JP3937700B2 - Method for producing GaAs semiconductor single crystal doped with conductive impurities - Google Patents

Method for producing GaAs semiconductor single crystal doped with conductive impurities Download PDF

Info

Publication number
JP3937700B2
JP3937700B2 JP2000225586A JP2000225586A JP3937700B2 JP 3937700 B2 JP3937700 B2 JP 3937700B2 JP 2000225586 A JP2000225586 A JP 2000225586A JP 2000225586 A JP2000225586 A JP 2000225586A JP 3937700 B2 JP3937700 B2 JP 3937700B2
Authority
JP
Japan
Prior art keywords
single crystal
gaas
boron
boat
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000225586A
Other languages
Japanese (ja)
Other versions
JP2002037700A (en
Inventor
伸司 矢吹
弘樹 秋山
三千則 和地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000225586A priority Critical patent/JP3937700B2/en
Publication of JP2002037700A publication Critical patent/JP2002037700A/en
Application granted granted Critical
Publication of JP3937700B2 publication Critical patent/JP3937700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は導電性不純物をドープしたGaAs半導体単結晶製造方法に関し、特にパイロテックボロンナイトライドをボートすなわち原料容器として用いる、導電性不純物をドープしたGaAs半導体単結晶製造方法に関する。
【0002】
【従来の技術】
ボートを原料容器として用いる、導電性不純物をドープしたGaAs半導体単結晶製造方法は、ボート法と呼ばれ、ボートとして石英が広く用いられたが、近年パイロテックボロンナイトライド(PBN)が一般的に用いられるようになっている。
【0003】
図2はボート法、特にGF法による導電性不純物をドープしたGaAs半導体単結晶製造に用いられる炉の説明図である。炉1は低温炉2と高温炉3から成り、高温炉3内には石英アンプル4が置かれ、石英アンプル4にはボート5と砒素6を収める。ボート5にはガリウム7、種結晶8、ドーパント9が収められる。高温炉3の上部には放熱孔10が設けられている。
【0004】
GF法により、導電性不純物をドープしたGaAs半導体単結晶を製造するには、石英アンプル4を真空封止して炉1に収め、炉1の温度を上昇させて、低温炉2の温度を約600℃に、高温炉3を1238℃まで上昇させる。ガリウム(Ga)7と気化した砒素(As)6とが石英アンプル4中で反応して、GaAsを生成する。GaAsの合成後、高温炉3の低温炉2に近い部分(図2でBとCの間)が図3に示す温度分布を保つように、高温炉3の温度を徐々に上昇させて、GaAsを熔融し、種結晶8による種付けを行なう。その後高温炉3の温度を徐々に下げ、GaAs単結晶を成長させる。単結晶は種結晶8の側から成長する。
【0005】
図3は、高温炉3の低温炉2に近い部分の温度分布を示すグラフである。横軸は図2の炉1内の位置(A,B,C,D)を、縦軸は温度(℃)を示す。
【0006】
しかし従来のGaAs半導体単結晶製造方法では、PBNを用いたボート5に生成したGaAsは、単結晶成長前の熔融状態のとき、表面に気泡ができ、温度を下げて固化しても、この気泡が残留し、ボート5内のGaAs結晶の上面に窪みができる。この窪みは石英を用いたボートでは見られなかったもので、PBNを用いた場合にのみ現れる。この気泡は、GaAs中の過剰Asがボート表面のPBNと反応して生じた窒素ガスか、あるいは過剰Asそのものと推定されるが、明らかでない。
【0007】
この気泡によってGaAs単結晶の成長が妨げられる。また単結晶が作れてもその上面に窪みがあるため、規定のサイズのウェハを得ることが困難となる。
【0008】
【発明が解決しようとする課題】
従って本発明の目的は、PBNボートを用いても、熔融状態のGaAs表面に生ずる気泡によってGaAs単結晶成長が阻害されることがなく、GaAs単結晶の上面の窪みが生じない、導電性不純物をドープしたGaAs半導体単結晶製造方法を提供することにある。
【0009】
また本発明の目的は、PBNボートを使用して規定サイズのGaAs単結晶を高い歩留まりで得ることができる、導電性不純物をドープしたGaAs半導体単結晶製造方法の提供にある。
【0010】
【課題を解決するための手段】
本発明では、上記目的を達成するために、ガリウム、種結晶、導電性不純物、及び硼素がセットされたPBNボートと砒素とを収めた石英アンプルを用いてGaAs単結晶を真空中で成長させて導電性不純物をドープしたGaAs半導体単結晶を製造する方法において、GaAs単結晶に硼素をドープする。
【0011】
ドープする硼素は、結晶の重量に対する硼素の重量比(以下、ドープ量という)を7×10-5より大きく3×10-4より小さくすることが好ましい。ドープ量が7×10-5以下であると、熔融状態のGaAsからの気泡発生が十分防止できず、一方3×10-4以上であると、熔融状態のGaAsに浮遊物が生じ、結晶成長が阻害され、多結晶化して単結晶を得ることができない。この浮遊物は砒化硼素であると推定することができる。
【0012】
高抵抗性GaAs結晶を製造する際に硼素はドーパントとして用いられるが、この場合硼素には気泡発生防止の効果はない。それはおそらく、高抵抗性GaAs結晶の場合には硼素がガリウムサイトに取り込まれ、砒化硼素が形成され難いためと推定される。
【0013】
【発明の実施の形態】
図1は、本発明による導電性不純物をドープしたGaAs半導体単結晶の製造に用いる、GF法ボート結晶成長による単結晶成長装置を示す。単結晶成長のための炉1は低温炉2と高温炉3から成り、高温炉3内には石英アンプル4が置かれ、石英アンプル4にはボート5と砒素6を収める。ボート5にはガリウム7、種結晶8、ドーパント9およびドーパント9aが収められる。高温炉3の上部には放熱孔10が設けられている。図1の単結晶成長装置は、ボート5にドーパント9のほかにドーパント9aを設けたこと以外は、図2に示した従来の単結晶成長装置と同じ構造である。
【0014】
この装置でPBNボートを用いて、Siをドープしたn型導電性GaAs半導体の直径2インチの単結晶を製造する方法を、発明の実施の形態の一つとして以下に説明する。
【0015】
単結晶を製造するには、まずボート5にガリウム7、種結晶8、ドーパント9およびドーパント9aを収める。ボート5としてPBNボートを用い、ドーパント9は所定量のSi、ドーパント9aは所定量の硼素である。ボート5と砒素6とを収めた石英アンプル4を、真空封止し、炉1に収める。低温炉2および高温炉3の温度をそれぞれ指定の温度(約600℃および1238℃)まで上昇させる。反応によりGaAsが生成する。GaAsの合成後、高温炉3の低温炉2に近い部分(図1でBとCの間)が1cmあたり0.5℃の温度分布を保つように、高温炉3の温度を徐々に上昇させて、GaAsを熔融し、種結晶8による種付けを行なう。その後高温炉3の温度を1時間に0.1℃の割合で下げ、GaAs単結晶を成長させる。
【0016】
ドーパント9aとして用いる硼素の量は、ドープ量(結晶の重量に対する硼素の重量比)を7×10-5より大きく、3×10-4より小さくする(例えば、1×10-4)。
【0017】
本発明の導電性不純物をドープしたGaAs半導体単結晶製造方法は、GF法においてPBNボートを用いる場合に限らず、HBにおいてPBNボートを用いる場合、さらに原料容器にPBNを用いるVB法あるいはVGF法による、単結晶製造にも応用することができる。
【0018】
【実施例】
以下に本発明の実施例を示し、効果の証明とする。
[実施例1]
図1の装置を用い、上記実施態様に従って導電性GaAs半導体単結晶を製造した。ドーパント9aとして用いる硼素のドープ量は1×10-4とし、単結晶化の歩留まり、気泡発生率、浮遊物発生率を評価した。比較のため、硼素のドープ量を7×10-5、3×10-4とした場合及びドーパント9aを省いた場合(ドープ量0)について、これらの特性を評価した。
【0019】
上記のように硼素のドープ量を変化させたとき、単結晶化の歩留まり、気泡発生率、浮遊物発生率は表1に示す通りであった。気泡発生率は硼素ドープ量0の場合の気泡数を100とした相対値である。
【0020】
【表1】

Figure 0003937700
【0021】
表1に示すように、本発明に従い硼素のドープ量を1×10-4としたときは、気泡、浮遊物とも発生せず、単結晶化の歩留まりが高い。ドープ量が7×10-5のときは、気泡が若干発生し、そのために単結晶化の歩留まりが低い。ドープ量を3×10-4としたときは、気泡の発生はないが、浮遊物が発生し、そのために単結晶化の歩留まりが低下する。硼素のドープ量が0のとき(従来技術)は、気泡の発生が多く、単結晶化の歩留まりは著しく低い。
【0022】
実施例の結果から明らかなように、本発明に従い、ドープ量(結晶の重量に対する硼素の重量比)が7×10-5より大きく3×10-4より小さくなるように硼素をドープすると、ボート内の熔融GaAs中に気泡が発生せず、浮遊物も生じない。それに対応して、単結晶成長の高い歩留まりが得られる。
【0023】
【発明の効果】
本発明によると、PBNボートを用いて導電性不純物をドープしたGaAs半導体単結晶を製造する方法において、熔融状態のGaAs表面での気泡の発生が防止され、気泡によりGaAs単結晶成長が阻害されることがなく、従ってGaAs単結晶の上面の窪みが生じない。結果として、規定サイズのGaAs単結晶を高い歩留まりで得ることができる。
【0024】
PBNボートを用いて導電性不純物をドープしたGaAs半導体単結晶を製造する際に生じる気泡は、GaAs中の過剰Asがボート表面のPBNと反応して生じた窒素ガスか、あるいは過剰Asそのものと推定される。本発明に従い硼素をドープすると、熔融GaAs中に最初から硼素が存在するようになるため、過剰Asとボート表面のPBNとの反応が抑制されるか、過剰Asの少なくとも一部が硼素との反応で砒化硼素を形成して除去されるためと、推定することができる。
【図面の簡単な説明】
【図1】本発明による導電性不純物をドープしたGaAs半導体単結晶製造装置の説明図。
【図2】従来の導電性不純物をドープしたGaAs半導体単結晶製造装置の説明図。
【図3】炉内の温度分布を示すグラフ。
【符号の説明】
1 炉
2 低温炉
3 高温炉
4 石英アンプル
5 ボート
6 砒素
7 ガリウム
8 種結晶
9 ドーパント
9a ドーパント
10 放熱孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a GaAs semiconductor single crystal doped with conductive impurities, and more particularly to a method for producing a GaAs semiconductor single crystal doped with conductive impurities using pyrotechnic boron nitride as a boat, that is, a raw material container.
[0002]
[Prior art]
A method for producing a GaAs semiconductor single crystal doped with conductive impurities using a boat as a raw material container is called a boat method, and quartz has been widely used as a boat. In recent years, however, pyrotech boron nitride (PBN) is generally used. It has come to be used.
[0003]
FIG. 2 is an explanatory view of a furnace used for manufacturing a GaAs semiconductor single crystal doped with a conductive impurity by a boat method, particularly, a GF method. The furnace 1 includes a low-temperature furnace 2 and a high-temperature furnace 3. A quartz ampoule 4 is placed in the high-temperature furnace 3, and a boat 5 and arsenic 6 are housed in the quartz ampoule 4. The boat 5 contains gallium 7, seed crystal 8, and dopant 9. A heat dissipation hole 10 is provided in the upper part of the high temperature furnace 3.
[0004]
In order to manufacture a GaAs semiconductor single crystal doped with conductive impurities by the GF method, the quartz ampule 4 is vacuum-sealed and placed in the furnace 1, the temperature of the furnace 1 is increased, and the temperature of the low-temperature furnace 2 is reduced to about The temperature of the high temperature furnace 3 is raised to 1238 ° C. at 600 ° C. Gallium (Ga) 7 and vaporized arsenic (As) 6 react in the quartz ampule 4 to produce GaAs. After the synthesis of GaAs, the temperature of the high temperature furnace 3 is gradually increased so that the portion of the high temperature furnace 3 close to the low temperature furnace 2 (between B and C in FIG. 2) maintains the temperature distribution shown in FIG. And seeding with the seed crystal 8. Thereafter, the temperature of the high temperature furnace 3 is gradually lowered to grow a GaAs single crystal. The single crystal grows from the seed crystal 8 side.
[0005]
FIG. 3 is a graph showing a temperature distribution in a portion of the high temperature furnace 3 close to the low temperature furnace 2. The horizontal axis indicates the position (A, B, C, D) in the furnace 1 of FIG. 2, and the vertical axis indicates the temperature (° C.).
[0006]
However, in the conventional GaAs semiconductor single crystal manufacturing method, the GaAs produced in the boat 5 using PBN has bubbles on the surface in the melted state before the single crystal growth. Remains and a depression is formed on the upper surface of the GaAs crystal in the boat 5. This indentation was not seen on a boat using quartz, and appears only when PBN is used. This bubble is presumed to be the nitrogen gas produced when excess As in GaAs reacts with PBN on the boat surface, or excess As itself, but it is not clear.
[0007]
This bubble prevents the growth of the GaAs single crystal. Even if a single crystal is made, there is a depression on the upper surface, making it difficult to obtain a wafer of a prescribed size.
[0008]
[Problems to be solved by the invention]
Therefore, even if a PBN boat is used, the object of the present invention is to prevent the growth of GaAs single crystal from being hindered by bubbles generated on the molten GaAs surface, and to prevent conductive impurities that do not cause depression of the upper surface of the GaAs single crystal. An object of the present invention is to provide a method for producing a doped GaAs semiconductor single crystal.
[0009]
Another object of the present invention is to provide a method for producing a GaAs semiconductor single crystal doped with conductive impurities, which can obtain a GaAs single crystal of a prescribed size with a high yield using a PBN boat.
[0010]
[Means for Solving the Problems]
In the present invention, in order to achieve the above object, a GaAs single crystal is grown in a vacuum using a quartz ampoule containing arsenic and a PBN boat in which gallium, a seed crystal, a conductive impurity, and boron are set. In a method of manufacturing a GaAs semiconductor single crystal doped with a conductive impurity, boron is doped into the GaAs single crystal.
[0011]
The boron to be doped is preferably such that the weight ratio of boron to the weight of the crystal (hereinafter referred to as doping amount) is larger than 7 × 10 −5 and smaller than 3 × 10 −4 . If the doping amount is 7 × 10 −5 or less, the generation of bubbles from the molten GaAs cannot be sufficiently prevented, while if it is 3 × 10 −4 or more, suspended matter is generated in the molten GaAs and crystal growth occurs. Is inhibited and cannot be polycrystallized to obtain a single crystal. It can be estimated that this suspended substance is boron arsenide.
[0012]
Boron is used as a dopant when manufacturing a high-resistance GaAs crystal. In this case, boron has no effect of preventing bubble generation. This is presumably because boron is taken into the gallium site and boron arsenide is hardly formed in the case of a high-resistance GaAs crystal.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an apparatus for growing a single crystal by GF boat crystal growth, which is used for manufacturing a GaAs semiconductor single crystal doped with a conductive impurity according to the present invention. A furnace 1 for single crystal growth includes a low temperature furnace 2 and a high temperature furnace 3, a quartz ampule 4 is placed in the high temperature furnace 3, and a boat 5 and arsenic 6 are housed in the quartz ampule 4. The boat 5 contains gallium 7, seed crystal 8, dopant 9 and dopant 9a. A heat dissipation hole 10 is provided in the upper part of the high temperature furnace 3. The single crystal growth apparatus of FIG. 1 has the same structure as the conventional single crystal growth apparatus shown in FIG. 2 except that the boat 5 is provided with a dopant 9 a in addition to the dopant 9.
[0014]
A method of manufacturing a single crystal having a diameter of 2 inches of an n-type conductive GaAs semiconductor doped with Si using a PBN boat in this apparatus will be described below as one embodiment of the invention.
[0015]
In order to manufacture a single crystal, first, gallium 7, seed crystal 8, dopant 9, and dopant 9a are placed in boat 5. A PBN boat is used as the boat 5, the dopant 9 is a predetermined amount of Si, and the dopant 9 a is a predetermined amount of boron. The quartz ampule 4 containing the boat 5 and arsenic 6 is vacuum sealed and placed in the furnace 1. The temperatures of the low-temperature furnace 2 and the high-temperature furnace 3 are increased to specified temperatures (about 600 ° C. and 1238 ° C.), respectively. GaAs is generated by the reaction. After the synthesis of GaAs, the temperature of the high temperature furnace 3 is gradually increased so that the portion of the high temperature furnace 3 close to the low temperature furnace 2 (between B and C in FIG. 1) maintains a temperature distribution of 0.5 ° C. per cm. Then, GaAs is melted and seeded with the seed crystal 8. Thereafter, the temperature of the high temperature furnace 3 is lowered at a rate of 0.1 ° C. per hour to grow a GaAs single crystal.
[0016]
The amount of boron used as the dopant 9a is such that the doping amount (the weight ratio of boron to the weight of the crystal) is larger than 7 × 10 −5 and smaller than 3 × 10 −4 (for example, 1 × 10 −4 ).
[0017]
The method for producing a GaAs semiconductor single crystal doped with conductive impurities according to the present invention is not limited to the case where a PBN boat is used in the GF method. When a PBN boat is used in the HB, the VB method or the VGF method using PBN as a raw material container is used. It can also be applied to single crystal production.
[0018]
【Example】
Examples of the present invention will be shown below to prove the effect.
[Example 1]
Using the apparatus of FIG. 1, a conductive GaAs semiconductor single crystal was manufactured according to the above embodiment. Doping amount of boron used as dopant 9a is a 1 × 10 -4, the yield of single crystallization, bubble generation rate was evaluated suspended solids incidence. For comparison, these characteristics were evaluated when the boron doping amount was 7 × 10 −5 and 3 × 10 −4 and when the dopant 9a was omitted (the doping amount was 0).
[0019]
When the boron doping amount was changed as described above, the yield of single crystallization, the bubble generation rate, and the suspended matter generation rate were as shown in Table 1. The bubble generation rate is a relative value where the number of bubbles is 100 when the boron doping amount is zero.
[0020]
[Table 1]
Figure 0003937700
[0021]
As shown in Table 1, when the boron doping amount is 1 × 10 −4 according to the present invention, neither bubbles nor suspended matters are generated, and the yield of single crystallization is high. When the doping amount is 7 × 10 −5 , some bubbles are generated, and therefore the yield of single crystallization is low. When the dope amount is 3 × 10 −4 , no bubbles are generated, but floating matters are generated, and the yield of single crystallization is lowered. When the boron doping amount is 0 (prior art), many bubbles are generated and the yield of single crystallization is extremely low.
[0022]
As is clear from the results of the examples, according to the present invention, when boron is doped so that the doping amount (weight ratio of boron to the weight of the crystal) is larger than 7 × 10 −5 and smaller than 3 × 10 −4 , Bubbles are not generated in the molten GaAs, and no suspended matter is generated. Correspondingly, a high yield of single crystal growth can be obtained.
[0023]
【The invention's effect】
According to the present invention, in the method of manufacturing a GaAs semiconductor single crystal doped with conductive impurities using a PBN boat, the generation of bubbles on the molten GaAs surface is prevented, and the growth of the GaAs single crystal is inhibited by the bubbles. Therefore, the depression of the upper surface of the GaAs single crystal does not occur. As a result, a GaAs single crystal having a specified size can be obtained with a high yield.
[0024]
Bubbles generated when a GaAs semiconductor single crystal doped with conductive impurities using a PBN boat is estimated to be nitrogen gas generated by reaction of excess As in GaAs with PBN on the boat surface, or excess As itself. Is done. When boron is doped according to the present invention, boron is initially present in the molten GaAs, so that the reaction between excess As and PBN on the boat surface is suppressed, or at least part of the excess As reacts with boron. It can be presumed that boron arsenide is formed and removed by this.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a GaAs semiconductor single crystal manufacturing apparatus doped with conductive impurities according to the present invention.
FIG. 2 is an explanatory view of a conventional GaAs semiconductor single crystal manufacturing apparatus doped with conductive impurities.
FIG. 3 is a graph showing a temperature distribution in the furnace.
[Explanation of symbols]
1 furnace 2 low temperature furnace 3 high temperature furnace 4 quartz ampoule 5 boat 6 arsenic 7 gallium 8 seed crystal 9 dopant 9a dopant 10 heat dissipation hole

Claims (1)

ガリウム、種結晶、導電性不純物、及び硼素がセットされたPBNボートと砒素とを収めた石英アンプルを用いてGaAs単結晶を真空中で成長させて、導電性不純物をドープしたGaAs半導体単結晶を製造する方法において、
前記GaAs単結晶に対する前記硼素の重量比が7×10-5より大きく3×10-4より小さくなる範囲で、GaAs単結晶に硼素をドープすることを特徴とする、導電性不純物をドープしたGaAs半導体単結晶の製造方法。
A GaAs semiconductor single crystal doped with a conductive impurity is grown by growing a GaAs single crystal in a vacuum using a quartz ampoule containing arsenic and a PBN boat in which gallium, a seed crystal, a conductive impurity, and boron are set. In the manufacturing method,
To the extent that the weight ratio of said boron to said GaAs single crystal is less than 7 × 10 -5 3 × 10 -4 greater than, characterized by doping boron into a GaAs single crystal, GaAs doped with conductive impurities A method for producing a semiconductor single crystal.
JP2000225586A 2000-07-26 2000-07-26 Method for producing GaAs semiconductor single crystal doped with conductive impurities Expired - Fee Related JP3937700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000225586A JP3937700B2 (en) 2000-07-26 2000-07-26 Method for producing GaAs semiconductor single crystal doped with conductive impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000225586A JP3937700B2 (en) 2000-07-26 2000-07-26 Method for producing GaAs semiconductor single crystal doped with conductive impurities

Publications (2)

Publication Number Publication Date
JP2002037700A JP2002037700A (en) 2002-02-06
JP3937700B2 true JP3937700B2 (en) 2007-06-27

Family

ID=18719331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000225586A Expired - Fee Related JP3937700B2 (en) 2000-07-26 2000-07-26 Method for producing GaAs semiconductor single crystal doped with conductive impurities

Country Status (1)

Country Link
JP (1) JP3937700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866390A (en) * 2012-12-12 2014-06-18 有研光电新材料有限责任公司 Method for doping zinc into gallium phosphide polycrystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104047047B (en) * 2014-06-09 2017-03-15 北京雷生强式科技有限责任公司 A kind of horizontal growth device of phosphorus silicon Cd monocrystal and growing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866390A (en) * 2012-12-12 2014-06-18 有研光电新材料有限责任公司 Method for doping zinc into gallium phosphide polycrystal
CN103866390B (en) * 2012-12-12 2016-06-01 有研光电新材料有限责任公司 A kind of gallium phosphide polycrystal body mixes zinc method

Also Published As

Publication number Publication date
JP2002037700A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
JP5170571B2 (en) Method for producing n-type group III nitride compound semiconductor
EP0417843A2 (en) Process for producing monocrystalline group II-VI or group III-V compounds and products thereof
WO2004106597A1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
WO2001016408A1 (en) Epitaxial silicon wafer
WO2001006545B1 (en) ENHANCED n TYPE SILICON MATERIAL FOR EPITAXIAL WAFER SUBSTRATE AND METHOD OF MAKING SAME
US20090072205A1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
US7175707B2 (en) P-type GaAs single crystal and its production method
JP3937700B2 (en) Method for producing GaAs semiconductor single crystal doped with conductive impurities
EP0036891B1 (en) Minimization of strain in single crystals
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP2000086398A (en) P type gaas single crystal and its production
JPH10259100A (en) Production of garium-arsenic single crystal
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
JP3818023B2 (en) Method for producing GaAs single crystal
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
JP3945073B2 (en) Single crystal manufacturing method
CN1279732A (en) Charge for vertical boat growth process and use thereof
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
JP2736343B2 (en) Method for producing semi-insulating InP single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JP2001130999A (en) METHOD FOR PRODUCING GaAs SEMICONDUCTOR SINGLE CRYSTAL
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
KR960014956B1 (en) Galum asenide single crystal growth method
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JP2001199789A (en) Method for producing silicon single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees