JP6025087B1 - Sapphire ribbon - Google Patents
Sapphire ribbon Download PDFInfo
- Publication number
- JP6025087B1 JP6025087B1 JP2016074930A JP2016074930A JP6025087B1 JP 6025087 B1 JP6025087 B1 JP 6025087B1 JP 2016074930 A JP2016074930 A JP 2016074930A JP 2016074930 A JP2016074930 A JP 2016074930A JP 6025087 B1 JP6025087 B1 JP 6025087B1
- Authority
- JP
- Japan
- Prior art keywords
- plane
- self
- sapphire
- sapphire ribbon
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052594 sapphire Inorganic materials 0.000 title claims abstract description 64
- 239000010980 sapphire Substances 0.000 title claims abstract description 64
- 238000005507 spraying Methods 0.000 claims abstract description 30
- 238000005231 Edge Defined Film Fed Growth Methods 0.000 abstract description 14
- 238000002441 X-ray diffraction Methods 0.000 abstract description 5
- 230000000007 visual effect Effects 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 description 53
- 239000000758 substrate Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 14
- 239000000155 melt Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/34—Edge-defined film-fed crystal-growth using dies or slits
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/20—Aluminium oxides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
【課題】EFG法によって育成されたサファイアリボンについて、引き上げが完了した時点で、X線回折を用いることなく、目視でのr軸方向の判定が可能なサファイアリボンを提供する。【解決手段】c面を主面とするマルチサファイアリボン及びサファイアリボンのスプレーディング部側面にr面とR面からなる2層の自形面を形成させることで、r軸方向の判定を拡大鏡を用いた目視により行うことが可能なサファイアリボンを得ることができる。【選択図】 図2An object of the present invention is to provide a sapphire ribbon that can be visually determined in the r-axis direction without using X-ray diffraction when the pulling of the sapphire ribbon grown by the EFG method is completed. A multi-sapphire ribbon having a c-plane as a main surface, and a two-layer self-shaped surface composed of an r-plane and an R-plane are formed on the side surface of a sapphire ribbon spraying portion, thereby determining the r-axis direction. A sapphire ribbon can be obtained that can be obtained by visual observation using the. [Selection] Figure 2
Description
本発明は、EFG法によって育成される単結晶サファイアリボンに関する。 The present invention relates to a single crystal sapphire ribbon grown by the EFG method.
現在、LED等の発光素子に用いられているサファイアウェハ用単結晶の育成方法には、結晶方位面を指定してサファイアリボンを育成するEFG法と、円筒形のインゴットを育成するCz法と、の2種類に大別される。これらのうち、EFG法を用いた育成方法では、シード基板の結晶方位によって結晶方位を指定された複数の板状結晶を一括して引き上げることを特徴としており、関連技術としては、特開2003−327495(以下特許文献1として記載)が出願後、公開されている。また、Cz法を用いた育成方法では、シード基板の結晶方位によって結晶方位を指定された円筒形のインゴットを容易に大径化して引き上げることを特徴としており、関連技術として、特開2010−189242(以下特許文献2として記載)が出願後、公開されている。 Currently, the method for growing a single crystal for a sapphire wafer used in a light emitting device such as an LED includes an EFG method for growing a sapphire ribbon by designating a crystal orientation plane, a Cz method for growing a cylindrical ingot, There are two main types. Among these, the growth method using the EFG method is characterized in that a plurality of plate crystals whose crystal orientations are specified by the crystal orientation of the seed substrate are collectively pulled up. 327495 (hereinafter described as Patent Document 1) has been published after the application. In addition, the growing method using the Cz method is characterized in that a cylindrical ingot whose crystal orientation is designated by the crystal orientation of the seed substrate is easily increased in diameter and pulled up. As a related technique, Japanese Patent Application Laid-Open No. 2010-189242 is disclosed. (Hereinafter described as Patent Document 2) has been published after filing.
