JPH0761886A - Production of single crystal and compound semiconductor and production device therefor - Google Patents

Production of single crystal and compound semiconductor and production device therefor

Info

Publication number
JPH0761886A
JPH0761886A JP22830993A JP22830993A JPH0761886A JP H0761886 A JPH0761886 A JP H0761886A JP 22830993 A JP22830993 A JP 22830993A JP 22830993 A JP22830993 A JP 22830993A JP H0761886 A JPH0761886 A JP H0761886A
Authority
JP
Japan
Prior art keywords
crystal
growth
boat
compound semiconductor
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22830993A
Other languages
Japanese (ja)
Inventor
Koichi Murata
浩一 村田
Tomoyuki Ishihara
知幸 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP22830993A priority Critical patent/JPH0761886A/en
Publication of JPH0761886A publication Critical patent/JPH0761886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To suppress occurrence of lineage defect and to improve yield by using an electric furnace for producing crystal having a specific effective inner diameter. CONSTITUTION:One direction equivalent to <100> direction of single crystal of compound semiconductor having crystal structure of zincblende type is made <=30 deg. based on the longer direction of a boat 2. A reactor 3 having sealed a boat 2 charged with a raw material is arranged in an electric furnace for producing crystal having an effective inner diameter D of <= three times height H of crystal 1 to be grown and the raw material in the boat 2 is melted. The raw material melt in the boat 2 is gradually solidified from one end at a given temperature gradient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水平ブリッジマン法
(HB法)、ゾーンメルト法や温度傾斜法(GF法)等
のボート法による化合物半導体単結晶の製造装置および
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for producing a compound semiconductor single crystal by a boat method such as a horizontal Bridgman method (HB method), a zone melt method or a temperature gradient method (GF method). .

【0002】[0002]

【従来の技術】従来、一般にボート法による化合物半導
体単結晶の育成においては、単結晶の成長方位をボート
長手方向に平行に<111>方向で行い、結晶のウエハ
面が(100)面となるよう、結晶の長手方向(成長方
向)に対して所定の角度で斜めにウエハを切り出してい
た。また、生産性の点から結晶成長方向に垂直にウエハ
を切り出せるように、<100>方向で成長させる方法
が一部行われている。報告された例としては特開平1−
139223号、特開平2−11165号、本出願人に
よる特願平3−195846号、特願平4−82792
号等がある。
2. Description of the Related Art Conventionally, in growing a compound semiconductor single crystal by the boat method, the growth direction of the single crystal is generally in the <111> direction parallel to the longitudinal direction of the boat, and the wafer surface of the crystal is the (100) plane. As described above, the wafer is cut out obliquely at a predetermined angle with respect to the crystal longitudinal direction (growth direction). Further, from the viewpoint of productivity, a method of growing in the <100> direction is partially performed so that the wafer can be cut out perpendicularly to the crystal growth direction. As a reported example, Japanese Patent Laid-Open No. 1-
139223, JP-A-2-11165, Japanese Patent Application No. 3-195846 by the present applicant, Japanese Patent Application No. 4-82792.
There are issues, etc.

【0003】<111>方向成長と<100>方向成長
を比較する。従来一般に行われている結晶成長方向を<
111>方向と等価な方向とした場合には、(100)
ウエハを結晶長手方向に対して斜めに切り出すために
は、例えば50mmφのウエハを切り出す場合、必要な
結晶の高さは35mmもあれば十分であった。これに対
して、本発明のように結晶成長方向を<100>方向と
等価な方向にする場合においては、同じ50mmφのウ
エハを切り出すための結晶の高さは、最低でも50mm
必要となる。このように<100>方向成長では、結晶
の高さを高くする必要がある。
The <111> direction growth and the <100> direction growth are compared. The crystal growth direction that is conventionally generally
If the direction is equivalent to the 111> direction, (100)
In order to cut out a wafer obliquely with respect to the crystal longitudinal direction, for example, when cutting out a wafer having a diameter of 50 mm, a required crystal height of 35 mm was sufficient. On the other hand, in the case where the crystal growth direction is made equivalent to the <100> direction as in the present invention, the crystal height for cutting the same 50 mmφ wafer is at least 50 mm.
Will be needed. As described above, in the <100> direction growth, it is necessary to increase the height of the crystal.

【0004】また、ボートの長手方向に垂直な断面形状
は、<111>方向成長で用いられているような半円型
やU字型が一般的である。<100>方向成長では、効
率よく円形の(100)ウエハを切り出すために、円形
に近い形のボートを使用する必要があり、結晶上部の幅
に対して結晶中央付近部の幅を大きくし、さらに結晶底
部では幅を小さくする必要がある。
Further, the cross-sectional shape of the boat perpendicular to the longitudinal direction is generally a semicircular shape or a U-shape which is used in the <111> direction growth. In <100> direction growth, it is necessary to use a boat having a shape close to a circle in order to efficiently cut a circular (100) wafer, and the width near the center of the crystal is made larger than the width at the top of the crystal. Furthermore, it is necessary to reduce the width at the bottom of the crystal.

【0005】しかし、<100>方向の成長は、<11
1>方向成長に比べ結晶欠陥であるリネージ欠陥が非常
に発生しやすい。特に結晶上方から発生するリネージ欠
陥の発生が多く、歩留の低下を招いていた。
However, the growth in the <100> direction is <11
Lineage defects, which are crystal defects, are much more likely to occur than in 1> direction growth. In particular, many lineage defects are generated from above the crystal, resulting in a decrease in yield.

【0006】このリネージ欠陥発生を防止する手段とし
て、育成すべき結晶直胴部の上面(自由表面)の少なく
とも一部において、ボート長手方向に垂直に近い(11
1)面に等価な晶癖(ファセット)を出現させること、
あるいは前記育成すべき結晶直胴部の上面(自由表面)
の少なくとも一部において、平行でない3種の(11
1)面に等価な晶癖(ファセット)を出現させること等
により、リネージ欠陥発生原因である結晶水平断面の結
晶成長界面形状を改善するという手段も、本出願人によ
る特願平5−176232号により提案されている。
As a means for preventing the occurrence of this lineage defect, at least a part of the upper surface (free surface) of the crystal straight body portion to be grown is almost vertical to the longitudinal direction of the boat (11).
1) The appearance of an equivalent crystal habit (facet) on the surface,
Or the upper surface (free surface) of the straight body of the crystal to be grown
Of at least part of the three (11
1) Means for improving the crystal growth interface shape of the crystal horizontal cross-section, which is the cause of lineage defects, by causing the appearance of crystal habits (facets) equivalent to the plane, is also disclosed in Japanese Patent Application No. 5-176232 by the present applicant. Has been proposed by.

【0007】また、結晶製造用電気炉(結晶育成炉)の
有効内径と結晶高さに関する報告はほとんどない。<1
11>方向成長の場合には、この結晶育成炉有効内径と
結晶高さの比にあまり影響されず良好な結晶を育成する
ことができる。本発明者らの実験では、結晶高さの約3
倍あるいは5倍程度の有効内径をもつ結晶育成炉を用い
ても充分に良好な結晶を得ることができる。
Also, there are almost no reports on the effective inner diameter and crystal height of an electric furnace for crystal production (crystal growth furnace). <1
In the case of 11> direction growth, a good crystal can be grown without being significantly affected by the ratio of the effective inner diameter of the crystal growing furnace to the crystal height. In our experiments, the crystal height was about 3
Even if a crystal growing furnace having an effective inner diameter of about twice or about five times is used, a sufficiently good crystal can be obtained.

【0008】これに対して、<100>方向成長につい
ては、結晶育成炉の有効内径に関する報告は全くない。
そのため、<100>方向成長用の結晶育成炉を設計す
るための指針がなく、<111>方向成長と同様な結晶
育成炉の有効内径と結晶高さの比を選んでいた。
On the other hand, regarding the <100> direction growth, there is no report on the effective inner diameter of the crystal growth furnace.
Therefore, there is no guideline for designing a crystal growth furnace for <100> direction growth, and the same ratio of effective inner diameter to crystal height of the crystal growth furnace as in <111> direction growth is selected.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、<1
00>方向成長において、リネージ欠陥の発生しにくい
結晶育成炉を設計するのに必要とされる、結晶育成炉有
効内径と結晶高さに関する関係を明らかにし、<100
>方向成長における歩留の向上を達成するものである。
The object of the present invention is <1.
A crystal growth furnace effective inner diameter and a crystal height required for designing a crystal growth furnace in which lineage defects are less likely to occur in the 00> direction growth are clarified.
It is intended to improve the yield in the> direction growth.

【0010】[0010]

【課題を解決するための手段】本発明は、前述の問題を
解決すべくなされたものであり、閃亜鉛鉱型の結晶構造
を有する化合物半導体単結晶のボート法による製造方法
において、前記化合物半導体単結晶の<100>方向に
等価な一つの方向をボート長手方向に対して30°以内
とし、育成すべき結晶の高さの3倍以下の有効内径を有
する結晶製造用電気炉を用いることを特徴とする化合物
半導体単結晶の製造方法を提供する。
The present invention has been made to solve the above-mentioned problems, and in a method for producing a compound semiconductor single crystal having a zinc blende type crystal structure by the boat method, the compound semiconductor It is recommended to use an electric furnace for producing a crystal, in which one direction equivalent to the <100> direction of a single crystal is set within 30 ° with respect to the boat longitudinal direction and which has an effective inner diameter not more than 3 times the height of the crystal to be grown. Provided is a method for producing a characteristic compound semiconductor single crystal.

【0011】また、閃亜鉛鉱型の結晶構造を有する化合
物半導体単結晶を<100>方向に等価な一つの方向が
ボート長手方向に対して30°以内となるようにしてボ
ート法により製造する製造装置において、結晶製造用電
気炉の有効内径を育成すべき結晶の高さの3倍以下とし
たことを特徴とする化合物半導体単結晶の製造装置を提
供する。
Also, a compound semiconductor single crystal having a zinc blende type crystal structure is manufactured by the boat method so that one direction equivalent to the <100> direction is within 30 ° with respect to the longitudinal direction of the boat. An apparatus for producing a compound semiconductor single crystal, characterized in that an effective inner diameter of an electric furnace for producing a crystal is set to 3 times or less of a height of a crystal to be grown.

【0012】以下、本発明の構成を詳しく説明する。本
発明における化合物半導体単結晶の製造方法は、図1に
示すように、原料を入れたボート2を反応容器3内に封
入し、この反応容器3を所定の温度勾配を有する結晶育
成炉内に配置し、前記ボート内の原料融液を一端から徐
々に固化し単結晶を得るものである。化合物半導体結晶
製造用電気炉(結晶育成炉)は、前記反応管を収容すべ
く全体として水平方向に伸びる細長い形状をなし、断熱
材6とその内側に配置され独立に電力を印加できる複数
ゾーンのヒーター5等により構成されている。
The structure of the present invention will be described in detail below. As shown in FIG. 1, a method for producing a compound semiconductor single crystal according to the present invention is performed by enclosing a boat 2 containing raw materials in a reaction vessel 3 and placing the reaction vessel 3 in a crystal growth furnace having a predetermined temperature gradient. The raw material melt in the boat is gradually solidified from one end to obtain a single crystal. The electric furnace (crystal growth furnace) for producing a compound semiconductor crystal has an elongated shape that extends in the horizontal direction as a whole to accommodate the reaction tube, and is arranged inside the heat insulating material 6 and has a plurality of zones in which electric power can be independently applied. It is composed of a heater 5 and the like.

【0013】ここで、結晶製造用電気炉(結晶育成炉)
の有効内径は、ヒータ線の内部に炉芯管(均熱管)4を
配置する場合にはこの炉芯管の内径であり、炉芯管を用
いない場合にはヒータ素線や断熱材により構成される前
記反応容器を収容する空間の内径により決定される。
Here, an electric furnace for crystal production (crystal growth furnace)
The effective inner diameter of is the inner diameter of the furnace core tube (soaking tube) when the furnace core tube (soaking tube) 4 is arranged inside the heater wire, and is composed of a heater wire and a heat insulating material when the furnace core tube is not used. It is determined by the inner diameter of the space that accommodates the reaction container.

【0014】図1は、炉芯管を用いた結晶育成炉の長手
方向に垂直な断面図である。図中Dは炉芯管の内径、H
は育成すべき結晶の高さを示す。本発明においては、結
晶育成炉の有効内径Dが育成すべき結晶の高さHの3倍
以下であることが必要であり、さらに2.5倍以下にす
ることにより効果が大きく好ましい。また、2倍程度と
することにより、再現良く結晶を育成することができ好
ましい。
FIG. 1 is a sectional view perpendicular to the longitudinal direction of a crystal growth furnace using a furnace core tube. In the figure, D is the inner diameter of the furnace core tube, H
Indicates the height of the crystal to be grown. In the present invention, the effective inner diameter D of the crystal growing furnace needs to be 3 times or less the height H of the crystal to be grown, and further 2.5 times or less is preferable because the effect is large. Further, it is preferable that the amount is about twice, because the crystal can be grown with good reproducibility.

【0015】また、育成すべき結晶高さに対して、結晶
育成炉の有効内径を小さくし過ぎると、前記反応容器が
入らなかったり、反応容器が結晶製造中の高温下で変形
して結晶育成炉から反応容器が取り出せない等の不都合
が生じる。このため、結晶育成炉の有効内径は反応容器
外径より10mm以上大きいことが好ましい。
If the effective inner diameter of the crystal-growing furnace is made too small with respect to the height of the crystal to be grown, the reaction vessel may not be inserted or the reaction vessel may be deformed at a high temperature during crystal production to grow the crystal. There are inconveniences such as the inability to remove the reaction vessel from the furnace. Therefore, the effective inner diameter of the crystal growth furnace is preferably larger than the outer diameter of the reaction vessel by 10 mm or more.

【0016】また、結晶成長方向である<100>方向
と垂直な<110>方向に等価な1つの方向が、ほぼ鉛
直上方になるように種結晶方位を選び、前記育成すべき
結晶直胴部の上面(自由表面)の少なくとも一部におい
て、ボート長手方向に垂直に近い(111)面に等価な
晶癖(ファセット)および、前記ファセットと平行でな
い他の2種の(111)面に等価な晶癖(ファセット)
を出現させることにより、さらにリネージ欠陥の低減に
効果があり好ましい。
The seed crystal orientation is selected so that one direction equivalent to the <100> direction, which is the crystal growth direction, and the <110> direction, which is perpendicular to the crystal growth direction, is substantially vertically upward, and the crystal straight body portion to be grown. On at least a part of the upper surface (free surface) of the crystal, a crystal habit (facet) equivalent to a (111) plane close to the vertical direction of the boat and two other (111) planes not parallel to the facet are equivalent to Crystal habit (facet)
It is preferable that the presence of is effective in further reducing lineage defects.

【0017】また、前述の種結晶の方位としては、結晶
成長方向(テール側)からみて、種結晶の前記<100
>方向と垂直な(100)等価面に隣接する4個の(1
11)等価面のうち、育成すべき結晶が3−5族化合物
半導体の場合には5族元素面、2−6族化合物半導体の
場合には6族元素面を上方に選ぶことが、ファセットを
安定して出現させリネージ欠陥の抑制に効果があり好ま
しい。
Further, as the orientation of the seed crystal, when viewed from the crystal growth direction (tail side), the orientation of the seed crystal is <100.
> Four (1) adjacent to the (100) equivalent plane perpendicular to the direction
11) Among the equivalent planes, if the crystal to be grown is a group 3-5 compound semiconductor, the group 5 element plane should be selected upward, and if it is a group 2-6 compound semiconductor, the group 6 element plane should be selected upward. It is preferable because it has a stable appearance and is effective in suppressing lineage defects.

【0018】この種結晶方位は、3−5族結晶のGaA
s結晶の場合を例にとると、種結晶の前記<100>方
向に垂直に切り出したウエハを、溶融KOHによりエッ
チングしたときに発生するピット形状が、図5に示すよ
うに、ウエハのシード側面では横長形状(イ)を、テー
ル側面では縦長形状(ロ)を示すような種結晶の方位と
なる。
This seed crystal orientation is GaA of a Group 3-5 crystal.
Taking the case of the s crystal as an example, the pit shape generated when a wafer cut out perpendicularly to the <100> direction of the seed crystal is etched by molten KOH is as shown in FIG. Then, the orientation of the seed crystal exhibits a horizontally long shape (a) and a vertically long shape (b) on the tail side surface.

【0019】さらに、前記育成すべき結晶の自由表面よ
り深さ方向に少なくとも10mm以内の結晶水平断面
の、ボートと接触する両側の結晶成長界面形状におい
て、図2(ロ)のようにボートと成長界面のなす角θが
種結晶側から60°以上であることが好ましい。
Further, in the crystal growth interface shape on both sides in contact with the boat in the crystal horizontal cross section within at least 10 mm in the depth direction from the free surface of the crystal to be grown, it grows with the boat as shown in FIG. The angle θ formed by the interface is preferably 60 ° or more from the seed crystal side.

【0020】さらに、結晶長手方向に垂直な断面形状
で、最も幅の大きくなる部分より上部、つまり前述の結
晶表面の法線方向が水平方向より上方向となる部分にお
いて結晶の水平方向成長界面形状を前述のようにするこ
とが、リネージ欠陥抑制に対してより効果があり好まし
い。さらに、結晶全体にわたり水平方向の成長界面形状
を完全に凸にする(ボートのテール側へ凸とする)こと
がより好ましい。
Further, in the cross-sectional shape perpendicular to the longitudinal direction of the crystal, the shape of the growth interface in the horizontal direction of the crystal is above the portion where the width is largest, that is, in the portion where the normal direction of the crystal surface is above the horizontal direction. The above is more effective and preferable for suppressing lineage defects. Further, it is more preferable that the shape of the growth interface in the horizontal direction is entirely convex (convex toward the tail side of the boat) over the entire crystal.

【0021】種結晶の方位としては、<100>方向に
等価な一つの方向がボート長手方向となす角を30°以
内とし、好ましくは上下方向に30°以内とすることに
よって、固液界面のファセット発生が左右対称になりや
すく好ましい。また、前記<100>方向をボート長手
方向に平行にすることにより、(100)等価面ウエハ
を切り出しやすいので好ましい。
Regarding the orientation of the seed crystal, one angle equivalent to the <100> direction forms an angle with the longitudinal direction of the boat within 30 °, and preferably within 30 ° in the vertical direction, so that the solid-liquid interface can be formed. It is preferable that the facets are easily symmetrical. Further, by making the <100> direction parallel to the longitudinal direction of the boat, it is easy to cut out a (100) equivalent plane wafer, which is preferable.

【0022】また、前記種結晶方位の<100>等価方
向に垂直な<110>等価方向ベクトルの、ボート長手
方向に垂直な断面への投射ベクトルが、育成すべき結晶
の表面のうちボートと直接接触しない表面に対する法線
方向の一つと一致するようにすることによって、自由表
面のファセットが発生しやすく好ましい。さらに、前記
<110>方向が鉛直上方を向くようにすることによ
り、ファセット形状が左右対称になりやすく、しかも平
行でない3種のファセットが発生しやすいため、より好
ましい。
Further, the projection vector of the <110> equivalent direction vector perpendicular to the <100> equivalent direction of the seed crystal orientation to the cross section perpendicular to the boat longitudinal direction is directly related to the boat on the surface of the crystal to be grown. By making it coincide with one of the normal directions to the non-contact surface, facets on the free surface are likely to occur, which is preferable. Furthermore, it is more preferable that the <110> direction is directed vertically upward, since the facet shape is likely to be bilaterally symmetric and three types of non-parallel facets are likely to occur.

【0023】また、3−5族結晶のGaAs結晶の場合
を例にとると、種結晶の前記<100>方向に垂直に切
り出したウエハを、溶融KOHによりエッチングしたと
きに発生するピット形状が、ウエハのシード側面では横
長形状(図4(イ))を、テール側面では縦長形状(図
4(ロ))を示すような種結晶の方位、つまり結晶成長
方向(テール側)からみて、種結晶の前記<100>方
向と垂直な(100)等価面に隣接する4個の(11
1)等価面のうち、育成すべき結晶が3−5族化合物半
導体の場合には5族元素面、2−6族化合物半導体の場
合には6族元素面を上方に選ぶことにより、ファセット
が安定に出現するようにできるので好ましい。
In the case of a GaAs crystal of a Group 3-5 crystal, a pit shape generated when a wafer cut out perpendicularly to the <100> direction of the seed crystal is etched by molten KOH is as follows. The seed crystal has a laterally long shape (FIG. 4A) on the seed side surface of the wafer and a vertically long shape (FIG. 4B) on the tail side surface, that is, when viewed from the crystal growth direction (tail side). Of four (11) adjacent to the (100) equivalent plane perpendicular to the <100> direction of
1) Of the equivalent planes, when the crystal to be grown is a group 3-5 compound semiconductor, the group 5 element plane is selected upward, and when the crystal is a group 2-6 compound semiconductor, the group 6 element plane is selected upward, so that It is preferable because it can appear stably.

【0024】また、ボートの長手方向に対して垂直な断
面形状としては、底部の幅が狭く中央部の幅が広く上部
の幅が再度狭くなっている形状が、スライスウエハの円
形化ロスが少ないことから好ましく、特に円弧あるいは
楕円弧であることが好ましい。また、ボート材質として
は石英ガラス、PBN、AlN等が適している。
As a cross-sectional shape perpendicular to the longitudinal direction of the boat, a shape in which the width of the bottom is narrow, the width of the center is wide, and the width of the top is narrow again is small in the circularization loss of the sliced wafer. Therefore, it is preferable that it is an arc or an elliptical arc. Quartz glass, PBN, AlN and the like are suitable as the boat material.

【0025】本発明における閃亜鉛鉱型の結晶構造を有
する化合物半導体単結晶としては、GaAs、InP等
の3−5族化合物半導体単結晶、ZnSe等の2−6族
化合物半導体単結晶が相当する。
The compound semiconductor single crystal having a zinc blende type crystal structure in the present invention corresponds to a Group 3-5 compound semiconductor single crystal such as GaAs and InP and a Group 2-6 compound semiconductor single crystal such as ZnSe. .

【0026】[0026]

【作用】従来<100>方向成長において全く注目され
ていなかった、結晶育成炉の有効内径が結晶欠陥に与え
る影響が大きいことが実験的に明らかにされ、本発明の
ような結晶育成炉の有効内径の範囲が最適であることが
わかった。この理由については必ずしも明確ではない
が、本発明者らによる実験結果と推定される原因につい
て以下にまとめる。
It has been experimentally clarified that the effective inner diameter of the crystal-growing furnace has a great influence on the crystal defects, which has never been paid attention to in the <100> direction growth, and the effectiveness of the crystal-growing furnace like that of the present invention is improved. It was found that the range of inner diameters was optimal. The reason for this is not always clear, but the reasons presumed to be the experimental results by the present inventors are summarized below.

【0027】断面半丸型のボートを用い<111>方向
に成長させる場合において、一般に用いられている結晶
育成炉有効内径はD/H(Dは結晶育成炉の有効内径、
Hは育成すべき結晶高さ)が3以上で、従来上限は定か
ではないがD/H=5程度でも充分に良好な結晶を得る
ことができる。このため、<100>成長でもD/H=
3.5として、断面円型のボートを用いて育成実験を行
った。しかし、育成された結晶の両サイドにリネージ欠
陥が発生しやすく、歩留良く良好な結晶を得ることはで
きなかった。
When a boat having a semicircular cross section is used to grow in the <111> direction, the effective inner diameter of the crystal growing furnace generally used is D / H (D is the effective inner diameter of the crystal growing furnace,
H is the crystal height to be grown) is 3 or more, and although the conventional upper limit is not clear, a sufficiently good crystal can be obtained even when D / H = 5. Therefore, even with <100> growth, D / H =
As 3.5, a growth experiment was conducted using a boat having a circular cross section. However, lineage defects were likely to occur on both sides of the grown crystal, and it was not possible to obtain a good crystal with good yield.

【0028】そのため、結晶育成炉の有効内径Dと育成
すべき結晶高さHの比D/Hを4、2.5、2、1.7
の4種類で実験を行った。実験の結果、D/H=4の場
合には、3.5のときと同様に結晶両サイドにリネージ
欠陥が発生しやすく好ましくなかった。これに対し、D
/H=2.5、2、1.7のときは、リネージ欠陥の発
生もなく良好な結晶を得ることができた。
Therefore, the ratio D / H of the effective inner diameter D of the crystal growing furnace and the crystal height H to be grown is 4, 2.5, 2, 1.7.
The experiment was conducted with four types. As a result of the experiment, in the case of D / H = 4, lineage defects were likely to occur on both sides of the crystal as in the case of 3.5, which was not preferable. On the other hand, D
When /H=2.5, 2, 1.7, good crystals could be obtained without generation of lineage defects.

【0029】D/H=2および2.5のときの、結晶成
長中の結晶自由表面における成長界面形状の模式的な平
面図をそれぞれ図2(イ)、図3(イ)に、また育成し
た結晶の自由表面下10mmの水平断面のエッチングに
よる成長界面観察結果を図2(ロ)、図3(ロ)にそれ
ぞれ示した。
Schematic plan views of the growth interface shape on the crystal free surface during crystal growth when D / H = 2 and 2.5 are shown in FIGS. 2 (a) and 3 (a), respectively. The results of observation of the growth interface by etching of the horizontal section of 10 mm below the free surface of the crystal thus obtained are shown in FIGS. 2B and 3B, respectively.

【0030】D/H=4のときの結晶成長中の結晶自由
表面における成長界面形状の模式的な平面図を図4
(イ)に、また育成した結晶の自由表面下10mmの水
平断面のエッチングによる成長界面観察結果を図4
(ロ)にそれぞれ示した。
FIG. 4 is a schematic plan view of the growth interface shape on the crystal free surface during crystal growth when D / H = 4.
FIG. 4 shows the observation result of the growth interface by etching of the horizontal section of 10 mm below the free surface of the grown crystal in (a).
They are shown in (b).

【0031】これらの実験では、リネージ欠陥が発生し
にくくなるように、結晶自由表面にファセットができる
だけ発生しやすい温度条件で行った。
These experiments were conducted under temperature conditions in which facets were easily generated on the crystal free surface so that lineage defects were less likely to occur.

【0032】ここで特徴的なことは、D/Hが大きくな
るに従って、自由表面の成長界面は成長方向に垂直に現
れる(111)等価ファセット8aの幅が大きくなりや
すいことである。とくにD/H>3である図4(イ)で
は、結晶幅全体にわたって前記ファセットが発生し成長
界面がフラットになっていることがわかる。これに対し
て、D/H<3である図2(イ)、図3(イ)では、成
長方向に垂直に現れるファセットの両サイドに、異なっ
た角度の(111)等価ファセット8b、8cが現れ、
自由表面における成長界面形状は全体として融液に対し
て凸となっている。
What is characteristic here is that as the D / H increases, the width of the (111) equivalent facet 8a, which appears in the growth interface of the free surface and is perpendicular to the growth direction, tends to increase. In particular, in FIG. 4A where D / H> 3, it can be seen that the facets are generated over the entire crystal width and the growth interface is flat. On the other hand, in FIG. 2A and FIG. 3A where D / H <3, (111) equivalent facets 8b and 8c with different angles are provided on both sides of the facet that appears perpendicular to the growth direction. Appeared,
The growth interface shape on the free surface is convex with respect to the melt as a whole.

【0033】D/H>3のときにリネージ欠陥が発生し
やすい原因としては、図4(イ)のように自由表面の成
長界面形状がファセットによりフラットになると、自由
表面下の成長界面形状は図4(ロ)のようにW型とな
り、両サイドに融液に対して凹となる部分が発生し、そ
こに転位欠陥が集中しリネージ欠陥となりやすいためと
考えられる。
When D / H> 3, lineage defects are likely to occur. When the growth interface shape on the free surface becomes flat due to facets as shown in FIG. 4A, the growth interface shape below the free surface becomes It is considered that it is W-shaped as shown in FIG. 4B, and portions that are concave with respect to the melt are generated on both sides, and dislocation defects are concentrated in these portions, and lineage defects are likely to occur.

【0034】これに対してD/H<3のときには、自由
表面の成長界面形状が3種類の非平行なファセット8
a、8b、8cにより構成され、融液に対して凸とな
る。自由表面下の成長界面形状も完全な凸型(図3
(ロ))となるため、リネージ欠陥が発生しにくいもの
と考えられる。
On the other hand, when D / H <3, the shape of the growth interface on the free surface is three types of non-parallel facets 8
It is composed of a, 8b, and 8c and is convex with respect to the melt. The growth interface shape under the free surface is also perfectly convex (Fig. 3
(B)), it is considered that lineage defects are unlikely to occur.

【0035】この自由表面の成長界面形状のD/Hによ
る違いの原因としては、次のように考えられる。結晶育
成炉の上部には、成長界面付近に監視用の放熱窓(図1
の符号7)が取り付けられている。この放熱窓は、炉芯
管内の上方向を冷却することにより上下方向の温度差を
付与する効果以外に、炉芯管内の水平径方向の温度分布
を中心部を低く両サイドを高くする効果もある。
The cause of the difference in the growth interface shape of the free surface depending on D / H is considered as follows. In the upper part of the crystal growth furnace, a radiation window for monitoring (Fig.
7) is attached. This radiating window not only has the effect of giving a temperature difference in the vertical direction by cooling the upper direction in the furnace core tube, but also has the effect of lowering the central portion of the temperature distribution in the horizontal radial direction in the furnace core tube and lowering both sides. is there.

【0036】結晶に対する結晶育成炉の有効内径(炉芯
管内径)を小さくすることにより、相対的に結晶の自由
表面位置が炉芯管内の上部に位置し、炉芯管上部に取り
付けられた成長界面付近上部の放熱窓(監視窓)からの
距離が短くなる。この結果、実質的に結晶上部中心と両
サイドの温度差が大きくなり、成長界面の形状が図4の
ように融液に対して凸になると考えている。
By reducing the effective inner diameter (inner diameter of the furnace core tube) of the crystal growing furnace for the crystal, the free surface position of the crystal is relatively positioned in the upper part of the furnace core tube, and the growth is attached to the upper part of the furnace core tube. The distance from the heat radiation window (monitoring window) near the interface becomes shorter. As a result, the temperature difference between the upper center of the crystal and both sides is substantially increased, and the shape of the growth interface is considered to be convex with respect to the melt as shown in FIG.

【0037】これらのことから、D/Hを3以下にする
ことにより<100>成長におけるリネージ欠陥が発生
しなくなると考えている。
From these facts, it is considered that lineage defects in <100> growth do not occur by setting D / H to 3 or less.

【0038】また、D/H>3で、<100>方向成長
ではリネージ欠陥が発生しやすく、<111>方向成長
においてはリネージ欠陥が発生しなかった理由は必ずし
も明確ではないが、その原因として結晶学的な成長方向
の違いによるものと、それぞれの2つの成長方向により
用いられるボート形状の違いが考えられる。
Further, the reason why lineage defects are apt to occur in the <100> direction growth with D / H> 3 and the lineage defects do not occur in the <111> direction growth is not always clear. The difference in the crystallographic growth direction and the difference in the boat shape used by each of the two growth directions are considered.

【0039】2つの成長方向で一般に用いられるボート
形状の違いは、前述のように従来一般に行われている結
晶成長方向を<111>方向と等価な方向とした場合に
は、ボートの長手方向に垂直な断面形状は半円型やU字
型が一般的であるが、<100>方向成長では、効率よ
く円形ウエハを結晶長手方向に垂直に切り出すために、
結晶上部の幅に対して結晶中央部付近の幅を大きくし結
晶底部では幅を小さくした円形に近い形のボートを使用
する必要がある。
The difference between the boat shapes generally used in the two growth directions is that, when the crystal growth direction that has been generally used in the past is equivalent to the <111> direction as described above, the boat shape is in the longitudinal direction of the boat. The vertical cross-sectional shape is generally semicircular or U-shaped, but in <100> direction growth, in order to efficiently cut a circular wafer perpendicular to the crystal longitudinal direction,
It is necessary to use a boat having a shape close to a circle in which the width near the center of the crystal is larger than the width of the top of the crystal and the width is smaller at the bottom of the crystal.

【0040】本発明者らは、結晶学的な成長方向の違い
によるリネージ欠陥の発生状況の差を明確にするため
に、同一形状の半円型断面のボート、同一の結晶育成炉
(D/H=3.5)、同一の炉内温度分布を用いて、<
111>方向成長と<100>方向成長の2つについて
比較育成実験を行った。その結果、<111>方向成長
では良好な結晶を得ることができたが、<100>方向
成長ではリネージ欠陥が発生し良品を得ることができな
かった。このことから、結晶学的な成長方向の違いが、
何らかの原因で<100>方向成長においてリネージ欠
陥の発生を助長していると考えられる。
In order to clarify the difference in the occurrence of lineage defects due to the difference in crystallographic growth direction, the inventors of the present invention have boats of the same shape with a semicircular cross section and the same crystal growth furnace (D / H = 3.5), using the same furnace temperature distribution,
Comparative growth experiments were carried out for two types of growth, i.e., 111> direction and <100> direction. As a result, a good crystal could be obtained in the <111> direction growth, but a good product could not be obtained in the <100> direction growth because lineage defects occurred. From this, the difference in crystallographic growth direction is
It is considered that the generation of lineage defects is promoted in the <100> direction growth for some reason.

【0041】また、前述のように一般に用いられるボー
ト形状の違いによっても、結晶の温度分布や原料融液の
対流などに違いが現れ、そのこともリネージ欠陥の発生
を<100>方向成長で助長している可能性が高いと考
えられる。
Further, as described above, the difference in the temperature distribution of the crystal and the convection of the raw material melt also appears due to the difference in the boat shape that is generally used, which also promotes the generation of lineage defects by the <100> direction growth. It is highly possible that

【0042】[0042]

【実施例】以下、GaAsの単結晶を製造する場合の実
施例について説明する。結晶育成用ボートの長手方向に
垂直な断面形状が約80%が円形状をしたボートを用
い、育成すべき結晶の、ボート長手方向に平行な<10
0>方向に等価な一つの方向に直交した<110>方向
に等価な一つの方向が、ほぼ鉛直方向になるように種結
晶を設置した。
EXAMPLES Examples for producing a GaAs single crystal will be described below. A boat having a circular cross-sectional shape of approximately 80% perpendicular to the longitudinal direction of the crystal-growing boat was used, and the crystal to be grown was <10 parallel to the boat longitudinal direction.
The seed crystal was installed so that one direction equivalent to the <110> direction, which is orthogonal to one direction equivalent to the 0> direction, is substantially vertical.

【0043】直径50mmφのウエハが切り出せるよう
に、育成すべき結晶の高さを52mmとした。図6のよ
うにボート2の中にGa(符号11)を4000gを入
れ、反応容器3の他端にAs(符号13)を4350g
入れ、反応容器3内を真空状態に減圧し封じきる。次に
炉芯管の内径104mmの結晶育成炉に反応容器3をい
れ、反応容器3内のAsを600℃に加熱し、反応容器
3内のAs蒸気圧を1atmに維持する。反応容器3内
のボート部をさらに昇温し、GaとAs蒸気を反応させ
GaAsを合成する。その後、種結晶12とGaAs融
液を接触させる。その後、融液の温度を徐々に下げて冷
却し結晶の育成を行う。
The height of the crystal to be grown was set to 52 mm so that a wafer having a diameter of 50 mmφ could be cut out. As shown in FIG. 6, 4000 g of Ga (reference numeral 11) was put in the boat 2 and 4350 g of As (reference numeral 13) was added to the other end of the reaction vessel 3.
Then, the inside of the reaction vessel 3 is depressurized to a vacuum state and sealed. Next, the reaction vessel 3 is put into a crystal growth furnace having an inner diameter of the furnace core tube of 104 mm, As in the reaction vessel 3 is heated to 600 ° C., and As vapor pressure in the reaction vessel 3 is maintained at 1 atm. The boat in the reaction vessel 3 is further heated to react Ga with As vapor to synthesize GaAs. Then, the seed crystal 12 and the GaAs melt are brought into contact with each other. Then, the temperature of the melt is gradually lowered and cooled to grow crystals.

【0044】このときの自由表面の成長界面形状は、図
2(イ)のようなファセットが出現した。完全に固化後
さらに温度を室温まで下げて、GaAs単結晶を得るこ
とができた。
At this time, the growth interface shape of the free surface had facets as shown in FIG. After completely solidifying, the temperature was further lowered to room temperature, and a GaAs single crystal could be obtained.

【0045】得られた結晶は、リネージ欠陥もなく良質
なものであった。この結晶の自由表面下10mmの水平
断面の成長界面形状をエッチングにより観測すると、図
2(ロ)のように成長界面9のボートとのなす角θは約
140°であった。
The obtained crystals were of good quality without lineage defects. When the growth interface shape of a horizontal section of 10 mm below the free surface of this crystal was observed by etching, the angle θ between the growth interface 9 and the boat was about 140 ° as shown in FIG.

【0046】得られた結晶から(100)面円形ウエハ
を作成する場合は、得られた結晶の(100)面方向の
断面形状が円形に近い形になるようにできる。前記ボー
ト形状により、単結晶より(100)円形ウエハを求め
る場合に、結晶長手方向に垂直にスライスしてそのまま
円形ウエハに近い形状が得られる。このため、切削によ
る損失を小さくすることが可能である。
When a (100) plane circular wafer is prepared from the obtained crystal, the cross section of the obtained crystal in the (100) plane direction can be formed into a shape close to a circle. Due to the boat shape, when obtaining a (100) circular wafer from a single crystal, a shape close to a circular wafer can be obtained by slicing vertically to the crystal longitudinal direction. Therefore, it is possible to reduce the loss due to cutting.

【0047】[0047]

【発明の効果】以上述べたように、本発明は次のような
優れた効果がある。
As described above, the present invention has the following excellent effects.

【0048】(1)種結晶方位を<100>で育成する
場合に、結晶育成炉の有効内径を最適化することによ
り、リネージの発生を抑制し歩留が向上する。
(1) When the seed crystal orientation is grown to <100>, the generation of lineage is suppressed and the yield is improved by optimizing the effective inner diameter of the crystal growth furnace.

【0049】(2)結晶高さに対して結晶育成炉有効内
径を3倍以下とすることにより、結晶育成炉が小型化で
き、結晶育成炉の製作コストを削減できる。 (3)種結晶方位を<111>で育成する場合に比べ、
(100)ウエハを結晶から切り出す際に、結晶の長手
方向に垂直な方向に近い方向で切り出せる。このため、
加工ロスを低減することができ、一つの結晶から切り出
せるウエハ枚数も多くなる。
(2) By setting the effective inner diameter of the crystal growing furnace to 3 times or less of the crystal height, the crystal growing furnace can be downsized and the manufacturing cost of the crystal growing furnace can be reduced. (3) Compared with the case where the seed crystal orientation is <111>,
When a (100) wafer is cut out from a crystal, it can be cut out in a direction close to a direction perpendicular to the longitudinal direction of the crystal. For this reason,
Processing loss can be reduced, and the number of wafers that can be cut out from one crystal increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による結晶育成炉およびボートの長手方
向に垂直な断面図
FIG. 1 is a cross-sectional view perpendicular to the longitudinal direction of a crystal growth furnace and a boat according to the present invention.

【図2】本発明の実施例を示し、D/H=2のときの結
晶成長界面形状で、(イ)は結晶育成中の自由表面成長
界面形状の平面図、(ロ)は結晶育成中の自由表面より
深さ方向に10mmの結晶水平断面の成長界面形状の平
面図
FIG. 2 shows an embodiment of the present invention, which is a crystal growth interface shape when D / H = 2, (a) is a plan view of a free surface growth interface shape during crystal growth, and (b) is a crystal growth interface. Plan view of the growth interface shape of the crystal horizontal section of 10 mm in the depth direction from the free surface of

【図3】本発明の実施例を示し、D/H=2.5のとき
の結晶成長界面形状で、(イ)は結晶育成中の自由表面
成長界面形状の平面図、(ロ)は結晶育成中の自由表面
より深さ方向に10mmの結晶水平断面の成長界面形状
の平面図
FIG. 3 shows an embodiment of the present invention, which is a crystal growth interface shape when D / H = 2.5, (a) is a plan view of a free surface growth interface shape during crystal growth, and (b) is a crystal. Plan view of the growth interface shape of a crystal horizontal section of 10 mm in the depth direction from the free surface during growth

【図4】従来例を示し、D/H=4のときの結晶成長界
面形状で、(イ)は結晶育成中の自由表面成長界面形状
の平面図、(ロ)は結晶育成中の自由表面より深さ方向
に10mmの結晶水平断面の成長界面形状の平面図
FIG. 4 shows a conventional example, which is a crystal growth interface shape when D / H = 4, (a) is a plan view of a free surface growth interface shape during crystal growth, and (b) is a free surface during crystal growth. Plane view of the growth interface shape of the crystal horizontal section of 10 mm in the depth direction

【図5】本発明により育成されたGaAs結晶から切り
だしたウエハを溶融KOHでエッチングしたピット形状
例を示し、(イ)はウエハのシード側面のピット形状の
正面図、(ロ)はウエハのテール側面のピット形状の正
面図
FIG. 5 shows an example of a pit shape obtained by etching a wafer cut out from a GaAs crystal grown by the present invention with molten KOH. (A) is a front view of the pit shape on the seed side surface of the wafer, (b) is a wafer Front view of the pit shape on the side of the tail

【図6】ボート法により結晶製造する場合の反応容器内
の側断面図
FIG. 6 is a side cross-sectional view of the inside of a reaction container when a crystal is produced by the boat method.

【符号の説明】[Explanation of symbols]

1:結晶 2:ボート 3:反応容器 4:炉芯管 5:ヒーター線 6:断熱材 7:放熱窓 8a:平行でない3種類の(111)に等価な晶癖(フ
ァセット) 8b:平行でない3種類の(111)に等価な晶癖(フ
ァセット) 8c:平行でない3種類の(111)に等価な晶癖(フ
ァセット) 9:凸型の成長界面 10:W型の成長界面 11:Ga 12:種結晶 13:As
1: Crystal 2: Boat 3: Reaction vessel 4: Furnace core tube 5: Heater wire 6: Heat insulating material 7: Radiating window 8a: Non-parallel crystal habit (facet) equivalent to three kinds of (111) 8b: Non-parallel 3 Equivalent crystal habit (facet) 8c: Not parallel 3 crystal habits (facet) equivalent to (111) 9: Convex growth interface 10: W-type growth interface 11: Ga 12: Seed crystal 13: As

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01L 21/208 T ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // H01L 21/208 T

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】閃亜鉛鉱型の結晶構造を有する化合物半導
体単結晶のボート法による製造方法において、前記化合
物半導体単結晶の<100>方向に等価な一つの方向を
ボート長手方向に対して30°以内とし、育成すべき結
晶の高さの3倍以下の有効内径を有する結晶製造用電気
炉を用いることを特徴とする化合物半導体単結晶の製造
方法。
1. A method for producing a compound semiconductor single crystal having a zinc blende type crystal structure by a boat method, wherein one direction equivalent to the <100> direction of the compound semiconductor single crystal is 30 with respect to the boat longitudinal direction. A method for producing a compound semiconductor single crystal, characterized in that an electric furnace for producing a crystal having an effective inner diameter within 3 ° and a height of a crystal to be grown is 3 times or less is used.
【請求項2】閃亜鉛鉱型の結晶構造を有する化合物半導
体単結晶を<100>方向に等価な一つの方向がボート
長手方向に対して30°以内となるようにしてボート法
により製造する製造装置において、結晶製造用電気炉の
有効内径を育成すべき結晶の高さの3倍以下としたこと
を特徴とする化合物半導体単結晶の製造装置。
2. A manufacturing method of manufacturing a compound semiconductor single crystal having a zinc blende type crystal structure by a boat method such that one direction equivalent to the <100> direction is within 30 ° with respect to the longitudinal direction of the boat. An apparatus for producing a compound semiconductor single crystal, characterized in that the effective inner diameter of an electric furnace for producing a crystal is not more than 3 times the height of the crystal to be grown.
JP22830993A 1993-08-20 1993-08-20 Production of single crystal and compound semiconductor and production device therefor Pending JPH0761886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22830993A JPH0761886A (en) 1993-08-20 1993-08-20 Production of single crystal and compound semiconductor and production device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22830993A JPH0761886A (en) 1993-08-20 1993-08-20 Production of single crystal and compound semiconductor and production device therefor

Publications (1)

Publication Number Publication Date
JPH0761886A true JPH0761886A (en) 1995-03-07

Family

ID=16874427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22830993A Pending JPH0761886A (en) 1993-08-20 1993-08-20 Production of single crystal and compound semiconductor and production device therefor

Country Status (1)

Country Link
JP (1) JPH0761886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002553A (en) * 2015-07-29 2015-10-28 哈尔滨工业大学(威海) Annular electron beam crucible-free zone smelting device used in vacuum environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002553A (en) * 2015-07-29 2015-10-28 哈尔滨工业大学(威海) Annular electron beam crucible-free zone smelting device used in vacuum environment

Similar Documents

Publication Publication Date Title
Bonner InP synthesis and LEC growth of twin-free crystals
JP2009263149A (en) Method for manufacturing polycrystalline silicon rod
EP1498516B1 (en) Single crystal silicon producing method, single crystal silicon wafer and ingot produced thereby
JPH0761886A (en) Production of single crystal and compound semiconductor and production device therefor
JP3806791B2 (en) Method for producing compound semiconductor single crystal
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
US7361219B2 (en) Method for producing silicon wafer and silicon wafer
JP2002293686A (en) Method of growing compound semiconductor signal crystal and substrate cut out of the same
JP4344021B2 (en) Method for producing InP single crystal
JPS5938187B2 (en) Method for producing Group 3-5 compound semiconductor single crystal
JPS5895697A (en) Preparation of compound semiconductor single crystal of groups 3[5 having low dislocation density
JPH0710680A (en) Production of single crystal of compound semiconductor
JP2855408B2 (en) Single crystal growth equipment
JP3135355B2 (en) Method and apparatus for producing compound semiconductor single crystal
JPH0748199A (en) Apparatus for producing compound semiconductor single crystal and production thereof
JPH09110575A (en) Crucible for producing single crystal and production of single crystal
JPH06329491A (en) Production device for compound semiconductor crystal and production of compound semiconductor crystal
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPH0748196A (en) Production of compound semiconductor single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
US20070068446A1 (en) Compound semiconductor single crystal and production process thereof
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method
JPH0517278A (en) Method and apparatus for producing compound semiconductor crystal
KR920007340B1 (en) Manufacturing method of 3-4 compound material semiconductor crystal
JPH04362082A (en) Apparatus and method for producing compound semiconductor crystal