KR960014956B1 - Galum asenide single crystal growth method - Google Patents

Galum asenide single crystal growth method Download PDF

Info

Publication number
KR960014956B1
KR960014956B1 KR1019930021119A KR930021119A KR960014956B1 KR 960014956 B1 KR960014956 B1 KR 960014956B1 KR 1019930021119 A KR1019930021119 A KR 1019930021119A KR 930021119 A KR930021119 A KR 930021119A KR 960014956 B1 KR960014956 B1 KR 960014956B1
Authority
KR
South Korea
Prior art keywords
temperature
single crystal
gallium arsenide
arsenic
crystal growth
Prior art date
Application number
KR1019930021119A
Other languages
Korean (ko)
Other versions
KR950012577A (en
Inventor
송준석
오명환
노용정
Original Assignee
엘지전선 주식회사
박원근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전선 주식회사, 박원근 filed Critical 엘지전선 주식회사
Priority to KR1019930021119A priority Critical patent/KR960014956B1/en
Publication of KR950012577A publication Critical patent/KR950012577A/en
Application granted granted Critical
Publication of KR960014956B1 publication Critical patent/KR960014956B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The method of preventing twin in growing GaAs single crystal is characterized by the features : the temperature(T1) of the melting region of GaAs is 1250 - 1270 deg.C; the temperature(T2) of the As vapor pressure controller is 610 - 635 deg.C(610 - 620 deg.C in case of undoped Si, 620 - 600 deg.C in case of 1 - 9 x 1017 cm-3, 630 - 635 deg.C in case of 1 - 4 x 1018 cm-3); the temperature gradient is 2 - 4 deg.C/cm; the growth rate is 2 - 4 mm/hr.

Description

갈륨비소 단결정 성장시의 쌍정 방지방법How to prevent twins during gallium arsenide single crystal growth

제1도는 본 발명의 갈륨비소 단결정 성장을 위한 석영반응관의 개략 구성도.1 is a schematic diagram of a quartz reaction tube for growing gallium arsenide single crystal of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 석영 반응관 2 : 단결정보우트1: quartz reaction tube 2: single crystal boat

3 : 시드(SEED)결정 4 : 갈륨비소(GaAs) 단결정3: seed crystal 4: gallium arsenide (GaAs) single crystal

5 : 확산장벽(diffusion barrier) 6 : 잉여비소보우트5: diffusion barrier 6: surplus arsenic boat

7 : 잉여비소 8 : 플러그7: surplus arsenic 8: plug

9 : 이중밀봉9: double sealing

본 발명은 갈륨비소(GaAs) 단결정 성장 방법에 관한 것으로, 특히 수평 브릿지만(Horizontal Bridgman)법에 의한 n형 (n-Type)갈륨비소 단결정 성장에서의 쌍정 방지방법에 관한 것이다.The present invention relates to a gallium arsenide (GaAs) single crystal growth method, and more particularly to a twinning prevention method in the n-type (gallium arsenide) single crystal growth by the Horizontal Bridgman method.

일반적으로, n-형 갈륨비소 단결정 성장에서는 쌍정을 방지 또는 억제하기 위한 기술로 갈륨비소 멜트(melt)와 석영유리와의 웨팅(wetting)방지, 고액계면(Solid-liquid interface), 성장속도(Growth rate), 온도프로파일(Temperature Profile), 온도구배(Temperature gradient) 및 준비공정에서의 불순물 유입억제 등을 중심으로 진행되어 왔다.In general, n-type gallium arsenide single crystal growth is a technique for preventing or inhibiting twins, preventing wetting between gallium arsenide melt and quartz glass, solid-liquid interface, and growth rate. rate, temperature profile, temperature gradient, and impurity suppression in the preparation process.

종래의 2T 또는 3T-HB법에 의한 n-형 갈륨비소 단결정 성장에서는 As 영역의 온도를 석영 반응관 내부가 1기압을 유지하도록 일정한 온도로 고정하였다.In conventional n-type gallium arsenide single crystal growth by 2T or 3T-HB method, the temperature of the As region is fixed at a constant temperature so that the inside of the quartz reaction tube maintains 1 atmosphere.