これら2件のうち、特許文献1記載の発明は、シード基板の結晶方位と引き上げ軸とのズレ角を一定の範囲内に収め、安定した結晶育成を可能としたことをその技術的特徴としている。また、特許文献2記載の発明では、育成用坩堝の底面を凹ませることでインゴットの有効長を増加し、当該インゴットから得られるウェハの収率を向上させたことをその技術的特徴としている。 Of these two cases, the technical feature of the invention described in Patent Document 1 is that the deviation angle between the crystal orientation of the seed substrate and the pulling axis is kept within a certain range, thereby enabling stable crystal growth. . In addition, the invention described in Patent Document 2 has a technical feature that the effective length of the ingot is increased by denting the bottom surface of the growing crucible and the yield of the wafer obtained from the ingot is improved.
上述した効果を有している一方で近年、一部のサファイアc面ウェハに於いて、r軸方向を指定したウェハが要求されている。当該ウェハの母材は上記育成方法によって得られる単結晶からの切り出しによって製造される。この為、当該要求に対して特許文献2記載のCz法では切り出し後に、特許文献1記載のEFG法では育成後に、それぞれX線回折装置を用いてr軸方向の判定を行う必要があるという課題を有していた。 While having the above-described effects, in recent years, some sapphire c-plane wafers are required to have a wafer in which the r-axis direction is specified. The base material of the wafer is manufactured by cutting out from a single crystal obtained by the above growth method. For this reason, it is necessary to perform the determination in the r-axis direction using an X-ray diffractometer after cutting out in the Cz method described in Patent Document 2 and after growth in the EFG method described in Patent Document 1 in response to the request. Had.
尚、当該装置の設置には放射線管理が必要となる為、設置する場所が限定されてしまい、通常の部屋とは分離された環境での運用が前提となる。また、育成及び切り出した結晶毎にX線測定を行う必要があり、量産性が低下してしまうという課題をも生じている。 Since installation of the apparatus requires radiation management, the installation place is limited, and it is assumed that the apparatus is operated in an environment separated from a normal room. In addition, it is necessary to perform X-ray measurement for each grown and cut crystal, resulting in a problem that mass productivity is reduced.
上記課題に対して本願記載の発明では、X線回折を用いることなくr軸方向の判定が可能なサファイアリボンの提供を目的としている。 In order to solve the above problems, the invention described in the present application aims to provide a sapphire ribbon capable of determining the r-axis direction without using X-ray diffraction.
上記目的のために本発明に於ける第1の態様記載の発明は、EFG法で育成されたサファイアリボンのスプレーディング部側面に、厚さ方向で分割される自形面を形成させたことを特徴としている。より具体的には、シード基板からc面を主面とした幅広のサファイアリボンを成長させていく際に形成されるシード基板−幅広部間のスプレーディング部側面について、厚さ方向で分割され、相互に境界を構成している2種類の自形面を設けたことをその技術的特徴としている。 For the above purpose, the invention described in the first aspect of the present invention is that a self-shaped surface divided in the thickness direction is formed on the side surface of the sprayed portion of the sapphire ribbon grown by the EFG method. It is a feature. More specifically, the side surface of the sprayed portion between the seed substrate and the wide portion formed when growing a wide sapphire ribbon having a c-plane as the main surface from the seed substrate is divided in the thickness direction, The technical feature is that two types of self-shaped surfaces that form a boundary with each other are provided.
また、本発明に於ける第2の態様記載の発明では、EFG法で共通のシード基板から育成された複数枚のサファイアリボンを有するマルチサファイアリボンに於いて、各サファイアリボンのシード基板−幅広部間に形成されるスプレーディング部側面上に、厚さ方向で分割され、相互に境界を構成している2種類の自形面を設けると共に、当該自形面の角度を一定の範囲内で形成した事を特徴としている。より具体的には、前記2種類の自形面と境界との成す角度について、一方が41°±5°、他方が51.5°±5°の範囲内となるように前記各傾斜側面上の自形面を形成させたことをその技術的特徴としている。 In the invention described in the second aspect of the present invention, in the multi-sapphire ribbon having a plurality of sapphire ribbons grown from a common seed substrate by the EFG method, the seed substrate-wide portion of each sapphire ribbon Two types of self-shaped surfaces that are divided in the thickness direction and form a boundary between each other are provided on the side surface of the spraying portion formed between them, and the angle of the self-shaped surface is formed within a certain range. It is characterized by that. More specifically, the angle between the two types of self-shaped surfaces and the boundary is such that one is within the range of 41 ° ± 5 ° and the other is within the range of 51.5 ° ± 5 °. Its technical feature is the formation of a self-shaped surface.
上述した技術的特徴によって本発明に於ける第1の態様記載の発明は、X線回折を用いることなく、スプレーディング部から前記r軸の判定を行うことができるサファイアリボンを提供することが可能となる。これは、スプレーディング部側面に前記2種類の自形面を形成させたことによる効果となっている。 Due to the technical features described above, the invention described in the first aspect of the present invention can provide a sapphire ribbon capable of determining the r-axis from the spraying part without using X-ray diffraction. It becomes. This is an effect obtained by forming the two types of self-shaped surfaces on the side surface of the spraying portion.
即ち、本願記載のサファイアリボンは、EFG法によって育成された単結晶サファイアリボンであり、引き上げ速度及び育成炉内の温度条件を特定の条件に設定することでスプレーディング部に自形面が形成されている。より詳しくは、サファイア単結晶が有する結晶面のうち、(0001)面(以下c面として記載)、(1−102)面(以下r面として記載)、(−1104)面(以下R面として記載)を用い、c面を主面としたサファイアリボンのスプレーディング部側面に、前記境界を構成するr面とR面からなる自形面を形成させている。この為、本願記載のサファイアリボンでは、R面と比較して、前記境界に対し小さい角度での自形面を生じるr面の自形面の形成する側を確認することで、r面と直交するr軸の方向を判定することが可能となる。 That is, the sapphire ribbon described in the present application is a single crystal sapphire ribbon grown by the EFG method, and a self-shaped surface is formed in the spraying portion by setting the pulling speed and the temperature condition in the growth furnace to specific conditions. ing. More specifically, among the crystal planes of the sapphire single crystal, the (0001) plane (hereinafter referred to as c plane), the (1-102) plane (hereinafter referred to as r plane), the (-1104) plane (hereinafter referred to as R plane). The self-shaped surface consisting of the r-plane and the R-plane constituting the boundary is formed on the side surface of the spraying portion of the sapphire ribbon having the c-plane as the main surface. For this reason, in the sapphire ribbon described in the present application, the side of the r-shaped self-shaped surface that forms the self-shaped surface at a small angle with respect to the boundary is confirmed as compared with the R-surface, thereby orthogonal to the r-plane. It is possible to determine the direction of the r-axis.
尚、前記自形面を形成する条件として、結晶を育成するためにはアルミナ融液等、シード基板に対する外部からの結晶材料供給、結晶構造等に起因する結晶材料−シード基板間の順応性、前記結晶材料−シード基板間の接触による結晶表面への到達自由度、の3つの条件を満たすことが必要であり、自形面は各結晶方位に於ける成長速度の違いによって形成される。より具体的には、成長速度が速い結晶方位が、隣接する成長速度の遅い結晶方位を残して成長を続ける。この為、自形面の形成に際しては最終的に成長速度の速い結晶方位が先鋭化して消滅し、隣接する成長速度の遅い結晶方位による自形面が形成されていく。当該自形面の形成について、サファイアに於ける各結晶方位の成長速度は、c面、r面、a面、他の面、の順で速くなっていき、c面の成長速度が最も遅くなっている。この為、一般的なc面ウェハ用サファイアリボン育成では、主にc面の自形面がサファイアリボン表面に形成される。 In addition, as conditions for forming the self-shaped surface, in order to grow crystals, alumina crystal melt, etc., supply of crystal material from the outside to the seed substrate, adaptability between the crystal material and the seed substrate due to the crystal structure, It is necessary to satisfy the three conditions of the crystal material and the degree of freedom to reach the crystal surface by contact between the seed substrate, and the self-shaped surface is formed by the difference in growth rate in each crystal orientation. More specifically, a crystal orientation with a high growth rate continues to grow while leaving an adjacent crystal orientation with a low growth rate. For this reason, when the self-shaped surface is formed, the crystal orientation with a high growth rate is sharpened and disappears finally, and the self-shaped surface is formed with the adjacent crystal orientation with a low growth rate. Regarding the formation of the self-shaped surface, the growth rate of each crystal orientation in sapphire increases in the order of c-plane, r-plane, a-plane, and other planes, and the growth rate of c-plane becomes the slowest. ing. For this reason, in general sapphire ribbon growth for c-plane wafers, a c-shaped self-shaped surface is mainly formed on the sapphire ribbon surface.
本願記載の発明ではEFG法を用いた育成に際し、引き上げ速度及び温度条件の設定によって、スプレーディング部側面に前記自形面を形成することで前記r軸方向の判定を可能にしている。また、本願が用いるEFG法では、最終的に引き上げるサファイアリボンの幅よりも、育成開始時に前記融液と接触するシード基板端面の幅を小さくすることで当該スプレーディング部を形成している。この為、シード基板となる単結晶サファイアを小さく形成することによって結晶品質を高めることが容易になると共に、当該リボンについて複数枚の同時育成を可能とし、結晶欠陥等を生じることなく、c面でのサファイアリボン育成を安定化し、前記スプレーディング部側面を用いたr軸の判定を目視にて行うことができる。 In the invention described in the present application, when growing using the EFG method, the r-axis direction can be determined by forming the self-shaped surface on the side surface of the spraying part by setting the pulling speed and the temperature condition. Further, in the EFG method used by the present application, the spraying portion is formed by making the width of the seed substrate end face in contact with the melt at the start of growth smaller than the width of the sapphire ribbon that is finally pulled up. For this reason, it is easy to improve the crystal quality by forming a single crystal sapphire as a seed substrate small, and it is possible to grow a plurality of the ribbons at the same time without causing crystal defects and the like on the c-plane. The growth of the sapphire ribbon can be stabilized, and the determination of the r-axis using the side surface of the spraying part can be made visually.
上記第1の態様記載の効果に加えて、本発明に於ける第2の態様記載の発明を用いることで、c面のマルチサファイアリボン育成によって育成された複数のサファイアリボン全てについて、前記第1の態様と同様の効果を付与することが可能となっている。即ち、マルチサファイアリボンの育成では、炉内の温度分布及び隣接するサファイアリボン間の放射熱によって各サファイアリボン及び前記スプレーディング部側面に於ける育成条件は各サファイアリボン毎に変動する。本発明では、前記自形面の形状を特定の範囲に収めることで、当該サファイアリボンの育成を安定化させると共に、各サファイアリボンに対して前記第1の態様にて記載した効果を付与している。より具体的には、スプレーディング部側面に形成させた2種類の自形面が構成する境界を基準として、各自形面の角度が特定の範囲に収まる様に前記引き上げ速度及び育成炉内の温度条件を調整することで、前記複数のサファイアリボン全てについてr軸の判定を目視にて行うことができると共に、各サファイアリボンについて結晶欠陥等を抑え、安定した品質の単結晶を育成することが可能となる。 In addition to the effects described in the first aspect, by using the invention described in the second aspect of the present invention, all of the plurality of sapphire ribbons grown by c-plane multisapphire ribbon growth are used. It is possible to provide the same effect as that of the embodiment. That is, in the growth of the multi-sapphire ribbon, the growth conditions on each sapphire ribbon and the side surface of the spraying portion vary for each sapphire ribbon due to the temperature distribution in the furnace and the radiant heat between the adjacent sapphire ribbons. In the present invention, by keeping the shape of the self-shaped surface within a specific range, the growth of the sapphire ribbon is stabilized, and the effects described in the first aspect are given to each sapphire ribbon. Yes. More specifically, with reference to a boundary formed by two types of self-shaped surfaces formed on the side surface of the spraying section, the pulling speed and the temperature in the growth furnace are set so that the angle of each self-shaped surface is within a specific range. By adjusting the conditions, it is possible to visually determine the r-axis for all of the plurality of sapphire ribbons, and it is possible to grow single crystals of stable quality by suppressing crystal defects and the like for each sapphire ribbon. It becomes.
以上述べたように、本願記載の発明を用いることで、X線回折を用いることなくr軸方向の判定が可能なサファイアリボンを提供することができる。
As described above, by using the invention described in the present application, it is possible to provide a sapphire ribbon capable of determining the r-axis direction without using X-ray diffraction.
以下に、図1、図2、図3、図4及び図5を用いて、本発明に於ける最良の実施形態を示す。尚、図中の記号及び部品番号について、同じ部品として機能するものには共通の記号又は番号を付与している。 Hereinafter, the best embodiment of the present invention will be described with reference to FIGS. 1, 2, 3, 4 and 5. In addition, about the symbol and component number in a figure, the common symbol or number is provided to what functions as the same component.
図1に本実施形態に於いて用いるマルチサファイアリボンの全体斜視図を、図2に当該マルチサファイアリボンの結晶面に関わる説明図を、図3にマルチサファイアリボンのスプレーディング部側面に形成された自形面を、図4に図1のマルチサファイアリボン育成過程に関わる説明図を、そして図5に図1のスプレーディング部育成過程に関わる説明図を、それぞれ示す。尚、育成炉内部構造及び引き上げ用のクランプ等については、図中での記載を省略している。 FIG. 1 is an overall perspective view of the multi-sapphire ribbon used in the present embodiment, FIG. 2 is an explanatory diagram relating to the crystal plane of the multi-sapphire ribbon, and FIG. 3 is formed on the side surface of the spraying portion of the multi-sapphire ribbon. FIG. 4 is an explanatory diagram related to the multi-sapphire ribbon growing process of FIG. 1, and FIG. 5 is an explanatory diagram related to the spraying part growing process of FIG. In addition, about the internal structure of a growth furnace, the clamp for raising, etc., description in a figure is abbreviate | omitted.
図1、図2、及び図3に示す様に、本実施形態ではマルチサファイアリボン1の各サファイアリボン3について、それぞれのスプレーディング部側面sにr面とR面とからなる2つの自形面を形成させている。尚、本実施形態で用いるマルチサファイアリボンの育成では、図2に示す結晶方位(a1、a2、a3、c)によって結晶方位が特定される。これらのうち、本実施形態では(0001)面(以下c面として記載)、(1−102)面(以下r面として記載)、(−1104)面(以下R面として記載)を用い、スプレーディング部側面sに、前記境界を構成するr面とR面からなる自形面を形成させている。従って、図3に示したr面側の自形面を確認することで、r面と直交するr軸の方向を判定することができると共に、シード基板2から各サファイアリボン3を分離させた後も、スプレーディング部側面sによってr軸方向の判定を拡大鏡を用いた目視にて行うことが可能となっている。これは、図4に示すように、アルミナ融液5からシード基板2を引き上げてスプレーディング部を形成する際、引き上げ速度及び炉内温度を調整し、図2、図3に示すr面とR面との各自形面が構成する境界と各自形面との成す角度を、r面が51.5°±5°、R面が41°±5°の範囲内となるように育成したことによる。即ち、図1から解るように、本実施形態記載のEFG法では、各サファイアリボン3の厚みを一定の値に揃え、等間隔に整列された状態で育成している。この為、各サファイアリボン間に於ける育成条件の違いを最小限に抑えると共に、スプレーディング部側面sに形成される前記自形面の角度について、一定の範囲内に収めることができた。ここで、本実施形態では引き上げ速度を25mm/時±25%一定とし、炉内温度についてはダイパック4の温度が固化寸前の融点となる2050℃から徐々に上がり、2055℃で全幅に渡るスプレーディング面を形成するように設定している。また、図3に示す様に、当該形成された境界に対する自形面の幅について、本実施形態ではR面側よりもr面側の幅が大きく形成されている(1:2〜2:3)。この為、本実施形態に於ける各サファイアリボン3では、前記角度だけではなく、自形面の幅によっても前記結晶方位の判定を行うことが可能となっている。 As shown in FIGS. 1, 2, and 3, in this embodiment, for each sapphire ribbon 3 of the multi-sapphire ribbon 1, two self-shaped surfaces each having an r-plane and an R-plane on each side s of the spraying portion. Is formed. In the growth of the multi-sapphire ribbon used in this embodiment, the crystal orientation is specified by the crystal orientation (a1, a2, a3, c) shown in FIG. Among these, in the present embodiment, the (0001) plane (hereinafter described as c plane), the (1-102) plane (hereinafter described as r plane), and the (-1104) plane (hereinafter described as R plane) are used for spraying. A self-shaped surface composed of an r-plane and an R-plane constituting the boundary is formed on the side surface s of the ding portion. Accordingly, by confirming the self-shaped surface on the r-plane side shown in FIG. 3, the direction of the r-axis orthogonal to the r-plane can be determined, and after each sapphire ribbon 3 is separated from the seed substrate 2 In addition, the r-axis direction can be determined by visual observation using a magnifying glass by the side surface s of the spraying portion. As shown in FIG. 4, when the seed substrate 2 is pulled up from the alumina melt 5 to form the spraying portion, the pulling speed and the furnace temperature are adjusted, and the r-plane and R shown in FIGS. The angle formed by the boundary of each self-shaped surface with the surface and each self-shaped surface is grown so that the r-plane is within the range of 51.5 ° ± 5 ° and the R-plane is within the range of 41 ° ± 5 °. . That is, as can be seen from FIG. 1, in the EFG method described in the present embodiment, the thicknesses of the sapphire ribbons 3 are adjusted to a constant value and are grown in a state of being arranged at equal intervals. For this reason, the difference in the growth conditions between the sapphire ribbons can be minimized, and the angle of the self-shaped surface formed on the spraying side surface s can be kept within a certain range. Here, in this embodiment, the pulling rate is fixed at 25 mm / hour ± 25%, and the furnace temperature is gradually increased from 2050 ° C. at which the temperature of the die pack 4 becomes the melting point just before solidification, and spraying over the entire width at 2055 ° C. It is set to form a surface. Further, as shown in FIG. 3, the width of the self-shaped surface with respect to the formed boundary is larger in the r-plane side than in the R-plane side in this embodiment (1: 2 to 2: 3). ). For this reason, in each sapphire ribbon 3 in the present embodiment, it is possible to determine the crystal orientation not only by the angle but also by the width of the self-shaped surface.
図4及び図5に本実施形態に於いて用いるスプレーディング部の育成過程を示す。前述した結晶の育成条件に関し、本実施形態ではc面サファイアリボン育成用に端部をc軸とした単結晶サファイアからなるシード基板2に対し、同じ原料からなるアルミナ融液5を用いることで前記結晶材料供給及び順応性を満たしている。また、結晶表面への到達自由度は、シード基板2が前記融液5に接触することによって満たされる。即ち、本実施形態では、ギャップgを介して板状の空隙を設けたダイパック4を坩堝内に設けることで、坩堝内で溶融されたアルミナ融液5の液面を毛細管現象によりダイパック先端まで到達させている。この為、マルチサファイアリボン1の育成時に於いて各サファイアリボン間に生じる温度差を低減し、シード基板2の引き上げ時に於ける育成条件を安定させることができた。また、図4及び図5の各(a)、(b)から解るように、ダイパック端部に到達した融液へのシード基板接触時、本願記載のダイパック4ではシード基板2の幅方向へとスプレーディング部の結晶成長が進んでいき、ダイパック4の幅寸法に到達する図5(c)の時点で同図(d)に示すような平板形状のサファイアリボン育成へと移行する。これは、融液5の表面張力によってダイパックの幅方向からシード基板底部の側面へと融液の供給が行われていく事に加え、当該結晶成長時、予め厚み方向の結晶寸法がダイパックによって制限されていることによる。 4 and 5 show the growing process of the spraying part used in this embodiment. Regarding the crystal growth conditions described above, in the present embodiment, the alumina melt 5 made of the same raw material is used for the seed substrate 2 made of single crystal sapphire with the c-axis at the end for growing a c-plane sapphire ribbon. Meets crystal material supply and adaptability. The degree of freedom to reach the crystal surface is satisfied when the seed substrate 2 comes into contact with the melt 5. That is, in this embodiment, by providing the die pack 4 having a plate-like gap through the gap g in the crucible, the surface of the alumina melt 5 melted in the crucible reaches the tip of the die pack by capillary action. I am letting. Therefore, the temperature difference generated between the sapphire ribbons during the growth of the multi-sapphire ribbon 1 can be reduced, and the growth conditions when the seed substrate 2 is pulled up can be stabilized. 4 and 5, when the seed substrate contacts the melt that has reached the end of the die pack, the die pack 4 described in the present application moves in the width direction of the seed substrate 2. Crystal growth in the spraying portion proceeds, and when the width dimension of the die pack 4 is reached, the process proceeds to flat plate-shaped sapphire ribbon growth as shown in FIG. This is because the melt is supplied from the width direction of the die pack to the side surface of the bottom portion of the seed substrate by the surface tension of the melt 5, and the crystal size in the thickness direction is previously limited by the die pack during the crystal growth. By being.
即ち、当該幅方向に広がっていくスプレーディング部の成長について、EFG法を用いた結晶育成では、ダイによって幅方向から新しい溶融液の供給がなくなった場合、その方向に対して結晶は成長ができず、厚みはダイによって一定にされたまま、幅寸法もまた、一定の値に収まっていく。一方、溶融液の供給があれば、その方向に対して結晶の寸法が大きくなり、形状としてのバランスが崩れていく。これに伴い、本実施形態で用いるEFG法では幅方向に拡大しているスプレーディング部分引き上げ時に於いて、自由に液面から融液が供給されることで、スプレーディング部に自形面を形成することが可能となっている。ここで、図5中、サファイアリボンの幅が広がっている(a)から(c)を参照すると、当該幅方向に於いて融液が自由に供給されていることが解る。尚、本実施形態で用いるEFG法はそのダイ形状から、ダイの表面と裏面から結晶成長が始まる構成となっている。この為、本実施形態では引き上げ速度及び温度条件をスプレーディング部側面の自形面形成に最適化させることで、表面と裏面とで結晶の構造が異なる、前記r面とR面との2層に分かれた自形面を当該側面に形成することができた。 That is, with regard to the growth of the spraying part spreading in the width direction, in the crystal growth using the EFG method, when the supply of new melt from the width direction is stopped by the die, the crystal can grow in that direction. First, the thickness is kept constant by the die, and the width dimension is also kept at a constant value. On the other hand, if the melt is supplied, the size of the crystal increases in that direction, and the shape balance is lost. Along with this, the EFG method used in the present embodiment forms a self-shaped surface in the spraying portion by freely supplying the melt from the liquid surface when the spraying portion is expanded in the width direction. It is possible to do. Here, referring to FIGS. 5A to 5C where the width of the sapphire ribbon is widened, it can be seen that the melt is freely supplied in the width direction. The EFG method used in the present embodiment has a structure in which crystal growth starts from the front and back surfaces of the die due to the die shape. For this reason, in this embodiment, by optimizing the pulling speed and temperature conditions to form a self-shaped surface on the side surface of the spraying part, the crystal structure differs between the front surface and the back surface. A self-shaped surface divided into two could be formed on the side surface.
以上述べたように、本願実施形態記載の構造を用いることによって、X線回折を用いることなく、目視でのr軸方向の判定が可能なサファイアリボンを提供することができた。
As described above, by using the structure described in the present embodiment, a sapphire ribbon capable of visually determining the r-axis direction without using X-ray diffraction can be provided.
1 マルチサファイアリボン
2 シード基板
3 サファイアリボン
4 ダイパック
5 アルミナ融液
c c面結晶方位
g ギャップ
r r面結晶方位
R R面結晶方位
s スプレーディング部側面
1 Multi-Sapphire Ribbon 2 Seed Substrate 3 Sapphire Ribbon 4 Die Pack 5 Alumina Melt c c-plane Crystal Orientation g Gap r r-plane Crystal Orientation R R-plane Crystal Orientation s Spraying Side
Claims (2)
当該分割された領域間の境界と自形面自身とが成す角度のうち、一方が41°±5°、他方が51.5°±5°の範囲内で、それぞれの自形面を形成しているサファイアリボン。 The spraying part side surface is divided in the thickness direction by a region formed by a collection of self-shaped surfaces,
Of the angles formed by the boundary between the divided areas and the self-shaped surface itself, one of the self-shaped surfaces is formed within a range of 41 ° ± 5 ° and the other of 51.5 ° ± 5 °. and it has sapphire ribbon.
当該分割された領域間の境界と自形面自身とが成す角度のうち、一方が41°±5°、他方が51.5°±5°の範囲内で、それぞれの自形面を形成しているマルチサファイアリボン。 Each sapphire ribbon spraying part side surface is divided in the thickness direction by a region formed by a collection of self-shaped surfaces ,
Of the angles formed by the boundary between the divided areas and the self-shaped surface itself, one of the self-shaped surfaces is formed within a range of 41 ° ± 5 ° and the other of 51.5 ° ± 5 °. Multi-sapphire ribbon.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105127550A TW201725289A (en) | 2015-08-28 | 2016-08-26 | Sapphire ribbon |
PCT/JP2016/074930 WO2017038665A1 (en) | 2015-08-28 | 2016-08-26 | Sapphire ribbon |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015169054 | 2015-08-28 | ||
JP2015169054 | 2015-08-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6025087B1 true JP6025087B1 (en) | 2016-11-16 |
JP2017043533A JP2017043533A (en) | 2017-03-02 |
Family
ID=57326573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016074930A Active JP6025087B1 (en) | 2015-08-28 | 2016-04-04 | Sapphire ribbon |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6025087B1 (en) |
TW (1) | TW201725289A (en) |
WO (1) | WO2017038665A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015120612A (en) * | 2013-12-23 | 2015-07-02 | 並木精密宝石株式会社 | Large scale sapphire multi-substrate |
JP2015124096A (en) * | 2013-12-25 | 2015-07-06 | 並木精密宝石株式会社 | Single crystal sapphire ribbon for large substrate |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7348076B2 (en) * | 2004-04-08 | 2008-03-25 | Saint-Gobain Ceramics & Plastics, Inc. | Single crystals and methods for fabricating same |
-
2016
- 2016-04-04 JP JP2016074930A patent/JP6025087B1/en active Active
- 2016-08-26 WO PCT/JP2016/074930 patent/WO2017038665A1/en active Application Filing
- 2016-08-26 TW TW105127550A patent/TW201725289A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015120612A (en) * | 2013-12-23 | 2015-07-02 | 並木精密宝石株式会社 | Large scale sapphire multi-substrate |
JP2015124096A (en) * | 2013-12-25 | 2015-07-06 | 並木精密宝石株式会社 | Single crystal sapphire ribbon for large substrate |
Also Published As
Publication number | Publication date |
---|---|
JP2017043533A (en) | 2017-03-02 |
WO2017038665A1 (en) | 2017-03-09 |
TW201725289A (en) | 2017-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2436875C2 (en) | Method and apparatus for growing sapphire monocrystal with orientation in c-plane | |
US20090130415A1 (en) | R-Plane Sapphire Method and Apparatus | |
JP6364647B2 (en) | Large sapphire multi-substrate | |
CN110408988A (en) | The growing method of SiC single crystal grower and SiC single crystal | |
EP2971276A1 (en) | Sapphire ribbons and apparatus and method for producing a plurality of sapphire ribbons having improved dimensional stability | |
US8828139B2 (en) | Method of manufacturing sapphire seed and method of manufacturing sapphire single crystal | |
CN104088014A (en) | Rod-like sapphire crystal growing equipment and rod-like sapphire crystal growing method | |
TW201443301A (en) | Method for growing [beta]-ga2o3-based single crystal | |
JP6025087B1 (en) | Sapphire ribbon | |
JP2015124096A (en) | Single crystal sapphire ribbon for large substrate | |
JP5895280B1 (en) | Method for producing a plurality of sapphire single crystals | |
JP5891028B2 (en) | Method for producing Ga2O3-based substrate | |
JP2015533771A5 (en) | Apparatus and method for crystal sheet from melt | |
JP6231375B2 (en) | Crucible, crystal manufacturing apparatus and crystal manufacturing method | |
CN109952393A (en) | SiC single crystal complex and SiC ingot | |
WO2017038745A1 (en) | Plurality of sapphire single crystals and production method for same | |
JP6025085B2 (en) | Multiple sapphire single crystals and method for producing the same | |
JP6142209B2 (en) | Large sapphire substrate | |
JP2023041918A (en) | single crystal | |
JP2018145078A (en) | Method for growing lithium tantalate single crystal | |
JP2016193808A (en) | Production method of sapphire single crystal | |
JP2016147767A (en) | Crucible for growing single crystal, single crystal production apparatus, and production method of single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160929 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6025087 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |