JPH0354184A - Crucible for crystal production - Google Patents

Crucible for crystal production

Info

Publication number
JPH0354184A
JPH0354184A JP18932289A JP18932289A JPH0354184A JP H0354184 A JPH0354184 A JP H0354184A JP 18932289 A JP18932289 A JP 18932289A JP 18932289 A JP18932289 A JP 18932289A JP H0354184 A JPH0354184 A JP H0354184A
Authority
JP
Japan
Prior art keywords
crystal
crucible
shape
wafer
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18932289A
Other languages
Japanese (ja)
Other versions
JP2721708B2 (en
Inventor
Hiroki Koda
拡樹 香田
Keigo Hoshikawa
圭吾 干川
Hideo Nakanishi
秀男 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1189322A priority Critical patent/JP2721708B2/en
Publication of JPH0354184A publication Critical patent/JPH0354184A/en
Application granted granted Critical
Publication of JP2721708B2 publication Critical patent/JP2721708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To increase yield of wafer by making horizontal cross sectional shape of a part or whole inner wall of crucible to have one or several linear parts with a circle as a basic shape, or to have polygonal shape. CONSTITUTION:A crucible for crystal production is constructed with a well part 4 keeping seed crystal 7 and having approximately rectangular cylindrical shape, diameter-increasing part 5 having approximately hollow right pyramidal shape arriving to linear body part 6 and linear body part 6 having rectangular cylindrical shape. Seed crystal 7 of GaAs of <100> direction, GaAs raw material and B2O3 as liquid sealant 9 are charged in said crucible for crystal production and melted by heat, then cooled to afford grown single crystal 8.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は垂直ブリッジマン法や垂直温度勾配凝固法など
のるつぼの中で融液を冷却固化させることにより結晶成
長させる方法において用いる結晶形状を規定する結晶製
造用るつほに関するものである。 [従来の技術] 従来の抽子結晶を用いた垂直ブリッジマン法や垂直温度
勾配凝固法などの結晶製造方広において用いる結晶製造
用るつほは、第4図に示すように水平断面形状は円形で
あり、第4図(b)の垂直断面図に示すようにるつほ下
部に種子結晶を収容する細長い井戸1を設けた構造にな
っている。 垂直ブリッジマン法や垂直温度勾配凝固広などの結晶製
造方法で製造した結晶の形状はるりはと同じ形状となる
ため、従来の結晶製造用るつぼで製造した結晶の水平断
面形状は結晶製造用るつぼの水平断面形状と同じ円形と
なる。このような円形の結晶を各種半導体部品製造用の
−2!仮結晶として用いる場合はオリエンテーション・
フラットと呼ばれている結晶方位を示す印を結晶に加工
形成する必要がある。また、円形の結晶を太陽主泊の受
光素子製造用の基板結晶として用いる場合は単位面積当
りの受光素子の充填密度を高くするためウエハは四角形
に加工しなければならない。第5図、第6図に代表的な
半導体部品製造用ウェハのオリエンテーション・フラッ
トの形状を示す。第5図は結晶面方位が(100)面の
シリコンウェハの場合で、オリエンテーション・フラッ
ト2は一箇所でありオリエンテーション・フラット面は
(0 1 1)面である。第6図は(100)面のガリ
ウム・ヒ素ウエハのオリエンテーション・フラットの場
合で、オリエンテーション・フラット23は二箇所であ
りオリエンテーション・フラット面は(011)面と(
011)面である。シリコン結晶、ガリウム・ヒ素結晶
ともに結晶学的には同じ立方晶系に属し<110>方僚
に襞開しやすい性質を持っており、ウエハから部品とし
ての−Li′L位であるチップと呼ばれる約5 mm角
のウェハ片を切りだす場合はこの臂開性質を用いてチッ
プ切断か行なわれている。そのため、ウェハにとってオ
リエンテーション・フラットの持つ意味は非常に大きく
なくてはならないものである。 オリエンテーション◆フラットの形戊方法は、まず製造
した結晶からおおまかな方向でウェハを切りだしX線法
により結晶面方位をホリ定し所望する結晶方位からのズ
レ幅を測定する。次に、ズレ幅を修正するように再度切
断し、所望する結晶面方位が出ている結晶ブロックを製
作する。次にこの結晶ブロックを端面研削機に保持し決
められた位置に一箇所ないし複数箇所オリエンテーショ
ン・フラットとなる部分を形成する。そして、この結晶
ブロックを薄く切断することにより第5図、第6図に示
したウエハが得られる。 第7図にガリウム・ヒ素太陽電泊用ウェハ(100)面
の形状を示す。この場合、太陽電地パネルの単位面積当
りの太陽電庖ウェハの充填率を大きくするためウエハは
四角形である。この四角形ウエハは第5図、第6図に示
したオリエンテーション・フラット形成方法と同じ方注
により、円柱状結晶から加工した四角柱ブロックを薄く
切断することにより取得している。 尚、従来、水平断面形状が四角形の結晶製造用るつほは
、多結晶の製造はできるか、単結晶はできにくいため単
結晶の製造には用いられていなかつ lこ 。 [発明が解決しようとする課題コ このように、従来の結晶製造用るっほは水平断面形状が
円形のものが用いられていたので製造した円形断面の結
晶をIC製造用ウェハや太陽電池製造用ウエハとして用
いるためには、ウェハの使用目的に適した形状にウエハ
を加工する必要かあり、このために特殊な加工装置と加
工時間が必要なたけでなく、そこで失われる結晶加工損
失は最大で結晶重量の約40%であり、省資源、省エネ
ルギー ウエハ低価格化、などの観点からオリエンテー
ション◆フラットなどのウェハ形成加工工程の簡略対策
が強く望まれていた。 本発明の目的は従来の結晶成長用るっほで問題となって
いた円形断面形状の結晶しか得られないことによるウエ
ハ形成加工時の結晶加工損失や加工時間を大幅に低減で
きる結晶成長用るつぼを提供することにある。 [課題を解決するための手段と作用] 本発明は上記目的を達成するために、結晶原料と稲子結
晶を収容し融解して冷却することにより種子結晶と同じ
方位の単結晶を得る結晶成長方法で用いる結晶形状を規
定する結晶製造用るつぼにおいて、るつぼの一部あるい
は全部の内壁水平断面形状が円形を基本として直線部分
を一箇所あるいは複数箇所有する事を特徴とするもの、
及びるつぼの一部あるいは全部の内壁水平断面形状が多
角形状であることを特徴とするもので、結晶製造用るつ
ぼで製造した結晶をウエハに切1折するだけでIC用や
太陽電池用に適した形状のウェハが取得てきるようにし
たものである。 [実施例コ 本発明は結晶形状を規定する結晶製造用るっほの内壁水
平断面形状が種々の形状のるつばを用いて垂直ブリッジ
マン法や垂直温度勾配凝固法による結晶製造尖験を繰り
返し行なった結果、るつぼの内壁水平断面形状は円形で
なくても安定に単結晶成長が可能であり、結晶をウエハ
に切断するだけでIC用や太陽電池用に適した形状のウ
エハが取得できるという実験結果にもとすいてなされた
ものである。以下、実験方法と実験結果について述べる
。 第1図(a)は実験方法を示するつぼの直胴部の水平断
面形状であり、第1図(b)は同じくるつぼの垂直断面
形状である。結晶製造用るつぼの形状は四角形ウエハの
取得を想定した形とした。 4は揮子結晶を保持するほほ四角筒状の井戸部、5は井
戸部から直胴部に至るほぼ中空四角錐状の増径部、6は
一辺の長さが5cmの四角形の直胴部である。るつぼの
材質は熱分解窒化ホウ素製で肉厚は約1mのものを用い
た。この結晶製造用るつぼに<100>方位のGaAs
種子結晶7と100グラムのGaAs原料と液体封止材
9の酸化ホウ素70グラムを充填し、加熱・融解し、冷
却することにより結晶製造を行なった。8は成長結晶で
ある。 このような結晶製造実験の結果、安定に単結晶製造がで
きた。即ち、第1図(a)、(b)に示すように液体封
止材9が結晶製造用るつぼの内壁を覆い、成長結晶8が
戒体封止材9で覆われることにより安定に単結晶製造が
できた。この場合、るつぼ内壁の平坦部分と対する結晶
部分はるつぼ形状と同じ平坦であるが、結晶の角部分1
0は表面張力により丸くなろうとするためるつばの角部
分11どうりにはならず半径1間程度の微小な曲率を持
つことがわかった。これらの実験桔果から、単結晶製造
用るつぼは円筒状の必要性はなく角型るつぼを用いても
安定に単結晶製造かできること、角型るつぼで製造した
結晶から切りだした角型ウエハは従来の円筒状るつほで
製造したものと同じ結晶品質を有すること、同じ重量の
原料を用いて円筒状るつほで製造した場合より一本の結
晶から得られるウエハ収率が1.6倍大きいこと、結晶
の角部分の微小な曲率は結晶をウエハ化して素子製作に
使用する場合に問題となることはなくかえって取扱い易
く欠けにくい利点があること、などのことがわかった。 本発明は以上のような砧晶製造実験にもとすいてなされ
たものである。 以上述べたように、本発明は希望するウエハの形状に合
う結晶成長用るつぼを用いて結晶製造することにより、
ウエハ形状加工による結晶加工損失の最も少ない形状の
結晶を製造できることを最も主要な特長とする。
[Industrial Application Field] The present invention relates to a crystal manufacturing crucible that defines a crystal shape used in a method of crystal growth by cooling and solidifying a melt in a crucible, such as the vertical Bridgman method or the vertical temperature gradient solidification method. It's about ho. [Prior art] The crystal manufacturing method used in a wide range of crystal manufacturing methods such as the vertical Bridgman method and the vertical temperature gradient solidification method using conventional bolt crystals has a horizontal cross-sectional shape as shown in Fig. 4. It has a circular shape, and as shown in the vertical cross-sectional view of FIG. 4(b), it has a structure in which an elongated well 1 for accommodating seed crystals is provided at the bottom of the crucible. The shape of crystals produced using crystal production methods such as the vertical Bridgman method and vertical temperature gradient solidification method is the same as that of Ruriha, so the horizontal cross-sectional shape of crystals produced using conventional crystal production crucibles is similar to that of crystal production crucibles. It has the same circular shape as the horizontal cross-sectional shape. -2! This kind of circular crystal is used for manufacturing various semiconductor parts! When used as a temporary crystal, the orientation
It is necessary to process and form marks on the crystal that indicate the crystal orientation, called flats. In addition, when a circular crystal is used as a substrate crystal for manufacturing a light-receiving element for a solar cell, the wafer must be processed into a square shape in order to increase the packing density of light-receiving elements per unit area. FIGS. 5 and 6 show the shape of the orientation flat of a typical wafer for manufacturing semiconductor components. FIG. 5 shows the case of a silicon wafer whose crystal plane orientation is the (100) plane, and there is only one orientation flat 2, and the orientation flat plane is the (0 1 1) plane. Figure 6 shows the orientation flat of a (100) gallium arsenide wafer. There are two orientation flats 23, and the orientation flats are the (011) and (011) planes.
011) surface. Crystallographically, silicon crystals and gallium arsenide crystals belong to the same cubic crystal system and have the property of easily folding into the <110> structure. When cutting out a wafer piece of about 5 mm square, chip cutting is performed using this arm-opening property. Therefore, the orientation flat has a very important meaning for the wafer. Orientation ◆The flat shaping method is to first cut a wafer from a manufactured crystal in a rough direction, determine the crystal plane orientation using an X-ray method, and measure the deviation width from the desired crystal orientation. Next, the material is cut again to correct the deviation width, and a crystal block with the desired crystal plane orientation is manufactured. Next, this crystal block is held in an end face grinder to form one or more orientation flat portions at predetermined positions. By cutting this crystal block into thin pieces, the wafers shown in FIGS. 5 and 6 are obtained. FIG. 7 shows the shape of the wafer (100) surface for gallium arsenide solar cells. In this case, the wafer is square in order to increase the filling rate of the solar cell wafer per unit area of the solar cell panel. This rectangular wafer is obtained by thinly cutting a rectangular prism block processed from a cylindrical crystal using the same orientation flat forming method shown in FIGS. 5 and 6. Conventionally, crystal manufacturing machines with a rectangular horizontal cross-sectional shape have not been used to manufacture single crystals because they can only produce polycrystals, but it is difficult to produce single crystals. [Problems to be Solved by the Invention] As described above, since the conventional crystal manufacturing Ruho used had a circular horizontal cross section, the manufactured crystal with a circular cross section can be used as a wafer for IC manufacturing or for solar cell manufacturing. In order to use the wafer as a commercial wafer, it is necessary to process the wafer into a shape suitable for the intended use, and this not only requires special processing equipment and processing time, but also causes maximum crystal processing loss. It accounts for about 40% of the crystal weight, and from the viewpoint of saving resources, saving energy, and lowering the cost of wafers, there was a strong desire for measures to simplify the wafer forming process, such as orientation ◆flat. The purpose of the present invention is to provide a crucible for crystal growth that can significantly reduce crystal processing losses and processing time during wafer forming processing due to the problem of only obtaining crystals with a circular cross section, which was a problem with conventional crystal growth crucibles. Our goal is to provide the following. [Means and effects for solving the problems] In order to achieve the above object, the present invention provides a crystal growth method for obtaining a single crystal with the same orientation as a seed crystal by storing, melting and cooling a crystal raw material and a rice seed crystal. A crucible for producing crystals that specifies the crystal shape used in a crucible, in which the horizontal cross-sectional shape of a part or all of the inner wall of the crucible is basically circular and has one or more straight parts,
The horizontal cross-sectional shape of part or all of the inner wall of the crucible is polygonal, making it suitable for ICs and solar cells by simply cutting the crystal produced in the crucible into a wafer and folding it once. This allows wafers with the same shape to be obtained. [Example] The present invention repeats crystal manufacturing experiments using the vertical Bridgman method and the vertical temperature gradient solidification method using crucibles with various shapes of horizontal cross-sectional shapes of the inner wall of the crystal manufacturing Ruho which defines the crystal shape. The results showed that stable single crystal growth is possible even if the horizontal cross-sectional shape of the inner wall of the crucible is not circular, and that wafers with shapes suitable for ICs and solar cells can be obtained by simply cutting the crystal into wafers. This was done based on experimental results. The experimental method and experimental results will be described below. FIG. 1(a) is a horizontal cross-sectional shape of the straight body of a crucible showing the experimental method, and FIG. 1(b) is a vertical cross-sectional shape of the same crucible. The shape of the crucible for crystal production was designed assuming that square wafers would be obtained. Reference numeral 4 denotes a well portion in the shape of a square tube that holds the volatilization crystals, numeral 5 denotes a hollow quadrangular pyramid-shaped increasing diameter portion extending from the well portion to the straight body portion, and numeral 6 denotes a rectangular straight body portion with a side length of 5 cm. It is. The crucible was made of pyrolytic boron nitride and had a wall thickness of about 1 m. In this crystal manufacturing crucible, <100> oriented GaAs
Seed crystal 7, 100 grams of GaAs raw material, and 70 grams of boron oxide as liquid sealing material 9 were filled, heated, melted, and cooled to produce crystals. 8 is a growing crystal. As a result of such crystal production experiments, stable single crystal production was achieved. That is, as shown in FIGS. 1(a) and 1(b), the liquid sealant 9 covers the inner wall of the crucible for producing crystals, and the growing crystal 8 is covered with the crystal sealant 9, thereby stably forming a single crystal. Manufacture has been completed. In this case, the crystal part corresponding to the flat part of the inner wall of the crucible is flat as the shape of the crucible, but the corner part of the crystal 1
It was found that 0 tends to become rounded due to surface tension, so it does not align with the corner 11 of the brim, but has a minute curvature with a radius of about 1. From these experimental results, we found that there is no need for a cylindrical crucible for producing single crystals, and that single crystals can be stably produced using square crucibles, and that square wafers cut from crystals produced in square crucibles It has the same crystal quality as that produced with a conventional cylindrical melt hoist, and the wafer yield obtained from one crystal is 1.6% higher than when produced with a cylindrical melt hoist using the same weight of raw material. It was found that the small curvature of the crystal corners does not pose a problem when the crystal is made into wafers and used for device fabrication, but rather has the advantage of being easier to handle and less likely to chip. The present invention was made based on the above-mentioned Kinuta crystal manufacturing experiment. As described above, the present invention produces crystals using a crystal growth crucible that matches the desired shape of the wafer.
The most important feature is that it can produce crystals with the least shape loss due to wafer shape processing.

【実施例1】 第2図は本発明の第1の実施例を説明する図であってI
C製造用ウエハの(100)面のガリウム・ヒ素結晶を
垂直ブリッジマン法で製造する場合に用いる結晶製造用
るつぼを示す。12は種子結晶を収容する円筒状の井戸
部、13は井戸部から直胴部に至るほぼ中空円錐形状の
増径部、14は内径5 0 mmのほぼ円筒状であって
水平断面形状が特定の方位を示す直線部al5と直線部
bl6の二箇所を有する直胴部士ある。この直線部al
5は(100)面の種子結晶に対応して、[011コ方
向に形成し、直線部bは(100)面の種子結晶に対応
して、[011]方向に形成してある。このるつぼに(
100)面の種子結晶とガリウム・ヒ素原料550グラ
ムと波体封止材である酸化ホウ素60グラムを充填し、
ガリウム・ヒ素原料全部とガリウム・ヒ素種子結晶の一
部を加熱・融解し、冷却することにより結晶製造を行な
った。第2図のるつぼを用いて製造した結晶を直胴部分
から水平に切りだすと、第6図に示すような(100)
面ウエハの形状を得ることができる。結晶を切断しただ
けで(011)面と(011)面のオリエンテーション
・フラット23かきれいに形或された直B 5 0 1
+1(Dのウエハか得られオリエンテーション・フラッ
ト形或加工の必要がなかった。従来のるりはを用いて製
遺した結晶からウエハを取得する場合に比較して、オリ
エンテーション●フラy}形成加工時間が省略できかつ
一本の結晶から得られるウエハ収率が10%増加した。
[Embodiment 1] FIG. 2 is a diagram illustrating the first embodiment of the present invention.
This figure shows a crucible for crystal manufacturing used when manufacturing a (100)-plane gallium arsenide crystal of a C manufacturing wafer by the vertical Bridgman method. 12 is a cylindrical well portion that accommodates the seed crystal, 13 is a hollow conical increasing diameter portion extending from the well portion to the straight body portion, and 14 is approximately cylindrical with an inner diameter of 50 mm and has a specified horizontal cross-sectional shape. There is a straight body member that has two parts, a straight part al5 and a straight part bl6, which indicate the direction of. This straight part al
5 is formed in the [011] direction, corresponding to the (100)-plane seed crystal, and the straight portion b is formed in the [011] direction, corresponding to the (100)-plane seed crystal. In this melting pot (
100) seed crystals, 550 grams of gallium arsenic raw materials, and 60 grams of boron oxide as a corrugated body sealing material,
Crystals were produced by heating and melting all of the gallium/arsenic raw materials and part of the gallium/arsenic seed crystals, and then cooling them. When the crystal produced using the crucible shown in Fig. 2 is cut horizontally from the straight body part, it becomes (100) as shown in Fig. 6.
A flat wafer shape can be obtained. Just by cutting the crystal, the orientation flat 23 of the (011) plane and the (011) plane are neatly shaped straight B 5 0 1
+1 (D wafer was obtained, and there was no need for orientation, flat shape or processing.Compared to the case of obtaining a wafer from a crystal produced using conventional Ruriha, the processing time for orientation, fly} formation was reduced. can be omitted, and the yield of wafers obtained from one crystal is increased by 10%.

【実施例2】 第3図は本発明の第2の実施例を説明する図であって太
陽電地用の受光素子用基阪として用いる(100)iの
ガリウム・ヒ素拮晶を垂直ブリッジマン法で製造する場
合に用いるるっほを示す。 17は種子を収容するほぼ四角筒状の井戸部、18は井
戸部から直胴部に至るほほ中空四角錐状の増径部、19
は一辺が5 cmの四角筒状の直胴部である。このるつ
ほに(100)面のガリウム・ヒ素種子結晶とガリウム
・ヒ素原料1000グラムと液体封止材である酸化ホウ
素60グラムを収容し、ガリウム・ヒ素原料全部とガリ
ウム・ヒ素種子結晶の一部を加熱・融解し、冷却するこ
とにより結晶製造を行なった。第3図のるつほを用いて
製造したガリウム・ヒ素結晶を直胴部分から水平に切り
だすと、第7図に示すような一辺が約5 amの(10
0)面ウエハを得ることができる。 従来の円形断面形状のるつぼを用いて製造した結晶から
四角形状ウエハを取得する場合に比較して、結晶加工時
間が大幅に省略できかつ一本の結晶から得られるウエハ
収率が約1.6倍に増加した。 なお、上記実施例では垂直ブリッジマン法で製造した場
合について示したが垂直瓜度勾配凝固法で結晶製造した
場合やインジウム・リン結晶、カドミウム・テルル結晶
など他の結晶を垂直ブリッジマン法あるいは垂直温度勾
配凝固法で製造する場合なども得られる効果は上記実施
例の場合と同様であり説明を要しない。また、挿子結晶
保持の井戸部と増径部の形状は安定な単結晶製造を実現
すればよく上記実施例以外の形状でも何らさしつかえな
い。 [発明の効果] 以上説明したように、本発明の結晶製造用るつぼを用い
て製造した結晶からウエハを取得した場合は、所望のウ
エハ形状を得るための結晶形状の加工工程が簡略化でき
、ウエハ収率の大幅な堆加か可能となりウエハの生産コ
ス1・が大幅に低減できる利点がある。
[Embodiment 2] Fig. 3 is a diagram for explaining the second embodiment of the present invention, in which a (100)i gallium arsenide antagonist crystal is used as a base plate for a photodetector for a solar field. This shows the Ruho used when manufacturing by the method. 17 is a substantially square cylindrical well portion that accommodates seeds; 18 is a hollow quadrangular pyramid-shaped increasing diameter portion extending from the well portion to the straight body portion; 19
is a rectangular cylindrical body with a side of 5 cm. This rutsuho contains (100) gallium/arsenic seed crystals, 1,000 grams of gallium/arsenic raw materials, and 60 grams of boron oxide, which is a liquid sealing material, and contains all the gallium/arsenic raw materials and one part of the gallium/arsenic seed crystals. Crystals were produced by heating, melting, and cooling. When the gallium arsenide crystal manufactured using the rutsuho shown in Fig. 3 is cut horizontally from the straight body part, each side is approximately 5 am (10 m) as shown in Fig. 7.
0) A flat wafer can be obtained. Compared to the case of obtaining square wafers from crystals produced using conventional crucibles with circular cross-sections, the crystal processing time can be significantly reduced and the wafer yield obtained from one crystal is approximately 1.6 doubled. In addition, although the above example shows the case where the crystal is manufactured by the vertical Bridgman method, the case where the crystal is manufactured by the vertical degree gradient solidification method, and other crystals such as indium phosphorous crystals and cadmium tellurium crystals are manufactured by the vertical Bridgman method or the vertical Bridgman method The effects obtained when manufacturing by the temperature gradient solidification method are the same as those in the above embodiments, and no explanation is required. Further, the shape of the well portion for holding the insert crystal and the diameter-increasing portion may be any shape other than those of the above-mentioned embodiments as long as it realizes stable single crystal production. [Effects of the Invention] As explained above, when a wafer is obtained from a crystal produced using the crystal production crucible of the present invention, the crystal shape processing process for obtaining a desired wafer shape can be simplified; There is an advantage that the wafer yield can be greatly increased and the wafer production cost can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の結晶製遣の様子を示す水平および垂直
断面図、第2図は本発明の第〕の実施例を示す結晶製造
用るつぼの斜視図、第3図は本発明の第2の実施例を示
す結晶製造用るつぼの斜視図、第4図は種子結晶収容用
の井戸を持つ従来の結晶成長用るつぼの垂直および水平
断面図、第5図は(100)面のシリコンウエハの斜視
図、第ハの斜視図である。 1・・・挿子結晶を収容する井戸部、2・・・オリエン
テーション・フラットの(011)面部分、3・・・オ
リエンテーション・フラットの(0 1 1)面部分、
4・・ほほ四角筒状の井戸部、5・・・1曽径部、6・
・・直胴部、7・・・種子結晶、8・・・成長結晶、9
・・・岐体封止材、10・・・結晶の角部分、11・・
・るつぼの角部分、12・・・円筒状の井戸部、13・
・・中空円錐状の増径部、14・・・円筒状の直胴部、
15・・・るつぼの直線部a,16・・・るつぼの直線
部b117・・・ほぼ四角筒状の井戸部、18・・・中
空四角錐状の増径部、1つ・・・四角筒状の直胴部。
FIG. 1 is a horizontal and vertical sectional view showing the state of crystal production according to the present invention, FIG. 2 is a perspective view of a crucible for producing crystals showing the first embodiment of the present invention, and FIG. FIG. 4 is a vertical and horizontal cross-sectional view of a conventional crystal growth crucible with a well for storing seed crystals, and FIG. FIG. 3 is a perspective view of FIG. DESCRIPTION OF SYMBOLS 1... Well part for accommodating the interpolation crystal, 2... (011) plane part of orientation flat, 3... (0 1 1) plane part of orientation flat,
4. Cheek square cylindrical well part, 5... 1 diameter part, 6.
... Straight body part, 7... Seed crystal, 8... Growth crystal, 9
... Bifurcated body sealing material, 10... Corner part of crystal, 11...
・Corner part of crucible, 12...Cylindrical well part, 13・
...Hollow conical increasing diameter part, 14...Cylindrical straight body part,
15... Straight line part a of the crucible, 16... Straight line part b of the crucible 117... Almost square cylindrical well part, 18... Hollow square pyramid-shaped increasing diameter part, 1... Square cylinder The straight body part of the shape.

Claims (2)

【特許請求の範囲】[Claims] (1)結晶原料と種子結晶を収容し融解して冷却するこ
とにより種子結晶と同じ方位の単結晶を得る結晶成長方
法で用いる結晶形状を規定する結晶製造用るつぼにおい
て、るつぼの一部あるいは全部の内壁水平断面形状が円
形を基本として直線部分を一箇所あるいは複数箇所有す
る事を特徴とする結晶製造用るつぼ。
(1) In a crystal manufacturing crucible that defines the crystal shape used in a crystal growth method in which a crystal raw material and a seed crystal are stored, melted, and cooled to obtain a single crystal with the same orientation as the seed crystal, a part or all of the crucible is used. A crucible for producing crystals, characterized in that the horizontal cross-sectional shape of the inner wall of the crucible is basically circular and has one or more straight sections.
(2)結晶原料と種子結晶を収容し融解して冷却するこ
とにより種子結晶と同じ方位の単結晶を得る結晶成長方
法で用いる結晶形状を規定する結晶製造用るつぼにおい
て、るつぼの一部あるいは全部の内壁水平断面形状が多
角形状であることを特徴とする結晶製造用るつぼ。
(2) In a crystal manufacturing crucible that defines the crystal shape used in a crystal growth method that obtains a single crystal with the same orientation as the seed crystal by accommodating, melting and cooling the crystal raw material and the seed crystal, part or all of the crucible A crucible for producing crystals, characterized in that the horizontal cross-sectional shape of the inner wall thereof is polygonal.
JP1189322A 1989-07-21 1989-07-21 Crucible for crystal production Expired - Lifetime JP2721708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1189322A JP2721708B2 (en) 1989-07-21 1989-07-21 Crucible for crystal production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1189322A JP2721708B2 (en) 1989-07-21 1989-07-21 Crucible for crystal production

Publications (2)

Publication Number Publication Date
JPH0354184A true JPH0354184A (en) 1991-03-08
JP2721708B2 JP2721708B2 (en) 1998-03-04

Family

ID=16239420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1189322A Expired - Lifetime JP2721708B2 (en) 1989-07-21 1989-07-21 Crucible for crystal production

Country Status (1)

Country Link
JP (1) JP2721708B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306648A (en) * 2004-04-20 2005-11-04 Sumitomo Electric Ind Ltd Manufacturing method for compound single crystal and single crystal growing vessel therefor
JP2010132553A (en) * 2010-01-28 2010-06-17 Sumitomo Electric Ind Ltd Single crystal growing vessel used for method for producing compound single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135448U (en) * 1973-03-26 1974-11-21
JPS5565497U (en) * 1978-10-27 1980-05-06
JPS63123676U (en) * 1987-02-06 1988-08-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135448U (en) * 1973-03-26 1974-11-21
JPS5565497U (en) * 1978-10-27 1980-05-06
JPS63123676U (en) * 1987-02-06 1988-08-11

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306648A (en) * 2004-04-20 2005-11-04 Sumitomo Electric Ind Ltd Manufacturing method for compound single crystal and single crystal growing vessel therefor
JP4678137B2 (en) * 2004-04-20 2011-04-27 住友電気工業株式会社 Method for producing compound single crystal
JP2010132553A (en) * 2010-01-28 2010-06-17 Sumitomo Electric Ind Ltd Single crystal growing vessel used for method for producing compound single crystal

Also Published As

Publication number Publication date
JP2721708B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
CA1061688A (en) Silicon crystals and process for their preparation
CN101370970B (en) Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
US10131999B2 (en) Method for producing a silicon ingot having symmetrical grain boundaries
CN101755075A (en) Methods and apparatuses for manufacturing cast silicon from seed crystals
US3129061A (en) Process for producing an elongated unitary body of semiconductor material crystallizing in the diamond cubic lattice structure and the product so produced
Kurlov et al. Shaped crystal growth
CN110295391A (en) The preparation method of crystalline silicon ingot
US20150191846A1 (en) System and method of growing silicon ingots from seeds in a crucible and manufacture of seeds used therein
JP2006335582A (en) Crystalline silicon manufacturing unit and its manufacturing method
TW201443301A (en) Method for growing [beta]-ga2o3-based single crystal
CN107268069A (en) Method for laying seed crystal and method for producing pseudo-single crystal ingot
US3977934A (en) Silicon manufacture
JP7394332B2 (en) Growing method and processing method for single crystal ingot of iron gallium alloy, single crystal ingot of iron gallium alloy
US3162507A (en) Thick web dendritic growth
JPH0354184A (en) Crucible for crystal production
US4751059A (en) Apparatus for growing dendritic web crystals of constant width
KR100232537B1 (en) Rutile single crystals and their growth processes
US20020139296A1 (en) Method for growing single crystal of compound semiconductor and substrate cut out therefrom
US3413098A (en) Process for varying the width of sheets of web material
EP4001477A1 (en) Silicon ingot, silicon block, silicon substrate, silicon ingot production method, and solar cell
KR0165847B1 (en) Method of preparation for semiconductor wafer
JPH04362084A (en) Wafer preparation of semiconductor material
EP1085112A2 (en) Method of fabricating a single crystal
EP2791398A1 (en) Crucible for the production of crystalline semiconductor ingots and process for manufacturing the same
JP2546746Y2 (en) Vertical Bridgman crucible

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12