温溶液が形成された。単結晶の成長を行う前に、十分な量の炭素が融液中に溶解するように、生成した融液を1650℃で2時間加熱した。   In a high-purity graphite crucible 2, Si and Ti are charged as a melt raw material at a molar ratio of 80:20, and the high-frequency coil 7 is energized to melt the raw material in the crucible by induction heating. A melt was formed. During the heating, the melting of the graphite crucible as a container melted the carbon into a high temperature solution, and a high temperature solution of SiC was formed. Before the growth of the single crystal, the produced melt was heated at 1650 ° C. for 2 hours so that a sufficient amount of carbon was dissolved in the melt.

高周波コイル7の巻き数、巻き間隔および黒鉛坩堝と高周波コイルの相対的な位置関係を調節することによって、高温溶液の高さ方向の温度分布を制御した。種結晶を浸漬予定の箇所(本例では溶液の液面近傍)における温度が、その他の箇所の溶液に比べて低温になるような温度勾配の大きさが3℃/cmとなるように、高温溶液の温度分布を調整した。従来技術では、結晶成長の駆動力を大きく与えるために、前記温度勾配は、5℃/cmよりも大きくしていた。なお、1650℃の加熱温度は、溶液の最高温度(すなわち、坩堝底での溶液温度)である。   The temperature distribution in the height direction of the high-temperature solution was controlled by adjusting the number of turns of the high-frequency coil 7, the winding interval, and the relative positional relationship between the graphite crucible and the high-frequency coil. High temperature so that the temperature gradient at the location where the seed crystal is planned to be immersed (in this example, near the liquid surface of the solution) is 3 ° C./cm so that the temperature gradient is lower than the solution at other locations. The temperature distribution of the solution was adjusted. In the prior art, the temperature gradient is greater than 5 ° C./cm in order to provide a large driving force for crystal growth. The heating temperature of 1650 ° C. is the maximum temperature of the solution (that is, the solution temperature at the crucible bottom).

上記条件で2時間加熱したところ、黒鉛坩堝2から溶液を過飽和状態にするのに必要な十分な炭素が溶解し、種結晶基板4の近傍での溶液1中のSiC濃度が過飽和状態に達したSiC溶液1が坩堝内に形成された。その後、シード軸3の先端に保持された、結晶面が{0001}面から(11−20)方向に8°傾斜した(8°オフ角の)、50mm口径の4H−SiC種結晶基板4を、溶液1の表層付近に浸漬して、1時間浸漬状態を保持し、温度差法によるSiC結晶成長を行った。結晶成長時間は15時間とした。この間、坩堝2とシード軸3は、互いに逆方向に10rpmで回転させた。   When heated for 2 hours under the above conditions, sufficient carbon was dissolved from the graphite crucible 2 to make the solution supersaturated, and the SiC concentration in the solution 1 in the vicinity of the seed crystal substrate 4 reached the supersaturated state. SiC solution 1 was formed in the crucible. Thereafter, a 4H—SiC seed crystal substrate 4 having a diameter of 50 mm and having a crystal plane tilted by 8 ° (with an 8 ° off angle) in the (11-20) direction from the {0001} plane is held at the tip of the seed shaft 3. Then, it was immersed in the vicinity of the surface layer of Solution 1 and kept in the immersed state for 1 hour, and SiC crystal growth was performed by a temperature difference method. The crystal growth time was 15 hours. During this time, the crucible 2 and the seed shaft 3 were rotated at 10 rpm in opposite directions.

黒鉛坩堝2に挿入され、高温溶液1に浸漬する前の種結晶基板4の面内温度分布を測定したところ、種結晶基板4の中央部で最も温度が低く、外周で最も温度が高く、その温度差は4℃であった。   When the in-plane temperature distribution of the seed crystal substrate 4 before being inserted into the graphite crucible 2 and immersed in the high temperature solution 1 was measured, the temperature was lowest at the center of the seed crystal substrate 4 and highest at the outer periphery. The temperature difference was 4 ° C.

成長実験の終了後、シード軸3を上昇させて、種結晶基板4を溶液1から切り離して回収した。坩堝内の溶液は室温まで冷却して凝固させた。この種結晶をフッ硝酸で洗浄して、付着していた溶液の凝固物を除去した。種結晶基板4の上には、溶液成長法によってSiC結晶が新たに約200μmの厚みで成長した。   After completion of the growth experiment, the seed shaft 3 was raised, and the seed crystal substrate 4 was separated from the solution 1 and collected. The solution in the crucible was cooled to room temperature and solidified. This seed crystal was washed with hydrofluoric acid to remove the coagulated substance of the attached solution. On the seed crystal substrate 4, a SiC crystal was newly grown to a thickness of about 200 μm by the solution growth method.