이경우 실리콘(Si)이 도핑(doping)됨에 따라 갈륨비소 용융물의 화학량에 미세한 변화가 생기고 그 결과 석영 반응관을 채우는 비소(As) 증기압의 변화를 초래하여 쌍정 또는 다결정화등으로 단결정 성장에 영향을 미치게 되는 것이다.In this case, as silicon (Si) is doped, a slight change in the stoichiometry of the gallium arsenide melt results in a change in the arsenic (As) vapor pressure filling the quartz reaction tube, thereby affecting single crystal growth such as twin or polycrystallization. It's going crazy.

본 발명은 상기한 종래의 문제점을 해결하기 위하여 창안한 것으로서 실리콘 도핑농도에 따른 비소영역온도를 조절함으로서 쌍정발생을 억제할 수 있는 방법을 제공한다.The present invention has been made to solve the above-mentioned problems, and provides a method capable of suppressing twinning by adjusting the arsenic region temperature according to the silicon doping concentration.

이하, 첨부한 도면을 참조하여 보다 구체적으로 설명한다.Hereinafter, with reference to the accompanying drawings will be described in more detail.

본 발명은 제1도에 나타낸 바와 같이, 실리콘(Si) 농도에 따른 T2의 최적온도를 실험적으로 찾아내어 쌍정발생을 최대한으로 억제하기 위한 것이다. 그런데, n-형 갈륨비소 단결정 성장에서 제1도와 같이 석영 반응관을 설치하고 갈륨비소 용융영역을 1250~1270℃로 한 후, 온도구배를 2-4℃/cm로 성장속도를 2-4mm/hr로 하여 단결정 성장을 할 경우, 쌍정 발생확률이 경사진 쌍정(Oblique twin)이 수직쌍정(perpendicular twin) 보다 우세하다. 특히, (lii)결정구조 (facet)와 (ili)결정구조 경사진 쌍정과 관계가 깊다.As shown in FIG. 1, the present invention is to experimentally find the optimum temperature of T2 according to the silicon (Si) concentration to suppress the occurrence of twins to the maximum. However, in the n-type gallium arsenide single crystal growth, a quartz reaction tube was installed as shown in FIG. 1, the gallium arsenide melting zone was 1250-1270 ° C, and the temperature gradient was 2-4 ° C / cm. In the case of single crystal growth at hr, the incidence of twins is greater than the oblique twins. In particular, the (lii) crystal structure (facet) and (ili) crystal structure is deeply related to the inclined twin.

따라서, 갈륨비소 단결정 성장중에 이 결정구조들의 크기가 급격히 변화할때 쌍정발생 확률이 높아지게 되는 것이다.Therefore, when the size of these crystal structures changes drastically during the growth of gallium arsenide single crystals, the probability of twin occurrence increases.

또한, 이 결정의 크기에는 여러 변수가 관계되는데 불순물첨가(doping)도 영향을 미친다.In addition, several variables are involved in the size of the crystal, which also affects doping.

온도 구배가 2℃/cm 이상일때 주로 발생하는 경사진 쌍정은 여러 성장변수를 최적으로 조절함으로서 쌍정발생을 억제할 수 있는데, 본 발명은 실리콘 온도에 따른 비소증기압 제어부의 온도를 조절하여 최적의 갈륨비소 용융물 화학량을 유지하고 (lii), (iii)결정의 크기의 변화를 줄여 실리콘 농도에 따른 쌍정발생 확률을 줄여 고품위의 갈륨비소 단결정을 제조한다.Inclined twins, which occur mainly when the temperature gradient is 2 ° C / cm or more, can suppress twinning by optimally controlling various growth variables. The present invention provides an optimal gallium by controlling the temperature of the arsenic vapor pressure control unit according to the silicon temperature. A high quality gallium arsenide single crystal is prepared by maintaining the arsenic melt stoichiometry and reducing the size of the crystals (lii) and (iii) by decreasing the crystal size.

[실시예]EXAMPLE

제1도와 같이 석영 반응관을 구성하고 갈륨비소용융 영역인 고온부(T1)를 300℃/hr로 승온하여 1250~1270℃로 비소증기압 제어부인 저온부(T2)를 180℃/hr로 승온하여 610~630℃로 한 후 10-16시간 안정화시킨 후 5mm/hr의 속도로 전기로를 궤한(back travel)시켜 제1도의 시드(seed) 결정에 고-액 계면(solid-liquid interface)을 형성시킨다.As shown in FIG. 1, the quartz reaction tube was formed, and the high temperature portion T1, which is the gallium arsenide melting region, was heated to 300 ° C / hr, and the low temperature portion T2, which is the arsenic vapor pressure controller, was heated to 1250 to 1270 ° C at 180 ° C / hr. After stabilization at 630 ° C. for 10-16 hours, the furnace is back traveled at a rate of 5 mm / hr to form a solid-liquid interface in the seed crystal of FIG. 1.

시딩(Seeding)이 확인되면 6-8시간 안정화시킨 후 2-4mm/hr의 성장속도로 n-type 갈륨비소 단결정 성장을 시작한다. 성장중에 특히 주의할 점은 T2 영역온도의 정밀한 제어이다. 전체 단결정 성장중에 온도변화 ±0.5℃ 이내로 조절할 수 있어야 한다. 성장이 끝난 후 냉각은 1200℃까지는 10℃/hr의 냉각속도로 1000℃까지는 20℃/hr로 상온까지는 50-100℃/hr로 냉각하여 냉각중 발생할 수 있는 전위를 최소화시킨다. n-형 갈륨비소 단결정 성장시 주로 사용되는 도판트(dopant)인 실리콘은 도핑온도 2-3×1018cm-3일때 갈륨비소 내부에서 불순물 경화(impurity hardening)효과를 일으켜 전위밀도를 매우 작게하여 고품질의 n-형 갈륨비소 단결정을 제조할 수 있게 한다. 그러나 일반적으로 실리콘(Si)의 농도가 높아질수록 쌍정발생 확률이 높아지게 된다. 따라서 본 발명에서는 실리콘(Si) 농도에 따른 최적의 비소(As) 증기압 제어부의 온도를 찾아내었는데 실리콘 농도가 (~9×1017cm-3에서는 620-625℃, 도핑되지 않았을(undoped) 때는 610-620℃, 1~4×1018cm-3일때는 625~635℃로 하였을때 쌍정발생을 효과적으로 억제할 수 있었다.When seeding is confirmed, it stabilizes for 6-8 hours and then starts to grow n-type gallium arsenide single crystal at a growth rate of 2-4mm / hr. Of particular note during the growth is the precise control of the T2 zone temperature. It should be possible to control the temperature change within ± 0.5 ℃ during the whole single crystal growth. After the growth is completed, the cooling is performed at a cooling rate of 10 ° C./hr up to 1200 ° C., 20 ° C./hr up to 1000 ° C., and 50-100 ° C./hr up to room temperature to minimize the potential during cooling. Silicon, a dopant mainly used in the growth of n-type gallium arsenide single crystals, has an impurity hardening effect in gallium arsenide at a doping temperature of 2-3 × 10 18 cm -3 , resulting in a very small dislocation density. It is possible to produce high quality n-type gallium arsenide single crystals. However, in general, the higher the concentration of silicon (Si), the higher the probability of twin occurrence. Therefore, in the present invention, the optimum temperature of the arsenic (As) vapor pressure controller according to the silicon (Si) concentration was found, but when the silicon concentration is 620-625 ° C. at ˜9 × 10 17 cm −3 , it is undoped. At 610-620 ℃ and 1 ~ 4 × 10 18 cm -3 , twinning could be effectively suppressed at 625 ~ 635 ℃.

따라서 고품위의 갈륨비소 단결정을 제조할 수 있었다.Therefore, a high quality gallium arsenide single crystal could be produced.

Claims (1)

비소(As) 증기압 제어부를 구비한 저온 2 온도영역(Two Temperature Zone) 또는 3 온도영역(Three Temperature Zone) 수평 브릿지만법에 의해 n-형 갈륨비소(GaAs) 단결정 제조방법에 있어서, 갈륨비소(GaAs) 용융영역의 온도(1)를 1250~1270℃로, 비소(As) 증기압 제어부의 온도(T2)를 610~635℃하고, 온도구배를 2-4℃/cm로, 성장속도를 2-4mm/hr로 하되, 도핑되지 않았을때는 상기 비소 증기압 제어부(T2)의 온도를 610~620℃로, Si 농도가 1~9×1017cm-3에서는 620~630℃로, Si 농도가 1~4×1018cm3일때는 630~635℃로 하는 것을 특징으로 하는 갈륨비소 단결정 성장시의 쌍정 방지방법.In the method for producing an n-type gallium arsenide (GaAs) single crystal by a low temperature two-temperature zone or three-temperature zone horizontal bridgeman method having an arsenic (As) vapor pressure controller, GaAs) melting temperature (1) is 1250 ~ 1270 ℃, arsenic (As) vapor pressure control temperature (T2) of 610 ~ 635 ℃, temperature gradient is 2-4 ℃ / cm, growth rate is 2- 4 mm / hr, when not doped, the temperature of the arsenic vapor pressure controller T2 is 610 to 620 ° C., and the Si concentration is 1 to 9 × 10 17 cm −3 at 620 to 630 ° C., and the Si concentration is 1 to A method of preventing twins during growth of gallium arsenide single crystals, characterized in that 630 ~ 635 ℃ when 4 × 10 18 cm 3 .
KR1019930021119A 1993-10-12 1993-10-12 Galum asenide single crystal growth method KR960014956B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930021119A KR960014956B1 (en) 1993-10-12 1993-10-12 Galum asenide single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930021119A KR960014956B1 (en) 1993-10-12 1993-10-12 Galum asenide single crystal growth method

Publications (2)

Publication Number Publication Date
KR950012577A KR950012577A (en) 1995-05-16
KR960014956B1 true KR960014956B1 (en) 1996-10-23

Family

ID=19365691

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930021119A KR960014956B1 (en) 1993-10-12 1993-10-12 Galum asenide single crystal growth method

Country Status (1)

Country Link
KR (1) KR960014956B1 (en)

Also Published As

Publication number Publication date
KR950012577A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
US4594173A (en) Indium doped gallium arsenide crystals and method of preparation
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
KR960014956B1 (en) Galum asenide single crystal growth method
JPH10259100A (en) Production of garium-arsenic single crystal
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
JP2576131B2 (en) Method for treating compound semiconductor crystal
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
JPH0543679B2 (en)
JPS58156598A (en) Method for crystal growth
JP3937700B2 (en) Method for producing GaAs semiconductor single crystal doped with conductive impurities
JPH01100099A (en) Annealing for semiconductor single crystal
JPS59131598A (en) Production of gaas single crystal
KR960005511B1 (en) Growing method of gaas single crystal
JP3945073B2 (en) Single crystal manufacturing method
JPH08758B2 (en) Method for producing chromium-doped semi-insulating gallium arsenide single crystal
JPS59131599A (en) Production of gaas single crystal
JPS63304617A (en) Method of growing compound semiconductor crystal
JP2885452B2 (en) Boat growth method for group III-V compound crystals
JPH08756B2 (en) Inorganic compound single crystal growth method
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt
JPH06279198A (en) Production of semi-insulating gallium arsenide semiconductor single crystal
JPS62191500A (en) Production of single crystal of gallium sulfide compound semiconductor
JPS62128996A (en) Production of iii-v compound semiconductor single crystal

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060926

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee