JPS63304617A - Method of growing compound semiconductor crystal - Google Patents

Method of growing compound semiconductor crystal

Info

Publication number
JPS63304617A
JPS63304617A JP13887487A JP13887487A JPS63304617A JP S63304617 A JPS63304617 A JP S63304617A JP 13887487 A JP13887487 A JP 13887487A JP 13887487 A JP13887487 A JP 13887487A JP S63304617 A JPS63304617 A JP S63304617A
Authority
JP
Japan
Prior art keywords
growth
layer
semiconductor layer
doping
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13887487A
Other languages
Japanese (ja)
Inventor
Yukie Nishikawa
幸江 西川
Naoharu Sugiyama
直治 杉山
Shigeya Narizuka
重弥 成塚
Yoshihiro Kokubu
国分 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13887487A priority Critical patent/JPS63304617A/en
Publication of JPS63304617A publication Critical patent/JPS63304617A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sharp doping profile of high concentration, by interrupting growth after a first semiconductor layer is grown and before a second semiconductor layer is grown, or by interrupting growth at a temperature higher than a first growth temperature. CONSTITUTION:A Cr-doped high resistance GaAs substrate 1, a GaAs buffer layer 2, a doping layer (a first semiconductor layer) 3 in which Mg of high concentration is doped, and a GaAs non-doped layer (a second semiconductor layer) 4 are provided. A compound semiconductor thin film having the above structure is grown by a reduced pressure type organic metal vapor growth method. The growth temperature of the buffer layer and the doping layer is set at 700 deg.C, and the 0.35mum thick buffer layer and the 0.15mum thick doping layer are grown. Then the supply of Cp2Mg, a doping gas, to a reaction pipe is halted, and the supply of trimethyl gallium (TMG) is also halted to interrupt the growth. After the temperature is raised up to 775 deg.C and kept, the supply of TNG is again started to grow an undoped layer. Thereby, a sharp doping profile of high concentration can be realized at the boudary surface between the first semiconductor layer and the second semiconductor layer.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はm−v族化合物半導体結晶のエピタキシャル成
長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for epitaxial growth of m-v group compound semiconductor crystals.

(従来の技術) ■−■族化合物半導体において、P型のドーパントとし
ては、Zn、 Be+ ’gなどが広く用いられている
。このうちZnは化合物半導体中での拡散が速く急峻な
ペテロ界面や超格子のデバイスを作製するには不適であ
る。それに対してMgはZnにくらべ拡散係数がはるか
に小さく、さらにMBE法で一般に用いられるBeとく
らべ毒性が低いことから、P型のドーパントとして注目
されている。しかし、従来の技術ではMgをP型のドー
パントとして用いた場合でもメモリー効果などにより界
面において急峻なドーピングプロファイルが得られてい
ない(Journal of Crystal Gro
wth 68 (1984) 422−430記載)。
(Prior Art) Zn, Be+'g, etc. are widely used as P-type dopants in 1-2 group compound semiconductors. Of these, Zn diffuses rapidly in a compound semiconductor and is therefore unsuitable for fabricating a device with a steep Peter interface or a superlattice. On the other hand, Mg is attracting attention as a P-type dopant because it has a much smaller diffusion coefficient than Zn and also has lower toxicity than Be, which is generally used in the MBE method. However, in the conventional technology, even when Mg is used as a P-type dopant, a steep doping profile cannot be obtained at the interface due to memory effects etc. (Journal of Crystal Gro
wth 68 (1984) 422-430).

とりbげ、成長表面側での不純物分布の急峻性の劣化は
デバイス作製上大きな問題となる。
Deterioration of the steepness of the impurity distribution on the growth surface side becomes a major problem in device fabrication.

(発明が解決しようとする問題点) 以上述べたように該第1の半導体層上に該第2の半導体
層を成長させた場合、界面で急峻なドーピングプロファ
イルが得られない場合がある。
(Problems to be Solved by the Invention) As described above, when the second semiconductor layer is grown on the first semiconductor layer, a steep doping profile may not be obtained at the interface.

本発明ではこのような問題点を解決し、高濃度で急峻な
ドーピングプロファイルを得ることを目的としている。
The present invention aims to solve these problems and obtain a high concentration and steep doping profile.

〔発明の構成〕[Structure of the invention]

(問題を解決するための手段) 本発明では前記問題を解決するための手段として、第1
の半導体層を成長させた後、第2の半導体層を成長させ
る前に成長の中断を行うこと、もしくは第1の成長温度
より高い温度での成長の中断を行うことを目的としてい
る。
(Means for solving the problem) In the present invention, as a means for solving the problem, the first
The purpose is to interrupt the growth after growing a second semiconductor layer and before growing a second semiconductor layer, or to interrupt the growth at a temperature higher than the first growth temperature.

ここでは、ドーパントとしてMgを例にとって説明する
。Mgは、SiやBeなどの一般的なドーパントとは違
い、そのドーピング量はドーパントの供給量だけでは決
まらず、成長温度や成長速度の依存し変化する。このこ
とから我々はMgが成長表面である寿命を持つことを見
い出した。その寿命は成長温度に依存し、成長温度が低
い時は長く、成長温度が高いと短くなる。よって、低温
で成長を行った場合にはMgが成長表面に滞在する時間
が高温成長時よりも長くなるため、Mgがエピタキシャ
ル層にとりこまれる確率が高くなり、ドーピング効率は
向上する。また、低温で成長を行うことにより、不純物
の熱拡散を抑える効果も期待できる。
Here, explanation will be given by taking Mg as an example of a dopant. Unlike general dopants such as Si and Be, the amount of Mg doped is not determined only by the amount of dopant supplied, but changes depending on the growth temperature and growth rate. From this, we found that Mg has a lifetime as a growth surface. Its lifetime depends on the growth temperature; it is longer when the growth temperature is low, and shorter when the growth temperature is high. Therefore, when the growth is performed at a low temperature, the time that Mg stays on the growth surface is longer than when the growth is performed at a high temperature, so the probability that Mg is incorporated into the epitaxial layer is increased, and the doping efficiency is improved. Furthermore, by performing the growth at a low temperature, the effect of suppressing thermal diffusion of impurities can be expected.

しかし、Mgをドーパントとして用いた第1の半導体層
に続き第2の半導体層を成長させる場合には、Mgの供
給を停止しても成長表面近傍にMgが滞在しているため
に第2の半導体層中にもMgがとりこまれる。したがっ
て、前記第1層及び第2層の界面では急峻なドーピング
プロファイルが得られない。
However, when growing a second semiconductor layer following a first semiconductor layer using Mg as a dopant, even if the Mg supply is stopped, the second semiconductor layer remains near the growth surface. Mg is also incorporated into the semiconductor layer. Therefore, a steep doping profile cannot be obtained at the interface between the first layer and the second layer.

一方、高温で成長を行った場合には、Mgの成長表面で
の寿命は短くなるのでドーピング効率は悪くなるが、第
1層と第2層の界面での急峻性は向上する。よって高い
ドーピング効率と急峻な界面を同時に得ようとした場合
には、低温で第1の半導体層を成長させた後成長の中断
を行い、成長表面付近に滞在する過剰なMgを脱離させ
た後、第2の半導体層を成長させればよい。また、成長
の中断を行うと共に基板温度を第1の成長温度より高く
するとMgが脱離しやすくなるために急峻性をさらに高
めることができる。以上説明したように、第1の半導体
層を成長した後成長の中断を行うこと、もしくは成長の
中断を行うと共に基板温度を上昇させることにより、高
濃度かつ急峻なドーピングプロファイルを実現できる。
On the other hand, when growth is performed at a high temperature, the lifetime of Mg on the growth surface is shortened, resulting in poor doping efficiency, but the steepness at the interface between the first layer and the second layer is improved. Therefore, when trying to obtain high doping efficiency and a steep interface at the same time, it is necessary to grow the first semiconductor layer at a low temperature and then interrupt the growth to remove excess Mg staying near the growth surface. After that, a second semiconductor layer may be grown. Further, if the growth is interrupted and the substrate temperature is made higher than the first growth temperature, Mg is easily desorbed, so that the steepness can be further improved. As described above, a high concentration and steep doping profile can be achieved by suspending the growth after growing the first semiconductor layer, or by suspending the growth and increasing the substrate temperature.

ここでは、Mgを例にとって説明したが、この方法はM
gだけに限らすMgと似たような性質を示す他のドーパ
ントにも適用することができる。
Here, the explanation was given using Mg as an example, but this method is
The present invention is not limited to Mg, but can also be applied to other dopants exhibiting properties similar to Mg.

(実施例) 以下、本発明を図面を用いて実施例により説明する。(Example) Hereinafter, the present invention will be explained by examples using the drawings.

第1図は本発明の手法により成長した化合物半導体結晶
の断面図である。1はCrドープの高抵抗GaAs基板
である。2はQaAsのバッファ層、3はMgを高濃度
にドープしたドーピング層(第1の半導体層)、4はG
aAsのノンドープ層(第2の半導体層)である。各層
の厚みは、バッファ層が0.35μs、ドーピング層が
0.15μsにドープ層が0.2tImである。
FIG. 1 is a cross-sectional view of a compound semiconductor crystal grown by the method of the present invention. 1 is a Cr-doped high resistance GaAs substrate. 2 is a QaAs buffer layer, 3 is a doping layer doped with Mg at a high concentration (first semiconductor layer), and 4 is G
This is an aAs non-doped layer (second semiconductor layer). The thickness of each layer is 0.35 μs for the buffer layer, 0.15 μs for the doped layer, and 0.2 tIm for the doped layer.

第1図に示すような構造を持つ化合物半導体薄膜を減圧
型有機金属気相成長法により成長させた。
A compound semiconductor thin film having the structure shown in FIG. 1 was grown by a reduced pressure organometallic vapor phase epitaxy method.

原料ガスとしては、トリメチルガリウム(TMG)とア
ルシン(AsHa)を用い、ドーピングガスとしてはビ
スシクロペンタジエチルマグネシウム(CpzMg)を
用いた。
Trimethylgallium (TMG) and arsine (AsHa) were used as source gases, and biscyclopentadiethylmagnesium (CpzMg) was used as a doping gas.

以下、成長の手順を示す。バッファ層とドーピング層(
第1の半導体層)での成長温度は700℃とした。バッ
ファ層を0.35tI!n、 ドーピング層を0.15
p成長させた後、ドーピングガスであるCF2 Mgの
反応管への供給を停止すると共にTMGの供給を停止し
成長を中断した。ここでの中断時間は5秒程度以下でよ
い。そして、基板温度を775℃まで上昇させ保持した
後、再びTMGの供給を開始しノンドープ層(第2の半
導体層)を成長させた。この実施例ではノンドープ層は
基板温度を上昇させたまま(775℃)で成長を行った
が、基板温度を成長の中断中のみ上昇させても同様の結
果が得られた。
The growth procedure is shown below. Buffer layer and doping layer (
The growth temperature for the first semiconductor layer was 700°C. The buffer layer is 0.35tI! n, doping layer 0.15
After p growth, the supply of CF2Mg, which is a doping gas, to the reaction tube was stopped, and the supply of TMG was also stopped to interrupt the growth. The interruption time here may be about 5 seconds or less. Then, after raising and maintaining the substrate temperature to 775° C., supply of TMG was started again to grow a non-doped layer (second semiconductor layer). In this example, the non-doped layer was grown while the substrate temperature remained elevated (775° C.), but similar results were obtained even if the substrate temperature was increased only during the interruption of growth.

上記方法により得られた化合物半導体薄膜中における不
純物濃度の深さ分布を第2図に示す。不純物濃度分布は
C−■プロファイラーにより測定した。第2図に示した
ようにドーピング層は低温で成長させているので、キャ
リア濃度は7.5 X 101″′dと高くなっている
。これは、低温成長時にはMgの成長表面での寿命が長
くエピタキシャル層中にとりこまれる確率が高くなるた
めである。そして、ドーピング層とノンドープ層の界面
で成長を中断すると共に基板温度を上昇させて過剰なM
gを脱離させているので、ドーピング界面は極めて急峻
である。このように本発明の方法を用いることにより、
高いドーピング効率と急峻な界面を同時に実現すること
ができる。
FIG. 2 shows the depth distribution of impurity concentration in the compound semiconductor thin film obtained by the above method. The impurity concentration distribution was measured using a C-■ profiler. As shown in Figure 2, the doped layer is grown at a low temperature, so the carrier concentration is as high as 7.5 x 101''d.This is because the lifetime of Mg on the growth surface is short during low temperature growth. This is because there is a high probability that the excess M will be incorporated into the epitaxial layer for a long time.Then, the growth will be interrupted at the interface between the doped layer and the non-doped layer, and the substrate temperature will increase.
Since g is eliminated, the doping interface is extremely steep. By using the method of the present invention in this way,
High doping efficiency and a steep interface can be achieved at the same time.

一方、従来技術により、第1図に示される膜構造を有す
る化合物半導体薄膜を成長した場合の該i膜中の不純物
濃度の深さ分布を第3図及び第4図に示す。第3図及び
第4図に示したのは、それぞれ成長温度をバッファ層、
ドーピング層にドープ層共に700℃、775℃とし、
ドーピング層とノンドープ層の界面ではドーピングガス
であるCP2 Mgの供給を停止するのみで成長の中断
は行わず連続して成長を行ったものである。第2図に示
したものとは、成長温度及び成長中断の有無が異なるの
みで、原料ガス、ドーピングカス、キャリアガスの流量
など他の成長条件はすへて同一である。第3図には成長
温度を700℃としたときの不純物濃度の深さ分布を示
した。ドーピング層でのMgのドーピング量は7.5 
X 101101B’と高くなっているが、CP2 M
gの供給を停止してもキャリア濃度はあまり減少せず急
峻なドーピングプロファイルは得られない。一方、第4
図に示したように成長温度を=8= 775℃とすると ドーピング層とノンドープ層との界
面でのドーピングプロファイルは急峻であるが、ドーピ
ング層でのドーピング量は2.5 X 101″’c!
1−3と低くなっている。高温で成長を行った場合には
、ドーピングガスであるCPz Mgの流量をコれ以上
増加させてもドーピング量は飽和してしまい、高濃度の
ドーピング層は得られない。よって高濃度かつ急峻なド
ーピングプロファイルを得るためには、本発明の手法は
非常に有効であることがわかる。
On the other hand, FIGS. 3 and 4 show the depth distribution of the impurity concentration in the i-film when a compound semiconductor thin film having the film structure shown in FIG. 1 is grown using the conventional technique. Figures 3 and 4 show the growth temperatures for the buffer layer,
Both the doped layer and the doped layer are 700°C and 775°C,
At the interface between the doped layer and the non-doped layer, the supply of CP2Mg, which is a doping gas, was simply stopped, and growth was continued without interruption. The only difference from that shown in FIG. 2 is the growth temperature and the presence or absence of growth interruption, and other growth conditions such as the flow rate of the raw material gas, doping residue, and carrier gas are all the same. FIG. 3 shows the depth distribution of impurity concentration when the growth temperature is 700°C. The doping amount of Mg in the doping layer is 7.5
Although it is high at 101101B', CP2 M
Even if the supply of g is stopped, the carrier concentration does not decrease much and a steep doping profile cannot be obtained. On the other hand, the fourth
As shown in the figure, when the growth temperature is set to = 8 = 775°C, the doping profile at the interface between the doped layer and the non-doped layer is steep, but the doping amount in the doped layer is 2.5 x 101''c!
The score is as low as 1-3. When growth is performed at a high temperature, even if the flow rate of the doping gas CPz Mg is increased beyond this value, the doping amount will be saturated and a highly concentrated doped layer will not be obtained. Therefore, it can be seen that the method of the present invention is very effective in obtaining a high concentration and steep doping profile.

以上で説明した実施例では、第1の半導体層の成長終了
後に成長の中断を行うと共に少なくとも前記成長中断中
の基板温度を前記第1の半導体層の成長温度より高く保
持したが、必ずしも基板温度を第1の半導体成長温度よ
り高くしなくとも界面でのドーピングプロファイルの急
峻性は多少劣るが中断を行わない場合にくらべ、はるか
によい急峻性を得ることができる。
In the embodiments described above, the growth is interrupted after the growth of the first semiconductor layer is completed, and the substrate temperature is maintained higher than the growth temperature of the first semiconductor layer at least during the interruption of the growth. Even if the doping profile is not made higher than the first semiconductor growth temperature, the steepness of the doping profile at the interface is somewhat inferior, but much better steepness can be obtained than when no interruption is performed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように第1の半導体層を成長した後に成長
の中断を行うこと、もしくは成長の中断−9−QC を行うと共に基板温度を上昇させ保持することにより、
第1の半導体層と第2の半導体層の界面で高濃度で急峻
なドーピングプロファイルを実現できる。
As explained above, by suspending the growth after growing the first semiconductor layer, or by suspending the growth -9-QC and raising and maintaining the substrate temperature,
A high concentration and steep doping profile can be achieved at the interface between the first semiconductor layer and the second semiconductor layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の手法により成長した化合物半導体結晶
の断面図、第2図は本発明の手法により得られた化合物
半導体薄膜中の不純物濃度の深さ分布を示した図、第3
図及び第4@は従来技術により得られた化合物半導体薄
膜中の深さ分布を示した図である。 1・・・GaAs基板    2・・GaAsバッファ
層3・・・ドーピング層  4・・・ノンドープ層。 代理人 弁理士  則 近 憲 佑 同  松山光之 第1図 表面一=・シ薯さ(ルm1 第2図 紐℃ゝうりλ、2 第3図 第4図
FIG. 1 is a cross-sectional view of a compound semiconductor crystal grown by the method of the present invention, FIG. 2 is a diagram showing the depth distribution of impurity concentration in a compound semiconductor thin film obtained by the method of the present invention, and FIG.
The figure and the fourth @ are diagrams showing the depth distribution in a compound semiconductor thin film obtained by the conventional technique. 1... GaAs substrate 2... GaAs buffer layer 3... Doped layer 4... Non-doped layer. Agent Patent Attorney Yudo Noriyuki Chika Mitsuyuki Matsuyama Figure 1 Surface 1 = shi 薯さ (le m1 Figure 2 String ℃ゝUriλ, 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)III−V族化合物半導体を基板上にエピタキシャ
ル成長させる方法において、第1の不純物を添加した第
1の伝導型を示す第1の半導体層を第1の成長温度で成
長した後に、前記第1の不純物を第1の半導体層より低
濃度に添加した第2の半導体層を成長する場合、もしく
は前記第1の半導体層を成長した後に第2の不純物を添
加した第1の伝導型とは異なる伝導型を示す第2の半導
体層を成長させる場合、もしくは前記第1の半導体層を
成長した後に不純物を添加しない第2の半導体層を成長
させる場合のいずれかにおいて、前記第1の半導体層の
成長終了後に一旦成長を中断した後、前記第2の半導体
層を成長させることを特徴とする化合物半導体結晶の成
長方法。
(1) In a method of epitaxially growing a III-V compound semiconductor on a substrate, after growing a first semiconductor layer doped with a first impurity and exhibiting a first conductivity type at a first growth temperature, When growing a second semiconductor layer in which impurities of 1 are added at a lower concentration than in the first semiconductor layer, or in which a second impurity is added after growing the first semiconductor layer, the first conductivity type is When growing a second semiconductor layer exhibiting a different conductivity type, or when growing a second semiconductor layer to which no impurities are added after growing the first semiconductor layer, the first semiconductor layer A method for growing a compound semiconductor crystal, characterized in that the second semiconductor layer is grown after the growth is temporarily interrupted after the growth of the second semiconductor layer is completed.
(2)前記第1の半導体層の成長終了後に成長の中断を
行うと共に少なくとも前記成長中断中の基板温度を前記
第1の半導体層の成長温度より高く保持する工程を含む
ことを特徴とする特許請求の範囲第1項記載の化合物半
導体結晶の成長方法。
(2) A patent characterized in that it includes a step of suspending the growth after the growth of the first semiconductor layer is completed, and at least maintaining the substrate temperature higher than the growth temperature of the first semiconductor layer during the suspension of the growth. A method for growing a compound semiconductor crystal according to claim 1.
(3)第1の不純物としてマグネシウムを用いることを
特徴とする特許請求の範囲第1項記載の化合物半導体結
晶の成長方法。
(3) The method for growing a compound semiconductor crystal according to claim 1, characterized in that magnesium is used as the first impurity.
JP13887487A 1987-06-04 1987-06-04 Method of growing compound semiconductor crystal Pending JPS63304617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13887487A JPS63304617A (en) 1987-06-04 1987-06-04 Method of growing compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13887487A JPS63304617A (en) 1987-06-04 1987-06-04 Method of growing compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS63304617A true JPS63304617A (en) 1988-12-12

Family

ID=15232128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13887487A Pending JPS63304617A (en) 1987-06-04 1987-06-04 Method of growing compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS63304617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426658A (en) * 1992-01-21 1995-06-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser including ridge confining buffer layer
JP2009032873A (en) * 2007-07-26 2009-02-12 Toyota Central R&D Labs Inc Nitride semiconductor device, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426658A (en) * 1992-01-21 1995-06-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser including ridge confining buffer layer
JP2009032873A (en) * 2007-07-26 2009-02-12 Toyota Central R&D Labs Inc Nitride semiconductor device, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0497350B1 (en) Crystal growth method for gallium nitride-based compound semiconductor
US6274399B1 (en) Method of strain engineering and impurity control in III-V nitride semiconductor films and optoelectronic devices
JP5792209B2 (en) Method for heteroepitaxial growth of high quality N-plane GaN, InN and AlN and their alloys by metalorganic chemical vapor deposition
KR101151933B1 (en) Compound semiconductor epitaxial substrate and process for producing the same
KR20000025914A (en) Gan compound semiconductor and growing method thereof
CA1297390C (en) Method of epitaxially growing gallium arsenide on silicon
JPH09199758A (en) Vapor growth method of low-resistance p-type gallium nitride-based compound semiconductor
CN108987256B (en) Growth method of p-type AlGaN semiconductor material
JP2002170776A (en) Low-dislocation buffer, its method of manufacture and device provided therewith
US5107317A (en) Semiconductor device with first and second buffer layers
JP3158651B2 (en) Compound semiconductor and method of manufacturing the same
EP0524817B1 (en) Crystal growth method of III - V compound semiconductor
JPS63304617A (en) Method of growing compound semiconductor crystal
EP0196245B1 (en) Compound semiconductor layer having high carrier concentration and method of forming same
US5183778A (en) Method of producing a semiconductor device
JPH0350744A (en) Manufacture of field-effect transistor
JPS63143810A (en) Vapor growth of compound semiconductor
JP4770130B2 (en) Epitaxial wafer for field effect transistor and epitaxial wafer for high electron mobility transistor
JPH06267867A (en) Crystal growing method of compound semiconductor and formation of ohmic contact using same
JP3213551B2 (en) Method and apparatus for vapor phase growth of III-V compound semiconductors
JPH03188619A (en) Method for heteroepitaxially growing iii-v group compound semiconductor on different kind of substrate
JP2000124444A (en) Semiconductor device and epitaxial wafer
JPH01211912A (en) Semiconductor substrate
WO2020010525A1 (en) Growth method for p-type algan semiconductor material
JPH08236453A (en) Method for growing crystal of compound semiconductor