JP2018145078A - Method for growing lithium tantalate single crystal - Google Patents

Method for growing lithium tantalate single crystal Download PDF

Info

Publication number
JP2018145078A
JP2018145078A JP2017044640A JP2017044640A JP2018145078A JP 2018145078 A JP2018145078 A JP 2018145078A JP 2017044640 A JP2017044640 A JP 2017044640A JP 2017044640 A JP2017044640 A JP 2017044640A JP 2018145078 A JP2018145078 A JP 2018145078A
Authority
JP
Japan
Prior art keywords
axis
crystal
single crystal
seed crystal
clockwise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017044640A
Other languages
Japanese (ja)
Inventor
小池 孝幸
Takayuki Koike
孝幸 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017044640A priority Critical patent/JP2018145078A/en
Publication of JP2018145078A publication Critical patent/JP2018145078A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for growing a lithium tantalate (LT) single crystal by the Czochralski method, capable of simply and efficiently obtaining a RY cut substrate formed by rotating the Y-axis of an orthogonal coordinate system by α° (36≤α≤46) in the clockwise direction (clockwise rotation) around the X-axis.SOLUTION: The LT single crystal is grown using a seed crystal having a plane direction obtained by rotating the Y-axis by α° (36≤α≤46) 4°-±0.5° in the clockwise direction (clockwise rotation) around the X-axis, rotating the X-axis by β° (2°±0.5°) in the clockwise direction (clockwise rotation) around the Z-axis when rotating a seed crystal in the clockwise direction (the rotational direction of the seed crystal is clockwise when observing the growth state of the LT single crystal from right above) to grow it and rotating the X-axis by β°(2°±0.5°) in the counterclockwise direction (counterclockwise rotation) around the Z-axis when rotating the seed crystal in the counterclockwise direction (the rotational direction of the seed crystal is counterclockwise when observing the growth state of the LT single crystal from right above) to grow it.SELECTED DRAWING: Figure 8

Description

本発明は、チョクラルスキー法(以下、CZ法と略記する場合がある)によるタンタル酸リチウム単結晶の育成方法に係り、特に、育成されたタンタル酸リチウム単結晶から所望とするRYカット(Rotated Y cut)基板が効率的に得られるタンタル酸リチウム単結晶の育成方法に関する。   The present invention relates to a method for growing a lithium tantalate single crystal by the Czochralski method (hereinafter sometimes abbreviated as CZ method), and in particular, a desired RY cut (Rotated) from the grown lithium tantalate single crystal. Y cut) relates to a method for growing a lithium tantalate single crystal from which a substrate can be efficiently obtained.

タンタル酸リチウム(以下、LTと略記する場合がある)単結晶は圧電性を有しており、圧電性を利用したSAW(表面弾性波)デバイスの需要が大きく、市場は爆発的な成長をみせている。中でも、携帯電話に代表される移動体通信用途が大きい。   Lithium tantalate (hereinafter sometimes abbreviated as LT) single crystals have piezoelectricity, and there is a great demand for SAW (Surface Acoustic Wave) devices using piezoelectricity, and the market has shown explosive growth. ing. In particular, mobile communication applications represented by mobile phones are large.

SAWデバイスの元となるLT単結晶は、CZ法と呼ばれる引き上げ法により育成される場合が多い。LT単結晶からデバイス用基板を切り出し、研磨し、電極を形成し、チップに裁断され、パッケージングを経て、SAWデバイスは完成する。尚、特に記さない限り、本明細書でいう結晶は単結晶を意味する。   An LT single crystal that is the basis of a SAW device is often grown by a pulling method called a CZ method. A device substrate is cut out from the LT single crystal, polished, electrodes are formed, cut into chips, and the SAW device is completed through packaging. Unless otherwise specified, the crystal in this specification means a single crystal.

CZ法による単結晶育成法の概要を図1に示す。高融点の原料融液6を保持するため、貴金属ルツボ4はイリジウム製が使われる場合が多く、ワークコイル8による誘導加熱式が多い。まず、原料を融解し、原料融液表面を融点に調整し、種結晶3を原料融液6表面に接触(種付けと称する)させる。そして原料融液を過冷却とし、種結晶3を上方へ引き上げると、種結晶3を始点とした結晶成長が始まる。種結晶3は種結晶支持棒5に種結晶固定ピン7等で固定されるが、種結晶3が固定できれば方法は問わない。簡易に貴金属ワイヤーで括り付けて固定する場合もある。   An outline of the single crystal growth method by the CZ method is shown in FIG. In order to hold the high melting point raw material melt 6, the noble metal crucible 4 is often made of iridium, and there are many induction heating types using the work coil 8. First, the raw material is melted, the surface of the raw material melt is adjusted to the melting point, and the seed crystal 3 is brought into contact with the surface of the raw material melt 6 (referred to as seeding). Then, when the raw material melt is supercooled and the seed crystal 3 is pulled upward, crystal growth starts from the seed crystal 3. The seed crystal 3 is fixed to the seed crystal support rod 5 with a seed crystal fixing pin 7 or the like, but the method is not limited as long as the seed crystal 3 can be fixed. There is also a case where it is simply fixed with a precious metal wire.

結晶の成長を促進させるため上記種結晶3を回転させる。種結晶支持棒5は上方のロードセル(図示せず)に吊られている場合が多く、結晶の重量を知ることができ、重量から直径を計算し、融液の温度を調整し、所望の直径に制御し、円柱状の結晶が育成される。   The seed crystal 3 is rotated to promote crystal growth. The seed crystal support rod 5 is often suspended by an upper load cell (not shown), so that the weight of the crystal can be known, the diameter is calculated from the weight, the temperature of the melt is adjusted, and the desired diameter is obtained. And a columnar crystal is grown.

育成された結晶は、歪除去のためのアニール処理、単一分極化処理を経て、加工工程へ引き渡される。加工では、円筒研削にて最終製品よりもやや太めの円柱に加工され、マルチワイヤーソーにより基板状に切断される場合が多い。切断された基板は、最終的に外周べべリングにより製品直径に仕上げられ、かつ、面取り仕上げされる。尚、LT基板は直径4〜6インチのサイズが流通している。   The grown crystal is subjected to an annealing process for removing strain and a single polarization process, and then delivered to the processing step. In processing, it is often processed into a cylinder slightly thicker than the final product by cylindrical grinding and cut into a substrate by a multi-wire saw. The cut substrate is finally finished to a product diameter by peripheral beveling and chamfered. The LT substrate has a diameter of 4 to 6 inches.

ところで、育成された結晶に対するSAWデバイスの要求は、結晶品質は当然ながら、結晶の方位も重要な要求項目となる。LT単結晶の場合、図2に示すように結晶のa軸をX軸、c軸をZ軸、X軸とZ軸に直交する軸をY軸と呼んでおり、SAWデバイスの特性は、基板13の面方位、すなわち基板13面からの垂線が向く方向により変化する。   By the way, as for the requirement of the SAW device for the grown crystal, the crystal orientation is an important requirement item as well as the crystal quality. In the case of an LT single crystal, as shown in FIG. 2, the a-axis of the crystal is called the X-axis, the c-axis is called the Z-axis, and the axis perpendicular to the X-axis and the Z-axis is called the Y-axis. 13 plane orientation, that is, the direction in which the perpendicular from the surface of the substrate 13 faces.

一般に、SAWデバイスに好適なLT基板の面方位は、図3に示すように、基板13の面がX軸と平行で、かつ、直交座標系のY軸をX軸の回りに右回り(時計回り)にα°(36°≦α°≦46°)回転させた範囲とされる。この基板13は、一般にRYカット(Rotated Y cut)基板と総称され、例えば、回転角が42°の場合は42°RYカット基板と呼ばれ、42°RYと表記される。   In general, as shown in FIG. 3, the plane orientation of the LT substrate suitable for the SAW device is such that the surface of the substrate 13 is parallel to the X axis and the Y axis of the Cartesian coordinate system is clockwise around the X axis (clockwise). Rotation) is a range rotated by α ° (36 ° ≦ α ° ≦ 46 °). This substrate 13 is generally called a RY cut (Rotated Y cut) substrate. For example, when the rotation angle is 42 °, the substrate 13 is called a 42 ° RY cut substrate and expressed as 42 ° RY.

尚、図3および図4においてα°で示す回転角15をRY方向と呼び、RY方向に直交する方向、すなわち、基板13(図4ではウェハ13)の面とX軸との平行差をX方向のズレと呼ぶ場合がある。   3 and 4, the rotation angle 15 indicated by α ° is called the RY direction, and the direction perpendicular to the RY direction, that is, the parallel difference between the surface of the substrate 13 (wafer 13 in FIG. 4) and the X axis is X. Sometimes referred to as a deviation in direction.

このようにLT単結晶は多様な基板が求められ、例えば0.5°刻みで作り分けて、微妙な特性差を狙うことも珍しくない。よって、多様な方位のSAWデバイス用基板を効率よく得るため、結晶育成の段階で、所望の面方位に結晶を精度よく引き上げることが望ましい。極端に言えば、36°RYで育成されたLT単結晶から、42°RYカット基板を作製しようとすれば相応の加工ロスを生じることになってしまう。このため、従来から所望とする面方位に結晶を引き上げている。   In this way, LT single crystals are required to have various substrates. For example, it is not uncommon to aim at subtle characteristic differences by making them in increments of 0.5 °, for example. Therefore, in order to efficiently obtain substrates for SAW devices having various orientations, it is desirable to accurately pull up the crystals in a desired plane orientation at the stage of crystal growth. Extremely speaking, if a 42 ° RY cut substrate is produced from an LT single crystal grown at 36 ° RY, a corresponding processing loss will occur. For this reason, the crystal is conventionally pulled up to a desired plane orientation.

図4は、LTやLN(ニオブ酸リチウム)単結晶の方位を示す説明図であり、例えば、42°RYのRYカット基板を得たい場合には、結晶10が引き上げ育成される結晶育成軸14とY軸とのなす角α°(すなわち、回転角15)を42°としている。   FIG. 4 is an explanatory view showing the orientation of an LT or LN (lithium niobate) single crystal. For example, when a RY cut substrate of 42 ° RY is desired, the crystal growth axis 14 on which the crystal 10 is pulled up and grown. The angle α ° (ie, the rotation angle 15) formed by the Y axis and the Y axis is 42 °.

尚、CZ法は、種結晶16の方位に倣って単結晶を成長させる方法であるため、所望とするRYカット基板の面方位に対応して種結晶16も方位毎に必要となる。   Since the CZ method is a method of growing a single crystal following the orientation of the seed crystal 16, the seed crystal 16 is also required for each orientation corresponding to the desired plane orientation of the RY cut substrate.

そして、種結晶もまた育成された結晶から作製されるが、種結晶は消耗品で、多くの場合、一回の育成で寿命となるため、図5に示すように結晶育成軸14と平行に種結晶16を切り出すのが効率上好ましい。尚、図5中、符号16aは結晶トップ側、符号16bは結晶ボトム側、および、符号16cは固定用孔をそれぞれ示す。   The seed crystal is also produced from the grown crystal. However, since the seed crystal is a consumable product and in many cases has a lifetime after one growth, it is parallel to the crystal growth axis 14 as shown in FIG. It is preferable in terms of efficiency to cut out the seed crystal 16. In FIG. 5, reference numeral 16a denotes a crystal top side, reference numeral 16b denotes a crystal bottom side, and reference numeral 16c denotes a fixing hole.

特開2013−001581号公報JP 2013-001581 A

ところで、36〜46°RYのLT単結晶をCZ法により育成する場合、図6に示すように成長した結晶10に曲がりが見られ、この曲りに起因して以下の問題が存在した。   By the way, when a 36-46 ° RY LT single crystal is grown by the CZ method, the crystal 10 grown as shown in FIG. 6 is bent, and the following problems exist due to this bending.

例えば、曲がりのある結晶10を円筒研削する場合、歩留りを考慮すると、図6の引上げ方向に沿って加工するよりも、結晶10の形状にできるだけ倣って加工(すなわち、図6の二点鎖線を中心軸100に加工)するのが望ましい。しかし、図6の二点鎖線を中心軸100に加工した場合、結果的に、円筒研削の側面と、種結晶16の方位すなわち所望の育成方位とのなす角が90°ではなくなってしまう。曲がりの量としては数度で1〜5°といったレベルである。この状態(すなわち、図6の二点鎖線を中心軸100に円筒研削加工した状態)で、基板の方位が所望の方位となるようにマルチワイヤーソーで結晶10を切断すると得られる基板は楕円となる。すなわち、図6の一点鎖線で示す箇所を切断すれば基板(所望とする方位ではない)は円形となる(図6の二点鎖線を中心軸100にして上記円筒研削加工がなされているため)が、基板の方位が所望の方位となるようにマルチワイヤーソーで図6の破線で示す箇所を切断すれば基板は楕円となる。   For example, when cylindrically grinding a crystal 10 with a bend, considering the yield, the crystal 10 is processed as closely as possible to the shape of the crystal 10 rather than being processed along the pulling direction of FIG. It is desirable to process the central shaft 100). However, when the two-dot chain line in FIG. 6 is processed into the central axis 100, as a result, the angle formed between the side surface of the cylindrical grinding and the orientation of the seed crystal 16, that is, the desired growth orientation is not 90 °. The amount of bending is a level of 1 to 5 degrees in several degrees. In this state (that is, a state in which the two-dot chain line in FIG. 6 is cylindrically ground on the central axis 100), the substrate obtained by cutting the crystal 10 with a multi-wire saw so that the orientation of the substrate becomes a desired orientation is an ellipse. Become. That is, if the part shown with the dashed-dotted line of FIG. 6 is cut | disconnected, a board | substrate (it is not a desired azimuth | direction) will become circular (because the said cylindrical grinding process is made by making the two-dot chain line of FIG. 6 into the central axis 100). However, if a portion indicated by a broken line in FIG. 6 is cut with a multi-wire saw so that the orientation of the substrate becomes a desired orientation, the substrate becomes an ellipse.

しかし、楕円形状の基板をベベリング加工で円形にするには、べべリング加工での負荷が増大し、加工時間を長大化させ、基板に割れや欠け等の不良を誘発する。また、マルチワイヤーソー機上での方位調整量が大きくなることや、ワイヤーによる切断加工幅が結晶位置により変化することになるため、精度不良、特に反りを大きくする原因となる。   However, in order to make an elliptical substrate into a circle by beveling processing, the load in the beveling processing is increased, the processing time is lengthened, and defects such as cracks and chips are induced in the substrate. In addition, the amount of orientation adjustment on the multi-wire saw machine is increased, and the cutting width by the wire changes depending on the crystal position, which causes an increase in accuracy, particularly warpage.

上記結晶成長の曲がりは、36〜46°RYという方位が、いわゆるファセット面と呼ばれる(012)面から離れていることにそもそも起因しているが、育成炉の保温材構成による温度勾配により左右され、曲がり量そのものは、保温材構成、炉により若干ばらつく筈である。そして、通常は曲がろうとする結晶に対し、炉の温度勾配にて対抗する場合が多いが、結晶の回転方向を反転させることにより(特許文献1参照)、できるだけ曲がらない結晶を得ようする試みもなされている。   The above-mentioned bending of crystal growth originates from the fact that the orientation of 36 to 46 ° RY is away from the (012) plane called the so-called facet plane, but it is influenced by the temperature gradient due to the thermal insulation material configuration of the growth furnace. The amount of bending itself should vary slightly depending on the heat insulating material composition and furnace. In general, the temperature gradient of the furnace often counters the crystal that is about to bend, but by reversing the rotation direction of the crystal (see Patent Document 1), an attempt to obtain a crystal that is not bent as much as possible. It has also been made.

また、結晶成長の上記曲がりについて、RY方向と、その直交方向であるX軸方向に分解すると、(012)面と垂直で成長界面の影響を受けない筈のX軸方向にも曲がりが確認され、原因は不明であった。   In addition, when the above-mentioned bending of crystal growth is decomposed into the RY direction and the X-axis direction that is the orthogonal direction, bending is also confirmed in the X-axis direction of the ridge that is perpendicular to the (012) plane and is not affected by the growth interface. The cause was unknown.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、育成結晶の曲がりに起因する問題を解消して、所望とするRYカット基板が効率的に得られるタンタル酸リチウム単結晶の育成方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is to solve the problem caused by the bending of the grown crystal and to obtain a desired RY cut substrate efficiently. The object is to provide a method for growing a lithium acid single crystal.

本発明は、所望とする育成方位に対し種結晶が予めオフ角を備えており、オフ角はRY方向およびその直交方向の二方向で管理され、二方向で管理されたオフ角を有する上記種結晶を用いてタンタル酸リチウム単結晶を育成することを特徴としている。   In the present invention, the seed crystal has an off-angle in advance with respect to a desired growth orientation, and the off-angle is managed in two directions of the RY direction and its orthogonal direction, and the above-mentioned seed having an off-angle managed in two directions. It is characterized by growing a lithium tantalate single crystal using the crystal.

すなわち、本発明は、
原料融液に種結晶を接触させかつ該種結晶を回転させながら引上げて単結晶を育成するチョクラルスキー法によるタンタル酸リチウム単結晶の育成方法であって、タンタル酸リチウム単結晶のa軸をX軸、c軸をZ軸、X軸とZ軸に直交する軸をY軸とした直交座標系のY軸をX軸の回りに右回り(時計回り)にα°(36°≦α°≦46°)回転させたRYカット基板用のタンタル酸リチウム単結晶を育成する方法において、
Y軸をX軸の回りに右回り(時計回り)にα°(36°≦α°≦46°)−4°±0.5°回転させ、かつ、上記種結晶を右回り(タンタル酸リチウム単結晶の育成状態を真上から観察したときの種結晶の回転方向が右回りであること)に回転させて育成する場合にはX軸をZ軸の回りに右回り(時計回り)にβ°(2°±0.5°)回転させ、上記種結晶を左回り(タンタル酸リチウム単結晶の育成状態を真上から観察したときの種結晶の回転方向が左回りであること)に回転させて育成する場合にはX軸をZ軸の回りに左回り(反時計回り)にβ°(2°±0.5°)回転させた面方位の種結晶を用いてタンタル酸リチウム単結晶を育成することを特徴とするものである。
That is, the present invention
A method for growing a lithium tantalate single crystal by the Czochralski method of bringing a seed crystal into contact with a raw material melt and pulling the seed crystal while rotating the seed crystal, wherein the a-axis of the lithium tantalate single crystal is The Y axis of the Cartesian coordinate system with the X axis, the c axis as the Z axis, and the axis orthogonal to the X axis and the Z axis as the Y axis is α ° clockwise (clockwise) around the X axis (36 ° ≦ α ° ≦ 46 °) In a method for growing a rotated lithium tantalate single crystal for an RY cut substrate,
The Y axis is rotated clockwise around the X axis by α ° (36 ° ≦ α ° ≦ 46 °) −4 ° ± 0.5 °, and the seed crystal is rotated clockwise (lithium tantalate) When the growth state of the single crystal is observed when viewed from directly above, the rotation direction of the seed crystal is clockwise.) When the crystal is grown by rotating the X axis clockwise around the Z axis (clockwise), β Rotate ° (2 ° ± 0.5 °) and rotate the seed crystal counterclockwise (the rotation direction of the seed crystal when the growth state of the lithium tantalate single crystal is observed from directly above is counterclockwise) In the case of growing, the lithium tantalate single crystal using a seed crystal having a plane orientation obtained by rotating the X-axis counterclockwise (counterclockwise) around the Z-axis by β ° (2 ° ± 0.5 °) It is characterized by nurturing.

本発明に係る育成方法を用いて得られる36〜46°RYのLT単結晶は、結晶形状に倣って円筒研削された場合、円筒研削の側面は、該側面と所望とする育成方位とのなす角が概ね90°となる理想的な形状に調整される。すなわち、所望とする育成方位に対して、成長方向が平行なLT単結晶を得ることが可能となる。   When a 36 to 46 ° RY LT single crystal obtained by using the growth method according to the present invention is subjected to cylindrical grinding following the crystal shape, the side surface of the cylindrical grinding is formed between the side surface and a desired growth orientation. The ideal shape is adjusted so that the angle is approximately 90 °. That is, it is possible to obtain an LT single crystal whose growth direction is parallel to a desired growth orientation.

このため、育成された36〜46°RYのLT単結晶から所望とするRYカット基板を簡便かつ効率的に得ることが可能となる。   For this reason, a desired RY cut substrate can be obtained easily and efficiently from the grown 36-46 ° RY LT single crystal.

CZ法による単結晶の育成法を示す説明図。Explanatory drawing which shows the growth method of the single crystal by CZ method. 基本のYカット基板に係る概略斜視図。The schematic perspective view which concerns on a basic Y cut board | substrate. 基本のRYカット基板に係る概略斜視図。The schematic perspective view which concerns on a basic RY cut board | substrate. SAWデバイスに好適なLTやLN単結晶の方位を示す説明図。Explanatory drawing which shows the orientation of LT and LN single crystal suitable for a SAW device. 育成された単結晶から切り出される種結晶を示す説明図。Explanatory drawing which shows the seed crystal cut out from the grown single crystal. 36〜46°RYのLT単結晶をCZ法により育成した場合に見られる結晶の曲りを示す説明図。Explanatory drawing which shows the curvature of the crystal | crystallization seen when the LT single crystal of 36-46 degrees RY is grown by CZ method. 36〜46°RYのLT単結晶をCZ法により育成した場合に観察される結晶のRY方向とX方向の曲りを示し、図7(A)はLT単結晶の育成状態を真上から観察したときに種結晶を右回り(時計回り)に回転させて育成した場合のLT単結晶のZ方向とX方向の曲りを示す説明図、図7(B)はLT単結晶の育成状態を真上から観察したときに種結晶を左回り(反時計回り)に回転させて育成した場合のLT単結晶のZ方向とX方向の曲りを示す説明図。FIG. 7 (A) shows the growth state of the LT single crystal from directly above, showing the RY direction and X direction bending of the crystal observed when a 36-46 ° RY LT single crystal is grown by the CZ method. 7B is an explanatory diagram showing the bending of the LT single crystal in the Z direction and the X direction when the seed crystal is grown clockwise (clockwise), and FIG. Explanatory drawing which shows the bending of the Z direction of an LT single crystal at the time of growing by rotating a seed crystal counterclockwise (counterclockwise) when observing from. 図8(A)はY軸をX軸の回りに右回り(時計回り)にα°−4°±0.5°回転させた種結晶の面方位を示す概略斜視図、図8(B)は図8(A)の側面図、および、図8(C)はY軸をX軸の回りに右回り(時計回り)にα°−4°±0.5°回転させかつX軸をZ軸の回りに左回り(反時計回り)にβ°回転させた本発明に係る種結晶の面方位を示す概略斜視図。FIG. 8A is a schematic perspective view showing the plane orientation of the seed crystal obtained by rotating the Y-axis clockwise around the X-axis by α ° −4 ° ± 0.5 °, and FIG. 8B. Is a side view of FIG. 8 (A), and FIG. 8 (C) is a case where the Y axis is rotated clockwise around the X axis (clockwise) by α ° −4 ° ± 0.5 ° and the X axis is Z The schematic perspective view which shows the surface orientation of the seed crystal based on this invention rotated by (beta) degrees counterclockwise (counterclockwise) around the axis | shaft.

以下、本発明に係る実施の形態について図面を用いて詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

(1)LT単結晶をCZ法により育成した場合に観察される結晶の曲り
図7は36〜46°RYのLT単結晶をCZ法により育成した場合に観察される結晶のZ方向とX方向の曲りを示しており、図7(A)は種結晶を真上から観察したときに右回り(時計回り)に回転させて育成した場合のLT単結晶のRY方向とX方向の曲りを示し、図7(B)は種結晶を真上から観察したときに左回り(反時計回り)に回転させて育成した場合のLT単結晶のRY方向とX方向の曲りを示している。
(1) Bending of crystal observed when LT single crystal is grown by CZ method FIG. 7 shows Z direction and X direction of crystal observed when LT single crystal of 36-46 ° RY is grown by CZ method. FIG. 7A shows the bending in the RY direction and the X direction of the LT single crystal when grown by rotating clockwise (clockwise) when the seed crystal is observed from directly above. FIG. 7B shows the bending in the RY direction and the X direction of the LT single crystal when the seed crystal is grown by rotating counterclockwise (counterclockwise) when observed from directly above.

尚、図7(A)と図7(B)において紙面は育成方位に垂直である。   7A and 7B, the plane of the paper is perpendicular to the growth direction.

(1-1)RY方向の曲がり
RY方向の曲がりは、上述したように成長界面である33°RY方向へ成長しようとする力に起因して単純に曲がり、本発明者が組み立てた育成炉、保温材構成では、種結晶に対し、RY方向曲がり20および20’が約4°であった。
(1-1) Bending in the RY direction The bending in the RY direction is simply caused by the force to grow in the 33 ° RY direction, which is the growth interface, as described above. In the heat insulating material configuration, the RY-direction bends 20 and 20 ′ were about 4 ° with respect to the seed crystal.

(1-2)X方向の曲がり
原因不明であったX方向の曲がりは、種結晶に対し、X方向曲がり21および21’において約2°であった。更に、本発明者が鋭意研究した結果、上記X方向曲がり21および21’は、成長界面である33°RY方向へ成長しようとする力と、種結晶の回転する方向により決まる現象であることが発見され、種結晶の回転方向により結晶成長曲がりの方向は逆になることが確認された。図7(A)は種結晶を真上から観察したときに右回り(時計回り)に回転させて育成した場合、図7(B)は種結晶を真上から観察したときに左回り(反時計回り)に回転させて育成した場合の曲がり方向をそれぞれ示している。
(1-2) X-direction bending The X-direction bending, whose cause was unknown, was about 2 ° in the X-direction bendings 21 and 21 ′ with respect to the seed crystal. Furthermore, as a result of intensive studies by the present inventors, the X-direction bends 21 and 21 'are phenomena determined by the force to grow in the 33 ° RY direction, which is the growth interface, and the direction in which the seed crystal rotates. As a result, it was confirmed that the direction of the crystal growth curve is reversed depending on the rotation direction of the seed crystal. 7A shows a case where the seed crystal is grown by rotating clockwise (clockwise) when the seed crystal is observed from directly above, and FIG. 7B is counterclockwise (counterclockwise) when the seed crystal is observed from directly above. The direction of the bend in the case of growing by rotating in a clockwise direction is shown.

(1-3)種結晶の回転速度
種結晶の回転速度について、常識的な範囲(1〜15RPM)で変化させ、成長曲がりを調べたところ、その量は変化しないことが確認された。保温材による温度勾配があるため、曲がりの最大値はある程度、規制されていると考えられる。極端に曲がってしまった場合、円筒研削、基板を得るための切断が行えないため、一般的な育成炉であれば、成長曲がりの量はおのずと同等になっていると想像される。当然ながら多少の差はあり、微調整を要することは言うまでもない。
(1-3) Rotation speed of seed crystal When the rotation speed of the seed crystal was changed in a common sense range (1 to 15 RPM) and the growth curve was examined, it was confirmed that the amount did not change. Since there is a temperature gradient due to the heat insulating material, the maximum value of bending is considered to be regulated to some extent. In the case of extreme bending, cylindrical grinding and cutting for obtaining a substrate cannot be performed. Therefore, in a general growth furnace, it is assumed that the amount of growth bending is naturally equal. Of course, there are some differences, and it goes without saying that fine adjustment is required.

(2)本発明に係るLT単結晶の育成方法
育成結晶の曲がる量とその方向が本発明者により特定されたことから、育成結晶の曲がりに起因した上記問題を解決することが可能となる。
(2) Method for Growing LT Single Crystal According to the Present Invention Since the inventor has specified the amount and direction of bending of the grown crystal, it is possible to solve the above-described problems caused by the bent crystal.

すなわち、CZ法による本発明の育成方法は、
直交座標系のY軸をX軸の回りに右回り(時計回り)にα°(36°≦α°≦46°)回転させたRYカット基板用のタンタル酸リチウム単結晶を育成する方法を前提とし、
Y軸をX軸の回りに右回り(時計回り)にα°(36°≦α°≦46°)−4°±0.5°回転させ、かつ、上記種結晶を右回り(タンタル酸リチウム単結晶の育成状態を真上から観察したときの種結晶の回転方向が右回りであること)に回転させて育成する場合にはX軸をZ軸の回りに右回り(時計回り)にβ°(2°±0.5°)回転させ、上記種結晶を左回り(タンタル酸リチウム単結晶の育成状態を真上から観察したときの種結晶の回転方向が左回りであること)に回転させて育成する場合にはX軸をZ軸の回りに左回り(反時計回り)にβ°(2°±0.5°)回転させた面方位の種結晶を用いてタンタル酸リチウム単結晶を育成することを特徴とするものである。
That is, the growing method of the present invention by the CZ method is:
It is premised on a method of growing a lithium tantalate single crystal for an RY cut substrate in which the Y axis of the Cartesian coordinate system is rotated α ° (36 ° ≦ α ° ≦ 46 °) clockwise around the X axis. age,
The Y axis is rotated clockwise around the X axis by α ° (36 ° ≦ α ° ≦ 46 °) −4 ° ± 0.5 °, and the seed crystal is rotated clockwise (lithium tantalate) When the growth state of the single crystal is observed when viewed from directly above, the rotation direction of the seed crystal is clockwise.) When the crystal is grown by rotating the X axis clockwise around the Z axis (clockwise), β Rotate ° (2 ° ± 0.5 °) and rotate the seed crystal counterclockwise (the rotation direction of the seed crystal when the growth state of the lithium tantalate single crystal is observed from directly above is counterclockwise) In the case of growing, the lithium tantalate single crystal using a seed crystal having a plane orientation obtained by rotating the X-axis counterclockwise (counterclockwise) around the Z-axis by β ° (2 ° ± 0.5 °) It is characterized by nurturing.

例えば42°RY結晶を所望するのであれば、種結晶の方位を、RY方向で42°−4°±0.5°=38°±0.5°、X方向で2°±0.5°とし、予めオフ角を与えた種結晶を用意すればよいのである。   For example, if a 42 ° RY crystal is desired, the orientation of the seed crystal is 42 ° -4 ° ± 0.5 ° = 38 ° ± 0.5 ° in the RY direction and 2 ° ± 0.5 ° in the X direction. It is sufficient to prepare a seed crystal with an off-angle given in advance.

本発明においては結晶の曲がりについて変化は無いのであるが、結晶の曲がる方向を調整するのである。すなわち、所望の方位に向かって曲がるよう仕向ければよい。   In the present invention, there is no change in the bending of the crystal, but the direction of bending of the crystal is adjusted. In other words, it may be directed to turn toward a desired direction.

そして、RY方向の曲がりに関しては一般的に知られている場合が多い。しかし、X方向の振る舞いと、種結晶の回転方向との関係を理解した上で、種結晶に係るオフ角の管理を行うことで、所望とするRYカット基板を簡便かつ効率的に製造できる点が本発明に係る育成方法の最大の特徴である。   And there are many cases where the bending in the RY direction is generally known. However, by understanding the relationship between the behavior in the X direction and the rotation direction of the seed crystal, it is possible to easily and efficiently manufacture a desired RY cut substrate by managing the off angle related to the seed crystal. Is the greatest feature of the growing method according to the present invention.

以下、本発明の実施例について比較例を挙げて具体的に説明する。   Examples of the present invention will be specifically described below with reference to comparative examples.

[実施例1]
チョクラルスキー法により直径4インチ、36°RYのLT単結晶の育成を行った。結晶長は約80mmである。
[Example 1]
An LT single crystal having a diameter of 4 inches and 36 ° RY was grown by the Czochralski method. The crystal length is about 80 mm.

適用した種結晶の方位は、RY方向で32°RY、X方向で2°と予めオフ角を備えたものとした。種結晶の回転方向は右回りで、回転数は5RPMとした。   The orientation of the applied seed crystal was preliminarily provided with an off angle of 32 ° RY in the RY direction and 2 ° in the X direction. The direction of rotation of the seed crystal was clockwise and the number of rotations was 5 RPM.

得られたLT単結晶を円筒研削し、円筒研削の側面と主面方位との角度、マルチワイヤーソーでの反り値、べベリング加工時間と歩留りを以下の表1に示す。   The obtained LT single crystal was subjected to cylindrical grinding, and the angle between the side surface of the cylindrical grinding and the principal surface orientation, the warp value with a multi-wire saw, the beveling time and the yield are shown in Table 1 below.

Figure 2018145078
Figure 2018145078

実施例1においては、円筒研削されたLT単結晶の側面と、所望とする36°RYのLT単結晶の主面方位との角度が90.5°と理想的な形状に調整されるため、育成された36°RYのLT単結晶から所望とする36°RYカット基板を簡便かつ効率的に製造することが可能となる。   In Example 1, since the angle between the side surface of the LT single crystal subjected to cylindrical grinding and the principal surface orientation of the desired 36 ° RY LT single crystal is adjusted to 90.5 ° to an ideal shape, A desired 36 ° RY cut substrate can be easily and efficiently manufactured from the grown 36 ° RY LT single crystal.

[比較例1]
チョクラルスキー法により直径4インチ、36°RYのLT単結晶の育成を行った。結晶長は約80mmである。
[Comparative Example 1]
An LT single crystal having a diameter of 4 inches and 36 ° RY was grown by the Czochralski method. The crystal length is about 80 mm.

適用した種結晶の方位は、RY方向で36°RY、X方向で0°と予めオフ角を備えていないものとした。種結晶の回転方向は右回りで、回転数は5RPMとした。   The orientation of the applied seed crystal was 36 ° RY in the RY direction and 0 ° in the X direction, and had no off-angle in advance. The direction of rotation of the seed crystal was clockwise and the number of rotations was 5 RPM.

得られたLT単結晶を円筒研削し、円筒研削の側面と主面方位との角度、マルチワイヤーソーでの反り値、べベリング加工時間と歩留りを以下の表2に示す。   The obtained LT single crystal was subjected to cylindrical grinding, and the angle between the side surface of the cylindrical grinding and the main surface orientation, the warp value in the multi-wire saw, the beveling time and the yield are shown in Table 2 below.

Figure 2018145078
Figure 2018145078

比較例1においては、円筒研削されたLT単結晶の側面と、所望とする36°RYのLT単結晶の主面方位との角度が94.0°である(90°から4.0°ずれている)ため、マルチワイヤーソーで切断し、得られたRYカット基板の形状が楕円形となった。   In Comparative Example 1, the angle between the side surface of the cylindrically ground LT single crystal and the principal plane orientation of the desired 36 ° RY LT single crystal is 94.0 ° (deviation from 90 ° to 4.0 °). Therefore, the shape of the RY cut substrate obtained by cutting with a multi-wire saw was elliptical.

このため、べべリング加工時間が2.5分/枚と長くなり、歩留まりも悪化した。   For this reason, the beveling time was as long as 2.5 minutes / sheet, and the yield was also deteriorated.

[実施例2]
チョクラルスキー法により直径4インチ、38°RYのLT単結晶の育成を行った。結晶長は約100mmである。
[Example 2]
An LT single crystal having a diameter of 4 inches and 38 ° RY was grown by the Czochralski method. The crystal length is about 100 mm.

適用した種結晶の方位は、RY方向で34°RY、X方向で2°と予めオフ角を備えたものとした。種結晶の回転方向は右回りで、回転数は5RPMとした。   The orientation of the applied seed crystal was preliminarily provided with an off angle of 34 ° RY in the RY direction and 2 ° in the X direction. The direction of rotation of the seed crystal was clockwise and the number of rotations was 5 RPM.

得られたLT単結晶を円筒研削し、円筒研削の側面と主面方位との角度、マルチワイヤーソーでの反り値、べベリング加工時間と歩留りを以下の表3に示す。   The obtained LT single crystal was subjected to cylindrical grinding, and the angle between the side surface of the cylindrical grinding and the principal surface orientation, the warp value in the multi-wire saw, the beveling time and the yield are shown in Table 3 below.

Figure 2018145078
Figure 2018145078

実施例2においては、円筒研削されたLT単結晶の側面と、所望とする38°RYのLT単結晶の主面方位との角度が90.2°と理想的な形状に調整されるため、育成された38°RYのLT単結晶から所望とする38°RYカット基板を簡便かつ効率的に製造することが可能となる。   In Example 2, since the angle between the side surface of the LT single crystal subjected to cylindrical grinding and the main surface orientation of the desired LT single crystal of 38 ° RY is adjusted to 90.2 ° to an ideal shape, A desired 38 ° RY cut substrate can be easily and efficiently manufactured from the grown 38 ° RY LT single crystal.

[比較例2]
チョクラルスキー法により直径4インチ、38°RYのLT単結晶の育成を行った。結晶長は約100mmである。
[Comparative Example 2]
An LT single crystal having a diameter of 4 inches and 38 ° RY was grown by the Czochralski method. The crystal length is about 100 mm.

適用した種結晶の方位は、RY方向で38°RY、X方向で0°と予めオフ角を備えていないものとした。種結晶の回転方向は右回りで、回転数は5RPMとした。   The orientation of the applied seed crystal was 38 ° RY in the RY direction and 0 ° in the X direction, and had no off-angle in advance. The direction of rotation of the seed crystal was clockwise and the number of rotations was 5 RPM.

得られたLT単結晶を円筒研削し、円筒研削の側面と主面方位との角度、マルチワイヤーソーでの反り値、べベリング加工時間と歩留りを以下の表4に示す。   The obtained LT single crystal was subjected to cylindrical grinding, and the angle between the side surface of the cylindrical grinding and the principal surface orientation, the warp value in the multi-wire saw, the beveling time and the yield are shown in Table 4 below.

Figure 2018145078
Figure 2018145078

比較例2においては、円筒研削されたLT単結晶の側面と、所望とする38°RYのLT単結晶の主面方位との角度が94.7°である(90°から4.7°ずれている)ため、マルチワイヤーソーで切断し、得られたRYカット基板の形状が楕円形となった。   In Comparative Example 2, the angle between the side surface of the cylindrically ground LT single crystal and the principal plane orientation of the desired 38 ° RY LT single crystal is 94.7 ° (shifted from 90 ° to 4.7 °). Therefore, the shape of the RY cut substrate obtained by cutting with a multi-wire saw was elliptical.

このため、べべリング加工時間が15分/枚と長くなり、歩留まりも悪化した。   For this reason, the beveling time was as long as 15 minutes / sheet, and the yield was also deteriorated.

[実施例3]
チョクラルスキー法により直径6インチ、42°RYのLT単結晶の育成を行った。結晶長は約50mmである。
[Example 3]
An LT single crystal having a diameter of 6 inches and 42 ° RY was grown by the Czochralski method. The crystal length is about 50 mm.

適用した種結晶の方位は、RY方向で38°RY、X方向で2°と予めオフ角を備えたものとした。種結晶の回転方向は右回りで、回転数は5RPMとした。   The orientation of the applied seed crystal was preliminarily provided with an off angle of 38 ° RY in the RY direction and 2 ° in the X direction. The direction of rotation of the seed crystal was clockwise and the number of rotations was 5 RPM.

得られたLT単結晶を円筒研削し、円筒研削の側面と主面方位との角度、マルチワイヤーソーでの反り値、べベリング加工時間と歩留りを以下の表5に示す。   The obtained LT single crystal was subjected to cylindrical grinding, and the angle between the side surface of the cylindrical grinding and the main surface orientation, the warp value in the multi-wire saw, the beveling time and the yield are shown in Table 5 below.

Figure 2018145078
Figure 2018145078

実施例3においては、円筒研削されたLT単結晶の側面と、所望とする42°RYのLT単結晶の主面方位との角度が90.0°と理想的な形状に調整されるため、育成された42°RYのLT単結晶から所望とする42°RYカット基板を簡便かつ効率的に製造することが可能となる。   In Example 3, the angle between the side surface of the LT single crystal subjected to cylindrical grinding and the principal surface orientation of the desired LT single crystal of 42 ° RY is adjusted to an ideal shape of 90.0 °. A desired 42 ° RY cut substrate can be easily and efficiently produced from the grown 42 ° RY LT single crystal.

[比較例3]
チョクラルスキー法により直径6インチ、42°RYのLT単結晶の育成を行った。結晶長は約50mmである。
[Comparative Example 3]
An LT single crystal having a diameter of 6 inches and 42 ° RY was grown by the Czochralski method. The crystal length is about 50 mm.

適用した種結晶の方位は、RY方向で42°RY、X方向で0°と予めオフ角を備えていないものとした。種結晶の回転方向は右回りで、回転数は5RPMとした。   The orientation of the applied seed crystal was 42 ° RY in the RY direction and 0 ° in the X direction, and had no off-angle in advance. The direction of rotation of the seed crystal was clockwise and the number of rotations was 5 RPM.

得られたLT単結晶を円筒研削し、円筒研削の側面と主面方位との角度、マルチワイヤーソーでの反り値、べベリング加工時間と歩留りを以下の表6に示す。   The obtained LT single crystal was subjected to cylindrical grinding, and the angle between the side surface of the cylindrical grinding and the main surface orientation, the warp value in the multi-wire saw, the beveling time and the yield are shown in Table 6 below.

Figure 2018145078
Figure 2018145078

比較例3においては、円筒研削されたLT単結晶の側面と、所望とする42°RYのLT単結晶の主面方位との角度が95.0°である(90°から5.0°ずれている)ため、マルチワイヤーソーで切断し、得られたRYカット基板の形状が楕円形となった。   In Comparative Example 3, the angle between the side surface of the LT single crystal subjected to cylindrical grinding and the principal plane orientation of the desired 42 ° RY LT single crystal is 95.0 ° (deviation from 90 ° to 5.0 °). Therefore, the shape of the RY cut substrate obtained by cutting with a multi-wire saw was elliptical.

このため、べべリング加工時間が24分/枚と長くなり、歩留まりも悪化した。   For this reason, the beveling time was as long as 24 minutes / sheet, and the yield was also deteriorated.

本発明に係るLT単結晶の育成方法によれば、育成された36〜46°RYのLT単結晶から所望とするRYカット基板を簡便かつ効率的に得られるため、SAWデバイス用の基板として適用される産業上の利用可能性を有している。   According to the method for growing an LT single crystal according to the present invention, a desired RY cut substrate can be obtained easily and efficiently from the grown LT single crystal of 36 to 46 ° RY, and therefore it is applied as a substrate for a SAW device. Has industrial applicability.

3 種結晶
4 貴金属ルツボ
5 種結晶支持棒
6 原料融液
16a 結晶トップ側
16b 結晶ボトム側
16c 固定用孔
7 種結晶固定ピン
8 ワークコイル
10 結晶
13 基板(ウェハ)
14 結晶育成軸
16 種結晶
20、20’ RY方向曲がり
21、21’ X方向曲がり
100 中心軸
3 seed crystal 4 precious metal crucible 5 seed crystal support rod 6 raw material melt 16a crystal top side 16b crystal bottom side 16c fixing hole 7 seed crystal fixing pin 8 work coil 10 crystal 13 substrate (wafer)
14 Crystal growth axis 16 Seed crystal 20, 20 ′ RY direction bend 21, 21 ′ X direction bend 100 Central axis

Claims (1)

原料融液に種結晶を接触させかつ該種結晶を回転させながら引上げて単結晶を育成するチョクラルスキー法によるタンタル酸リチウム単結晶の育成方法であって、タンタル酸リチウム単結晶のa軸をX軸、c軸をZ軸、X軸とZ軸に直交する軸をY軸とした直交座標系のY軸をX軸の回りに右回り(時計回り)にα°(36°≦α°≦46°)回転させたRYカット基板用のタンタル酸リチウム単結晶を育成する方法において、
Y軸をX軸の回りに右回り(時計回り)にα°(36°≦α°≦46°)−4°±0.5°回転させ、かつ、上記種結晶を右回り(タンタル酸リチウム単結晶の育成状態を真上から観察したときの種結晶の回転方向が右回りであること)に回転させて育成する場合にはX軸をZ軸の回りに右回り(時計回り)にβ°(2°±0.5°)回転させ、上記種結晶を左回り(タンタル酸リチウム単結晶の育成状態を真上から観察したときの種結晶の回転方向が左回りであること)に回転させて育成する場合にはX軸をZ軸の回りに左回り(反時計回り)にβ°(2°±0.5°)回転させた面方位の種結晶を用いてタンタル酸リチウム単結晶を育成することを特徴とするタンタル酸リチウム単結晶の育成方法。
A method for growing a lithium tantalate single crystal by the Czochralski method of bringing a seed crystal into contact with a raw material melt and pulling the seed crystal while rotating the seed crystal, wherein the a-axis of the lithium tantalate single crystal is The Y axis of the Cartesian coordinate system with the X axis, the c axis as the Z axis, and the axis orthogonal to the X axis and the Z axis as the Y axis is α ° clockwise (clockwise) around the X axis (36 ° ≦ α ° ≦ 46 °) In a method for growing a rotated lithium tantalate single crystal for an RY cut substrate,
The Y axis is rotated clockwise around the X axis by α ° (36 ° ≦ α ° ≦ 46 °) −4 ° ± 0.5 °, and the seed crystal is rotated clockwise (lithium tantalate) When the growth state of the single crystal is observed when viewed from directly above, the rotation direction of the seed crystal is clockwise.) When the crystal is grown by rotating the X axis clockwise around the Z axis (clockwise), β Rotate ° (2 ° ± 0.5 °) and rotate the seed crystal counterclockwise (the rotation direction of the seed crystal when the growth state of the lithium tantalate single crystal is observed from directly above is counterclockwise) In the case of growing, the lithium tantalate single crystal using a seed crystal having a plane orientation obtained by rotating the X-axis counterclockwise (counterclockwise) around the Z-axis by β ° (2 ° ± 0.5 °) A method for growing a lithium tantalate single crystal, characterized in that:
JP2017044640A 2017-03-09 2017-03-09 Method for growing lithium tantalate single crystal Pending JP2018145078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044640A JP2018145078A (en) 2017-03-09 2017-03-09 Method for growing lithium tantalate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044640A JP2018145078A (en) 2017-03-09 2017-03-09 Method for growing lithium tantalate single crystal

Publications (1)

Publication Number Publication Date
JP2018145078A true JP2018145078A (en) 2018-09-20

Family

ID=63590741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044640A Pending JP2018145078A (en) 2017-03-09 2017-03-09 Method for growing lithium tantalate single crystal

Country Status (1)

Country Link
JP (1) JP2018145078A (en)

Similar Documents

Publication Publication Date Title
JP6364647B2 (en) Large sapphire multi-substrate
JP5836999B2 (en) Method for growing β-Ga 2 O 3 single crystal and method for producing β-Ga 2 O 3 single crystal substrate
JP2014086458A (en) Method of manufacturing gallium oxide-based substrate
JP6610417B2 (en) Method for growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP2018145078A (en) Method for growing lithium tantalate single crystal
JP6962092B2 (en) How to grow oxide single crystal
US20150044467A1 (en) Method of growing ingot and ingot
WO2022024666A1 (en) Silica glass crucible
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JP4949839B2 (en) Spinel boules, wafers and methods for their production
JP7271842B2 (en) Method for producing lithium tantalate single crystal
JP2016222471A (en) Production method of single crystal
JP2005041740A (en) Manufacturing method of silicon wafer, and silicon wafer
JP6593157B2 (en) Method for growing lithium tantalate single crystals
JP7110758B2 (en) Seed crystal production method, seed crystal selection method, and metal oxide single crystal production method
JP2002198762A (en) Single crystal wafer and its manufacturing method
JP2006282426A (en) Langasite single crystal and its production method
JP6938961B2 (en) Seed crystal
CN113119327B (en) Directional multi-line cutting method capable of improving <111> crystal orientation crystal bar cutting warp value
JP2016056055A (en) METHOD FOR GROWING CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL
JP2017186189A (en) Rearing method of nonmagnetic garnet single crystal
JP2023124031A (en) Method of manufacturing single crystal substrate
JP6025087B1 (en) Sapphire ribbon
JP2014224041A (en) β-Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JPH11274021A (en) Manufacture of wafer and <111> wafer manufactured thereby