続いて、平坦化加工した前記基板のSiC結晶層の表面に、シランとプロパンを原材料ガスとするCVD法によりn型(1×1016cm−3)SiCエピタキシャル層を10μm積層した。CVD成長には、水素(H2)をキャリアーガスとする常圧のCVD装置を用い、サセプタの加熱は高周波誘導加熱によって行った。SiC単結晶基板を反応炉内に設置した後、ガス置換と高真空排気を数回繰り返した後、H2キャリアガスを反応炉内導入した。1500℃に昇温し、原料のシランとプロパンを導入してエピタキシャル成長を開始した。成長中は、窒素ガスを添加してn型伝導性制御を行った。 Subsequently, an n-type (1 × 10 16 cm −3 ) SiC epitaxial layer having a thickness of 10 μm was stacked on the surface of the SiC crystal layer of the planarized substrate by a CVD method using silane and propane as raw material gases. For the CVD growth, a normal pressure CVD apparatus using hydrogen (H 2 ) as a carrier gas was used, and the susceptor was heated by high frequency induction heating. After the SiC single crystal substrate was placed in the reaction furnace, gas replacement and high vacuum evacuation were repeated several times, and then H 2 carrier gas was introduced into the reaction furnace. The temperature was raised to 1500 ° C., and raw materials silane and propane were introduced to start epitaxial growth. During the growth, nitrogen gas was added to control n-type conductivity.

SiC種結晶結晶基板上に成長した溶液成長SiC結晶厚みと、CVD法でその上に成長したSiC結晶厚みは、結晶断面の光学顕微鏡観察から求めた。また、得られた単結晶の結晶性に関して、(0001)面に研磨を施した後に、溶融KOHエッチング(500℃、2分)処理を施して、前記結晶面に出現するエッチピット数を数え、密度算出を行い、CVD法SiC結晶、溶液成長SiC結晶および種結晶基板4の間でエッチピット密度を比較した。エッチピット密度比較は、結晶に対して研磨と溶融KOHエッチングを繰り返し、成長厚み方向のエッチピット密度分布を調べることで行った。これらの結果は表1にまとめて示す。   The thickness of the solution-grown SiC crystal grown on the SiC seed crystal substrate and the thickness of the SiC crystal grown thereon by the CVD method were determined from observation of an optical microscope of the crystal cross section. Further, regarding the crystallinity of the obtained single crystal, after polishing the (0001) plane, it is subjected to a molten KOH etching (500 ° C., 2 minutes) treatment, and the number of etch pits appearing on the crystal plane is counted, The density was calculated, and the etch pit density was compared among the CVD SiC crystal, the solution grown SiC crystal, and the seed crystal substrate 4. Etch pit density comparison was performed by repeating polishing and molten KOH etching on the crystal and examining the etch pit density distribution in the growth thickness direction. These results are summarized in Table 1.

エッチピット密度の判定は、次の基準で行った:
◎:種結晶基板のエッチピット密度に対してCVD結晶および溶液成長最表層のエッチピット密度が1桁以上減少している;
○:種結晶基板のエッチピット密度に対してCVD結晶および溶液成長最表層のエッチピット密度が1桁未満減少している;
×:種結晶基板のエッチピット密度に対してCVD結晶溶液成長最表層のエッチンピット密度が同じかまたは増加している。
The etch pit density was determined according to the following criteria:
A: The etch pit density of the CVD crystal and the solution growth outermost layer is decreased by one digit or more with respect to the etch pit density of the seed crystal substrate;
○: The etch pit density of the CVD crystal and the solution growth outermost layer is decreased by less than one digit with respect to the etch pit density of the seed crystal substrate;
X: The etch pit density of the CVD crystal solution growth outermost layer is the same or increased with respect to the etch pit density of the seed crystal substrate.

本実施例では、図1に示した単結晶製造装置を用いて、徐冷法によるSiC単結晶の溶液成長実験を行った。種結晶基板の近傍は溶液全体の温度と実質的に同じ温度になっており、溶液全体の冷却によって結晶成長は進行する。   In this example, a solution growth experiment of a SiC single crystal by a slow cooling method was performed using the single crystal manufacturing apparatus shown in FIG. The vicinity of the seed crystal substrate is at substantially the same temperature as the temperature of the entire solution, and crystal growth proceeds by cooling the entire solution.

この単結晶製造装置は、溶液1を収容した内径130mm、高さ150mmの高純度黒鉛坩堝2を備え、坩堝2は水冷ステンレスチャンバー8内に配置されている。黒鉛坩堝の外周は断熱材6により保温されており、さらにその外周に誘導加熱用の高周波コイル7が設けられている。単結晶製造装置内の雰囲気は、ガス導入口9とガス排気口10を利用して調整される。   The single crystal manufacturing apparatus includes a high-purity graphite crucible 2 having an inner diameter of 130 mm and a height of 150 mm that contains the solution 1, and the crucible 2 is disposed in a water-cooled stainless steel chamber 8. The outer periphery of the graphite crucible is kept warm by a heat insulating material 6, and a high frequency coil 7 for induction heating is provided on the outer periphery. The atmosphere in the single crystal manufacturing apparatus is adjusted using the gas inlet 9 and the gas outlet 10.

高純度黒鉛坩堝2に、SiとTiとをモル比で80:20の割合で融液原料として仕込み、高周波コイル7に通電して誘導加熱により坩堝内の原料を融解し、Si−Ti合金の融液を形成した。加熱中に容器である黒鉛坩堝の溶解によって炭素が高温溶液に融解し、SiCの高温溶液が形成された。単結晶の成長を行う前に、十分な量の炭素が融液中に溶解するように、生成した融液を1650℃で2時間加熱し続けた。溶液内の高さ方向の温度が実質的に均熱になるように、高周波コイルの巻き数と巻き間隔、黒鉛坩堝と高周波コイルの相対的な位置および断熱材6の構造を調節した。   In a high-purity graphite crucible 2, Si and Ti are charged as a melt raw material at a molar ratio of 80:20, and the high-frequency coil 7 is energized to melt the raw material in the crucible by induction heating. A melt was formed. During the heating, the melting of the graphite crucible as a container melted the carbon into a high temperature solution, and a high temperature solution of SiC was formed. Prior to the growth of the single crystal, the resulting melt was kept heated at 1650 ° C. for 2 hours so that a sufficient amount of carbon was dissolved in the melt. The number of turns of the high-frequency coil and the winding interval, the relative positions of the graphite crucible and the high-frequency coil, and the structure of the heat insulating material 6 were adjusted so that the temperature in the height direction in the solution became substantially uniform.

上記条件で2時間加熱したところ、黒鉛坩堝2から融液中に十分な炭素が溶解して、SiCが飽和濃度近くまで溶解した高温溶液1が坩堝内に形成された。その後、シード軸3の先端に保持された、50mm口径の8°オフ角の4H−SiC種結晶基板4を溶液1の内部に浸漬して、1時間保持して溶液温度が安定化した後、高周波コイル7の出力を低減させながら溶液全体の温度を1450℃まで下げることにより、徐冷法によるSiC結晶成長を行った。冷却速度は、0.2℃/分(冷却時間1000分)とした。この間、坩堝2とシード軸3は、互いに逆方向に10rpmで回転させた。この時、種結晶基板の面内温度は、種結晶基板4中央部で最も低く、外周で最も高く、その温度差は4℃の温度分布を有していた。   When heated for 2 hours under the above conditions, sufficient carbon was dissolved in the melt from the graphite crucible 2, and a high-temperature solution 1 in which SiC was dissolved to a saturation concentration was formed in the crucible. Then, after the 4H-SiC seed crystal substrate 4 having an 8 ° off angle of 50 mm held at the tip of the seed shaft 3 was immersed in the solution 1 and held for 1 hour, the solution temperature was stabilized, By reducing the temperature of the entire solution to 1450 ° C. while reducing the output of the high-frequency coil 7, SiC crystal growth was performed by a slow cooling method. The cooling rate was 0.2 ° C./minute (cooling time 1000 minutes). During this time, the crucible 2 and the seed shaft 3 were rotated at 10 rpm in opposite directions. At this time, the in-plane temperature of the seed crystal substrate was lowest at the center of the seed crystal substrate 4 and highest at the outer periphery, and the temperature difference had a temperature distribution of 4 ° C.

成長実験の終了後、シード軸3を上昇させて、種結晶基板4と溶液1から切り離し回収した。坩堝内の溶液は室温まで冷却して凝固させた。この種結晶基板をフッ硝酸で洗浄して、付着していた溶液の凝固物を除去した。その他は、実施例1と同様にした。   After completion of the growth experiment, the seed shaft 3 was raised, separated from the seed crystal substrate 4 and the solution 1 and collected. The solution in the crucible was cooled to room temperature and solidified. This seed crystal substrate was washed with hydrofluoric acid to remove the coagulated substance in the attached solution. Others were the same as in Example 1.

黒鉛坩堝2に装入した融液原料がSiであった点を除いて、実施例1と同様にして、温度差法によりSiC単結晶を種結晶基板上に溶液成長させた。   A SiC single crystal was grown on a seed crystal substrate by a temperature difference method in the same manner as in Example 1 except that the melt raw material charged in the graphite crucible 2 was Si.

黒鉛坩堝2に装入した融液原料がSiであった点を除いて、実施例2と同様にして、徐冷法によりSiC単結晶を種結晶基板上に溶液成長させた。   A SiC single crystal was grown on a seed crystal substrate by a slow cooling method in the same manner as in Example 2 except that the melt raw material charged in the graphite crucible 2 was Si.

溶液1に浸漬した種結晶基板の面内温度分布が、種結晶基板4中央部で最も低く、外周で最も高く、その温度差を2℃に調整した他は、実施例1と同様にして、温度差法によりSiC単結晶を種結晶基板上に溶液成長させた。面内温度分布の調整は、種結晶基板を保持するシード軸3の先端内部に断熱材シートを挿入し、その構造を調整することによって行った。   The in-plane temperature distribution of the seed crystal substrate immersed in the solution 1 is the lowest at the center of the seed crystal substrate 4 and the highest at the outer periphery, and the temperature difference is adjusted to 2 ° C. A SiC single crystal was grown on a seed crystal substrate by a temperature difference method. The in-plane temperature distribution was adjusted by inserting a heat insulating material sheet into the tip of the seed shaft 3 holding the seed crystal substrate and adjusting its structure.

溶液1に浸漬した種結晶基板の面内温度分布が、種結晶基板4中央部で最も低く、外周で最も高く、その温度差を2℃に調整した他は、実施例2と同様にして、徐冷法によりSiC単結晶を種結晶基板上に溶液成長させた。   The in-plane temperature distribution of the seed crystal substrate immersed in the solution 1 is lowest at the center of the seed crystal substrate 4 and highest at the outer periphery, and the temperature difference is adjusted to 2 ° C. A SiC single crystal was grown on a seed crystal substrate by a slow cooling method.

単結晶の成長を開始する前に、十分な量の炭素が坩堝から溶解するように、坩堝内の融液底中央部の温度を1650℃に調整して2時間の加熱を続ける際に、結晶成長時とは逆向きの溶液高さ方向の温度勾配を形成した。すなわち、種結晶基板の浸漬予定箇所である溶液表層における温度が、底部の溶液に比べて高温になるような高さ方向の勾配を形成し、この時の温度勾配を15℃/cmとなるように調整して、上記の2時間の加熱を行ったところ、種結晶基板4表層が結晶成長前に約5μm溶解した。その後、溶液の高さ方向の温度勾配を結晶成長用の温度勾配(実施例1と同じ、溶液表層が低温で、底部が高温の方向の3℃/cmの温度勾配)に戻し、結晶成長を開始した以外は、実施例1と同様にして温度差法によりSiC単結晶を種結晶基板上に溶液成長させた。   Before starting the growth of the single crystal, when the temperature at the center of the melt bottom in the crucible is adjusted to 1650 ° C. and heating is continued for 2 hours so that a sufficient amount of carbon is dissolved from the crucible, A temperature gradient in the direction of the height of the solution opposite to that during growth was formed. That is, a gradient in the height direction is formed such that the temperature in the solution surface layer, which is the planned immersion location of the seed crystal substrate, is higher than the solution at the bottom, and the temperature gradient at this time is 15 ° C./cm. The surface layer of the seed crystal substrate 4 was dissolved by about 5 μm before crystal growth. Thereafter, the temperature gradient in the height direction of the solution is returned to the temperature gradient for crystal growth (the same as in Example 1, a temperature gradient of 3 ° C./cm in the direction where the solution surface layer is at a low temperature and the bottom portion is at a high temperature). A SiC single crystal was grown on a seed crystal substrate by a temperature difference method in the same manner as in Example 1 except that it was started.

単結晶の成長を開始する前に、十分な量の炭素が坩堝から溶解するように、坩堝内の融液底中央部の温度を1650℃に調整して2時間の加熱を続ける際に、結晶成長時とは逆向きの溶液高さ方向の温度勾配を形成した。すなわち、種結晶基板の浸漬予定箇所である溶液表層における温度が、底部の溶液に比べて高温になるような高さ方向の勾配を形成し、この時の温度勾配を15℃/cmとなるように調整して、上記の2時間の加熱を行ったところ、種結晶基板4表層が結晶成長前に約5μm溶解した。その後、結晶成長時の溶液内温度を均熱化させた以外は、実施例2と同様にして徐冷法によりSiC単結晶を種結晶基板上に溶液成長させた。
(比較例1)
Before starting the growth of the single crystal, when the temperature at the center of the melt bottom in the crucible is adjusted to 1650 ° C. and heating is continued for 2 hours so that a sufficient amount of carbon is dissolved from the crucible, A temperature gradient in the direction of the height of the solution opposite to that during growth was formed. That is, a gradient in the height direction is formed such that the temperature in the solution surface layer, which is the planned immersion location of the seed crystal substrate, is higher than the solution at the bottom, and the temperature gradient at this time is 15 ° C./cm. The surface layer of the seed crystal substrate 4 was dissolved by about 5 μm before crystal growth. Thereafter, a SiC single crystal was grown on the seed crystal substrate by a slow cooling method in the same manner as in Example 2 except that the temperature in the solution at the time of crystal growth was soaked.
(Comparative Example 1)

結晶成長時の種結晶基板4を浸漬した溶液近傍の温度勾配を15℃/cmとした以外は、実施例1と同様にして、温度差法によりSiC単結晶を種結晶基板上に成長させた。
(比較例2)
A SiC single crystal was grown on the seed crystal substrate by the temperature difference method in the same manner as in Example 1 except that the temperature gradient in the vicinity of the solution in which the seed crystal substrate 4 was immersed during crystal growth was 15 ° C./cm. .
(Comparative Example 2)

溶液全体の冷却速度を、2℃/分(冷却時間100分)とした以外は、実施例2と同様にして、徐冷法によりSiC単結晶を種結晶基板上に成長させた。
以上の実施例と比較例について結晶成長条件と種結晶基板上に2次元層成長したSiC結晶厚み及び2次元成長部の最表層におけるエッチピット密度判定結果を表1にまとめて示す。
A SiC single crystal was grown on the seed crystal substrate by a slow cooling method in the same manner as in Example 2 except that the cooling rate of the whole solution was 2 ° C./min (cooling time 100 minutes).
Table 1 summarizes the crystal growth conditions, the SiC crystal thickness two-dimensionally grown on the seed crystal substrate, and the etch pit density determination result in the outermost layer of the two-dimensionally grown portion for the above examples and comparative examples.

Figure 0004853449
Figure 0004853449

表1から、実施例1〜8では、成長温度条件を、温度差法の場合は温度勾配を5℃/cm以下に、徐冷法の場合は冷却速度を1℃/分以下にすることで、3次元成長を抑制することができ、その結果、溶液成長法によるSiC結晶の品質改善効果が発現していることが分かる。また、本発明に従った成長温度条件でSiC単結晶を成長させた実施例では、形成されたSiC単結晶の層の上にCVD法によりエピタキシャル成長させたSiC単結晶膜においても、エッチピット密度(すなわち転位密度)は昇華再結晶基板に比べて低減し、高品質のSiC単結晶エピタキシャルウエハーが製造できた。   From Table 1, in Examples 1 to 8, the growth temperature condition is 3 ° C./cm or less in the case of the temperature difference method, and 3 ° C./min or less in the case of the slow cooling method by setting the cooling rate to 1 ° C./min or less. It can be seen that the dimensional growth can be suppressed, and as a result, the quality improvement effect of the SiC crystal by the solution growth method is manifested. Further, in the example in which the SiC single crystal is grown under the growth temperature condition according to the present invention, even in the SiC single crystal film epitaxially grown by the CVD method on the formed SiC single crystal layer, the etch pit density ( That is, the dislocation density was reduced as compared with the sublimation recrystallized substrate, and a high-quality SiC single crystal epitaxial wafer could be manufactured.

実施例5、6に示すように種結晶基板の面内温度分布を2℃以下にすると、3次元成長の抑制効果が増大することが分かる。また、実施例7、8に示すように、結晶成長を開始する前に、種結晶基板基板の表層を溶液内で溶解して除去すると、溶液成長の品質改善がより効果的に発現することが分かる。   As shown in Examples 5 and 6, it can be seen that when the in-plane temperature distribution of the seed crystal substrate is 2 ° C. or less, the effect of suppressing the three-dimensional growth is increased. In addition, as shown in Examples 7 and 8, when the surface layer of the seed crystal substrate substrate is dissolved and removed in the solution before starting the crystal growth, the quality improvement of the solution growth can be more effectively expressed. I understand.

以上に本発明を好適態様および実施例に関して説明したが、以上の説明は全ての点で例示であって、制限的なものでないのは当然である。本発明の範囲は、特許請求の範囲によってのみ制限される。   Although the present invention has been described above with reference to preferred embodiments and examples, it is to be understood that the above description is illustrative in all respects and not restrictive. The scope of the invention is limited only by the claims.

従来の溶液成長法によってオフ角を有する結晶上に結晶成長させた3次元成長したSiC単結晶の断面の光学顕微鏡写真である。It is an optical microscope photograph of the cross section of the three-dimensionally grown SiC single crystal grown on a crystal having an off angle by a conventional solution growth method. 本発明の実施例において使用した結晶成長装置(SiC単結晶製造装置)の基本構成を示す説明図Explanatory drawing which shows the basic composition of the crystal growth apparatus (SiC single crystal manufacturing apparatus) used in the Example of this invention.

Claims (15)

Si金属またはSi−M合金(MはSi以外の1種類以上の金属)の融液を溶媒とするSiC溶液にSiC種結晶基板を浸漬し、少なくとも基板近傍を過冷却により過飽和状態とすることによって基板上にSiC単結晶を成長させることからなるSiC単結晶の製造方法であって、
SiC種結晶基板が{0001}面から(11−20)方向に傾斜した結晶面を有するものであり、この傾斜した結晶面を成長面として用い、
種結晶基板の近傍が低温となる温度勾配をSiC溶液に形成することにより基板近傍に過飽和状態を創出し、該温度勾配が5℃/cm以下である
ことを特徴とする、SiC単結晶の製造方法。
By immersing the SiC seed crystal substrate in an SiC solution using a melt of Si metal or Si-M alloy (M is one or more metals other than Si) as a solvent, and at least the vicinity of the substrate is supersaturated by supercooling. A method for producing a SiC single crystal comprising growing a SiC single crystal on a substrate,
The SiC seed crystal substrate has a crystal plane inclined in the (11-20) direction from the {0001} plane, and this inclined crystal plane is used as a growth plane.
A SiC single crystal is produced, wherein a supersaturated state is created in the vicinity of the substrate by forming a temperature gradient in the SiC solution at a low temperature in the vicinity of the seed crystal substrate, and the temperature gradient is 5 ° C./cm or less. Method.
Si金属またはSi−M合金(MはSi以外の1種類以上の金属)の融液を溶媒とするSiC溶液にSiC種結晶基板を浸漬し、少なくとも基板近傍を過冷却により過飽和状態とすることによって基板上にSiC単結晶を成長させることからなるSiC単結晶の製造方法であって、
SiC種結晶基板が{0001}面から(11−20)方向に傾斜した結晶面を有するものであり、この傾斜した結晶面を成長面として用い、
SiC溶液全体を冷却して過飽和状態を創出し、その時の冷却速度が0.05℃/分以上、1℃/分以下である
ことを特徴とする、SiC単結晶の製造方法。
By immersing the SiC seed crystal substrate in an SiC solution using a melt of Si metal or Si-M alloy (M is one or more metals other than Si) as a solvent, and at least the vicinity of the substrate is supersaturated by supercooling. A method for producing a SiC single crystal comprising growing a SiC single crystal on a substrate,
The SiC seed crystal substrate has a crystal plane inclined in the (11-20) direction from the {0001} plane, and this inclined crystal plane is used as a growth plane.
A method for producing a SiC single crystal, wherein the entire SiC solution is cooled to create a supersaturated state, and the cooling rate at that time is 0.05 ° C./min or more and 1 ° C./min or less.
前記SiC溶液の冷却をその溶液の固相線温度よりも高い温度で終了した後、該SiC溶液の加熱と冷却を繰り返すことにより過飽和状態を繰返して創出し、基板上でのSiC単結晶の成長を継続する、請求項2に記載の方法。   After the cooling of the SiC solution is finished at a temperature higher than the solidus temperature of the solution, a supersaturated state is repeatedly created by repeating heating and cooling of the SiC solution, and the growth of the SiC single crystal on the substrate The method of claim 2, wherein the method continues. 単結晶成長時の成長界面の面内温度分布における最大温度差が2℃以下である、請求項1〜3のいずれか1項に記載の方法。   The method according to claim 1, wherein the maximum temperature difference in the in-plane temperature distribution of the growth interface during single crystal growth is 2 ° C. or less. SiC種結晶基板をSiC溶液に浸漬した直後は基板の方がSiC溶液に比べて高温になるような温度勾配を溶液に形成して基板表層をSiC溶液中に溶解させた後、SiC単結晶の成長を行う、請求項1〜4のいずれか1項に記載の方法。   Immediately after the SiC seed crystal substrate is immersed in the SiC solution, a temperature gradient is formed in the solution so that the temperature of the substrate is higher than that of the SiC solution, and the substrate surface layer is dissolved in the SiC solution. The method according to claim 1, wherein the growth is performed. SiC種結晶基板の表層の溶解厚みが5μm以上である、請求項5に記載の方法。   The method according to claim 5, wherein the dissolution thickness of the surface layer of the SiC seed crystal substrate is 5 μm or more. 前記融液がSi−M合金であり、MがTiである、請求項1〜6のいずれか1項に記載の方法。   The method according to claim 1, wherein the melt is a Si—M alloy and M is Ti. SiC種結晶基板が、{0001}面から0.2°以上、10°以下の角度で傾斜した結晶面を有する、昇華再結晶化法で作製されたものである、請求項1〜7のいずれか1項に記載の方法。   The SiC seed crystal substrate is produced by a sublimation recrystallization method having a crystal plane inclined at an angle of 0.2 ° or more and 10 ° or less from the {0001} plane. The method according to claim 1. SiC種結晶基板が4H−SiC結晶構造を有する、請求項8に記載の方法。   The method of claim 8, wherein the SiC seed crystal substrate has a 4H-SiC crystal structure. 基板上に成長させたSiC単結晶の厚みが10〜100μmの範囲内である請求項9に記載の方法。   The method according to claim 9, wherein the thickness of the SiC single crystal grown on the substrate is in the range of 10 to 100 μm. 請求項8〜10のいずれか1項に記載の方法により製造されたSiC単結晶の層を、口径50mm以上、100mm以下の昇華再結晶化法により作製されたSiC単結晶基板上に有することを特徴とする、デバイス作製用のSiC単結晶基板。   It has having the layer of the SiC single crystal manufactured by the method of any one of Claims 8-10 on the SiC single crystal substrate manufactured by the sublimation recrystallization method of 50 mm or more and 100 mm or less in diameter. A SiC single crystal substrate for device fabrication, which is characterized. {0001}面から(11−20)方向に8°傾斜した基板上で計測される転位に起因したエッチピット密度の合計が、下地の昇華再結晶化法で作製されたSiC基板に比べて低減している、請求項11に記載のSiC単結晶基板。 The total etch pit density due to dislocations measured on a substrate tilted 8 ° in the (11-20) direction from the {0001} plane is reduced compared to a SiC substrate fabricated by sublimation recrystallization. The SiC single crystal substrate according to claim 11. {0001}面から(11−20)方向に4°傾斜した基板上で計測される転位に起因したエッチピット密度の合計が、下地の昇華再結晶化法で作製されたSiC基板に比べて低減している、請求項11に記載のSiC単結晶基板。 The total etch pit density due to dislocations measured on a substrate tilted 4 ° in the (11-20) direction from the {0001} plane is reduced compared to a SiC substrate fabricated by sublimation recrystallization of the base. The SiC single crystal substrate according to claim 11. 請求項11〜13のいずれか1項に記載のSiC単結晶基板上に、CVD法によりエピタキシャル成長させたSiC単結晶の薄膜を有することを特徴とする、SiC単結晶エピタキシャルウエハー。   A SiC single crystal epitaxial wafer comprising a SiC single crystal thin film epitaxially grown by a CVD method on the SiC single crystal substrate according to any one of claims 11 to 13. 請求項14に記載のSiC単結晶エピタキシャルウエハーを用いて作製されたことを特徴とするSiC半導体デバイス。   A SiC semiconductor device manufactured using the SiC single crystal epitaxial wafer according to claim 14.
JP2007265717A 2007-10-11 2007-10-11 SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device Active JP4853449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007265717A JP4853449B2 (en) 2007-10-11 2007-10-11 SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007265717A JP4853449B2 (en) 2007-10-11 2007-10-11 SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device

Publications (2)

Publication Number Publication Date
JP2009091222A JP2009091222A (en) 2009-04-30
JP4853449B2 true JP4853449B2 (en) 2012-01-11

Family

ID=40663575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007265717A Active JP4853449B2 (en) 2007-10-11 2007-10-11 SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device

Country Status (1)

Country Link
JP (1) JP4853449B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105531407A (en) * 2013-09-13 2016-04-27 丰田自动车株式会社 SiC single crystal, and production method therefor
US9530642B2 (en) 2012-08-30 2016-12-27 Toyota Jidosha Kabushiki Kaisha Method for producing SiC single crystal

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130042802A1 (en) * 2009-07-17 2013-02-21 Katsunori Danno Method of production of sic single crystal
EP2455515B1 (en) * 2009-07-17 2018-01-10 Toyota Jidosha Kabushiki Kaisha Process for producing sic single crystal
CN102597337A (en) 2009-08-27 2012-07-18 住友金属工业株式会社 Sic single crystal wafer and process for production thereof
EP2484815B1 (en) * 2009-09-29 2014-12-24 Fuji Electric Co., Ltd. METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP5359796B2 (en) * 2009-11-05 2013-12-04 トヨタ自動車株式会社 Method for producing SiC single crystal
JP5418385B2 (en) * 2010-04-19 2014-02-19 新日鐵住金株式会社 Method for producing silicon carbide single crystal ingot
JP5434801B2 (en) * 2010-06-03 2014-03-05 トヨタ自動車株式会社 Method for producing SiC single crystal
JP5656623B2 (en) 2010-12-28 2015-01-21 トヨタ自動車株式会社 SiC single crystal manufacturing apparatus and manufacturing method
JP2012193055A (en) * 2011-03-15 2012-10-11 Toyota Motor Corp METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND APPARATUS USED THEREFOR
US9777396B2 (en) 2011-10-28 2017-10-03 Kyocera Corporation Method for producing crystal
JP6046405B2 (en) * 2012-07-19 2016-12-14 トヨタ自動車株式会社 SiC single crystal ingot, manufacturing apparatus and manufacturing method thereof
JP5936191B2 (en) * 2012-08-26 2016-06-15 京セラ株式会社 Crystal production method
US20160053402A1 (en) 2013-04-09 2016-02-25 Nippon Steel & Sumitomo Metal Corporation METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP5877812B2 (en) * 2013-04-09 2016-03-08 新日鐵住金株式会社 Method for producing SiC single crystal
JP5877813B2 (en) * 2013-04-09 2016-03-08 新日鐵住金株式会社 Method for producing SiC single crystal
WO2014189008A1 (en) * 2013-05-20 2014-11-27 日立化成株式会社 Silicon carbide single crystal and manufacturing method therefor
JP6060863B2 (en) * 2013-09-13 2017-01-18 トヨタ自動車株式会社 SiC single crystal and method for producing the same
JP6129064B2 (en) * 2013-12-06 2017-05-17 信越化学工業株式会社 Crystal growth method of silicon carbide
JP6178227B2 (en) * 2013-12-06 2017-08-09 信越化学工業株式会社 Crystal growth method of silicon carbide
JP6180910B2 (en) * 2013-12-06 2017-08-16 信越化学工業株式会社 Crystal growth method of silicon carbide
EP2881499B1 (en) 2013-12-06 2020-03-11 Shin-Etsu Chemical Co., Ltd. Method for growing silicon carbide crystal
JP6014258B2 (en) * 2014-01-29 2016-10-25 京セラ株式会社 Crystal production method
CN106029959B (en) 2014-02-12 2018-07-10 丰田自动车株式会社 The manufacturing method of SiC single crystal
JPWO2015137439A1 (en) * 2014-03-13 2017-04-06 新日鐵住金株式会社 Method for producing SiC single crystal
WO2016084561A1 (en) * 2014-11-27 2016-06-02 住友電気工業株式会社 Silicon carbide substrate, method for producing same, and method for manufacturing silicon carbide semiconductor device
KR101960209B1 (en) 2015-02-18 2019-03-19 쇼와 덴코 가부시키가이샤 Method for producing silicon carbide single crystal ingot and silicon carbide single crystal ingot
JP6190070B2 (en) * 2015-03-06 2017-08-30 京セラ株式会社 Crystal production method
CN107532329B (en) 2015-03-18 2020-06-26 丰田自动车株式会社 Method for producing SiC single crystal
WO2016147673A1 (en) 2015-03-18 2016-09-22 新日鐵住金株式会社 SiC SINGLE CRYSTAL PRODUCTION METHOD
JP6533716B2 (en) 2015-08-06 2019-06-19 信越化学工業株式会社 Method of manufacturing SiC single crystal
JP6597113B2 (en) * 2015-09-24 2019-10-30 トヨタ自動車株式会社 Method for producing SiC single crystal
KR102508851B1 (en) * 2015-12-16 2023-03-10 재단법인 포항산업과학연구원 Manufacturing method of semi-insulating silicon carbide single crystal and semi-insulating silicon carbide single crystal prepared thereby
JP6618179B2 (en) * 2015-12-24 2019-12-11 昭和電工株式会社 Method for producing SiC single crystal
CN107364846A (en) * 2017-09-06 2017-11-21 蚌埠玻璃工业设计研究院 A kind of device in substrate surface growth graphene film
WO2023054263A1 (en) * 2021-09-30 2023-04-06 セントラル硝子株式会社 Single-crystal silicon carbide wafer, single-crystal silicon carbide ingot, and single-crystal silicon carbide production method
WO2023054264A1 (en) * 2021-09-30 2023-04-06 セントラル硝子株式会社 Silicon carbide single crystal wafer and silicon carbide single crystal ingot

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156095A (en) * 1986-12-19 1988-06-29 Sanyo Electric Co Ltd Liquid phase epitaxy of sic single crystal
JP2000264790A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Production of silicon carbide single crystal
JP4100228B2 (en) * 2002-04-15 2008-06-11 住友金属工業株式会社 Silicon carbide single crystal and manufacturing method thereof
JP4196791B2 (en) * 2003-09-08 2008-12-17 トヨタ自動車株式会社 Method for producing SiC single crystal
JP2007197231A (en) * 2006-01-24 2007-08-09 Toyota Motor Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9530642B2 (en) 2012-08-30 2016-12-27 Toyota Jidosha Kabushiki Kaisha Method for producing SiC single crystal
CN105531407A (en) * 2013-09-13 2016-04-27 丰田自动车株式会社 SiC single crystal, and production method therefor
CN105531407B (en) * 2013-09-13 2018-06-05 丰田自动车株式会社 SiC single crystal and its manufacturing method

Also Published As

Publication number Publication date
JP2009091222A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4853449B2 (en) SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device
JP4100228B2 (en) Silicon carbide single crystal and manufacturing method thereof
JP5706823B2 (en) SiC single crystal wafer and manufacturing method thereof
JP5803519B2 (en) Method and apparatus for producing SiC single crystal
JP5218348B2 (en) Method for producing silicon carbide single crystal
JP5483216B2 (en) SiC single crystal and method for producing the same
US7520930B2 (en) Silicon carbide single crystal and a method for its production
JP4736401B2 (en) Method for producing silicon carbide single crystal
US9702057B2 (en) Method for producing an n-type SiC single crystal from a Si—C solution comprising a nitride
KR20110057185A (en) Manufacturing method for silicon carbide monocrystals
US9732436B2 (en) SiC single-crystal ingot, SiC single crystal, and production method for same
JP4879686B2 (en) Silicon carbide single crystal manufacturing method, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
US10612154B2 (en) Method for preparing SiC single crystal
JP2006117441A (en) Method for preparing silicon carbide single crystal
JP5167947B2 (en) Method for producing silicon carbide single crystal thin film
EP1498518B1 (en) Method for the production of silicon carbide single crystal
JP5761264B2 (en) Method for manufacturing SiC substrate
JP4591183B2 (en) Method for producing AlN single crystal
WO2017043215A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
WO2023054263A1 (en) Single-crystal silicon carbide wafer, single-crystal silicon carbide ingot, and single-crystal silicon carbide production method
WO2023054264A1 (en) Silicon carbide single crystal wafer and silicon carbide single crystal ingot
WO2017086449A1 (en) SiC SINGLE CRYSTAL PRODUCTION METHOD AND SiC SINGLE CRYSTAL INGOT
JP2018188330A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL SUBSTRATE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250