JPH0699234B2 - Compound semiconductor single crystal growth equipment - Google Patents
Compound semiconductor single crystal growth equipmentInfo
- Publication number
- JPH0699234B2 JPH0699234B2 JP62119708A JP11970887A JPH0699234B2 JP H0699234 B2 JPH0699234 B2 JP H0699234B2 JP 62119708 A JP62119708 A JP 62119708A JP 11970887 A JP11970887 A JP 11970887A JP H0699234 B2 JPH0699234 B2 JP H0699234B2
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- single crystal
- semiconductor single
- crucible
- crystal growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はGaAs,InP等のIII−V族化合物半導体結晶を液
体封止チョクラルスキ法を用いて単結晶に成長させる単
結晶成長装置に関するものである。The present invention relates to a single crystal growth apparatus for growing a III-V group compound semiconductor crystal such as GaAs, InP or the like into a single crystal by using the liquid sealed Czochralski method. is there.
従来、この種の化合物半導体単結晶成長方法は、第2図
に示すような成長装置を用いて行なわれている。すなわ
ち、サセプタ14上に設置したルツボ15に半導体原料及び
封止剤であるB2O3を入れ、ヒータ13により加熱して溶融
状態とする。第2図には溶融状態の封止用B2O310及び融
液11が示されている。この時、容器18内部は不活性ガス
により加圧されている。次に種結晶ホルダ6に取り付け
られた種結晶8を降ろして融液11に接触させた後、ルツ
ボ温度を下げ、融液11を過飽和状態にしながら種結晶8
を引き上げ結晶9に成長させる。Conventionally, this type of compound semiconductor single crystal growth method has been performed using a growth apparatus as shown in FIG. That is, the semiconductor raw material and B 2 O 3 , which is a sealant, are put into the crucible 15 installed on the susceptor 14 and heated by the heater 13 to be in a molten state. FIG. 2 shows the sealing B 2 O 3 10 and the melt 11 in a molten state. At this time, the inside of the container 18 is pressurized by the inert gas. Next, the seed crystal 8 attached to the seed crystal holder 6 is lowered and brought into contact with the melt 11, and then the crucible temperature is lowered to bring the melt 11 into a supersaturated state and the seed crystal 8
Is pulled up to grow a crystal 9.
上述した従来の化合物半導体単結晶を液体封止チョクラ
ルスキー法で成長させる技術では、第2図に示すグラフ
ァイト製のヒータ13及び保温材12と封止用B2O310の間
を、雰囲気ガスが熱対流によって自由に行き来できる。
そのことによって、グラファイト製部材から発生する炭
酸ガスがB2O3によって還元され、この還元された炭素が
成長結晶中に混入し、約5×1015cm-3から1×1016cm-3
の濃度の浅いアクセプタ不純物準位が形成され、高温熱
処理後の成長結晶の電気的特性が不安定であったり、V
族/III族元素組成比のズレの電気的特性に与える影響度
が大きくなったり、LSI製作工程におけるSiイオン注入
後の活性化率が低くなる等の欠点がある。In the conventional technique of growing a compound semiconductor single crystal by the liquid-encapsulated Czochralski method, the atmosphere between the graphite heater 13 and the heat insulating material 12 and the encapsulating B 2 O 3 10 shown in FIG. Gas can move freely by heat convection.
As a result, carbon dioxide gas generated from the graphite member is reduced by B 2 O 3 , and the reduced carbon is mixed into the growing crystal, and the carbon dioxide is approximately 5 × 10 15 cm −3 to 1 × 10 16 cm −3.
A low concentration of acceptor impurity level is formed, and the electrical characteristics of the grown crystal after high temperature heat treatment are unstable, or V
There are drawbacks such that the deviation of the composition ratio of the group III / III element has a large influence on the electrical characteristics, and the activation rate after Si ion implantation in the LSI manufacturing process is low.
本発明の目的は、このような欠点を除き、内部に石英製
内管を配置して雰囲気ガスの行き来を防止することによ
り、結晶への炭素の混入を除き、結晶の電気的特性を安
定化した化合物半導体単結晶成長装置を提供することに
ある。The object of the present invention is to eliminate such drawbacks and to prevent the atmospheric gas from moving back and forth by disposing a quartz inner tube inside thereof, thereby eliminating the incorporation of carbon into the crystal and stabilizing the electrical characteristics of the crystal. Another object of the present invention is to provide a compound semiconductor single crystal growth apparatus.
本発明の構成は、ヒータによりるつぼ内の化合物半導体
材を加熱して融液としこの融液表面を液体封止剤のB2O3
によって覆いながら化合物半導体単結晶を成長させる液
体封止チョクラルスキー法を用いる化合物半導体単結晶
成長装置において、前記るつぼを前記ヒータと分離して
収容し雰囲気ガスと反応しない耐熱材からなる下部容器
と、この下部容器と同様の材料からなりその上端とすり
合わせ構造をもつ下端を有し上端に前記結晶引上げ軸の
挿入部をもちさらに不活性ガスの供給端と出力端とをも
つ上部容器とを備え、これら上部容器および下部容器内
に前記るつぼが挿入されて前記不活性ガス内で密封され
るようにしたことを特徴とする。According to the constitution of the present invention, the compound semiconductor material in the crucible is heated by the heater to form a melt, and the surface of the melt is melted with B 2 O 3 of the liquid sealant.
In a compound semiconductor single crystal growth apparatus using a liquid-sealed Czochralski method for growing a compound semiconductor single crystal while covering with a lower container made of a heat-resistant material that accommodates the crucible separately from the heater and does not react with atmospheric gas. An upper container having a lower end that is made of the same material as the lower container and that has a rubbing structure with its upper end, and has an insert portion for the crystal pulling shaft at the upper end and further has an inert gas supply end and an output end The crucible is inserted into the upper container and the lower container and sealed in the inert gas.
次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.
第1図は本発明の一実施例の化合物半導体単結晶成長装
置を示す縦断面図である。FIG. 1 is a vertical sectional view showing a compound semiconductor single crystal growth apparatus according to an embodiment of the present invention.
本実施例の装置は、PBNルツボ15を保持することが出来
る石英製の下部内管5を有し、上部内管1上端中央に
は、種結晶ホルダ6外径よりも大きな穴があり、かつ高
温状態で内管内外の雰囲気ガスの出入りを防止するため
に上部内管1の種結晶ホルダ6間を封止用B2O3で封止す
ることが可能な受け皿状の構造となっている。上部内管
1と下部内管5とは、すり合わせ構造により気密性を保
ち、不活性ガス導入口2と内管内部の圧力を外部へ逃が
すバルブ4とを有する構造の内管をもっている。The apparatus of this embodiment has a lower inner tube 5 made of quartz capable of holding a PBN crucible 15, and has a hole larger than the outer diameter of the seed crystal holder 6 in the center of the upper end of the upper inner tube 1, and It has a saucer-like structure that can seal between the seed crystal holders 6 of the upper inner tube 1 with a sealing B 2 O 3 in order to prevent the atmospheric gas inside and outside the inner tube from entering and leaving at high temperature. . The upper inner pipe 1 and the lower inner pipe 5 have an inner pipe having a structure in which an airtightness is maintained by a laminating structure, and an inert gas introducing port 2 and a valve 4 for releasing the pressure inside the inner pipe to the outside are provided.
アンドープGaAs結晶成長する場合の例に説明する。An example of growing an undoped GaAs crystal will be described.
この結晶成長方法は、InP,GaP,InAs等の他のIII−V族
化合物半導体について、アンドープ又は不純物ドープを
問わず適用することができる。This crystal growth method can be applied to other III-V group compound semiconductors such as InP, GaP, and InAs, regardless of whether they are undoped or impurity-doped.
PBNルツボ15に原料であるGaとAs(又は多結晶GaAs)を
入れ、更に封止剤であるB2O3(10)を入れる。ルツボ15
を機械的に保持するためのサセプタ14内に下部内管5を
収め、次に原材料が収容されているルツボ15を配置した
後、上部内管1を下部内管5にすり合わせ、ガス導入パ
イプ2を接続されMo等で製作された不活性ガス導入口を
接続し、種結晶ホルダ6と上部内管1とのシール用にB2
O3を上部内管1の上端に配置する。Raw materials Ga and As (or polycrystalline GaAs) are put into the PBN crucible 15, and further B 2 O 3 (10) which is a sealant is put therein. Crucible 15
The lower inner pipe 5 is housed in the susceptor 14 for mechanically holding the crucible 15, and then the crucible 15 containing the raw material is arranged. Then, the upper inner pipe 1 is rubbed with the lower inner pipe 5, and the gas introduction pipe 2 B 2 for connecting the seed crystal holder 6 and the upper inner tube 1 by connecting the inert gas inlet made of Mo etc.
Place O 3 on the upper end of the upper inner tube 1.
成長炉を締めた後の不活性ガスによるガス置換は、上部
内管1の上端の穴と種結晶ホルダ6とのすき間から真空
排気を行ない、不活性ガス導入口からガスを入れ、加圧
することによって行なう。For gas replacement with an inert gas after the growth furnace is closed, vacuum exhaust is performed from the gap between the upper end of the upper inner tube 1 and the seed crystal holder 6, and gas is introduced from the inert gas inlet and pressurized. By.
成長炉内のガス置換終了後は、炉内を高圧状態にして昇
温する。この昇温過程において、ルツボ15が石英内管に
より覆われていることは何ら問題とはならない。次に昇
温後、封止剤であるB2O3中にとけている泡を除去するた
めに圧力を2気圧程度迄下げる必要がある。この時、上
部内管1に付属しているバルブ4により内管内の雰囲気
ガスを成長炉内を通じて、成長炉外へ逃がすことができ
る。After the gas replacement in the growth furnace is completed, the inside of the furnace is heated to a high pressure and the temperature is raised. In this temperature rising process, it is not a problem that the crucible 15 is covered with the inner quartz tube. Next, after raising the temperature, it is necessary to reduce the pressure to about 2 atm in order to remove the bubbles melted in the sealant B 2 O 3 . At this time, the valve 4 attached to the upper inner tube 1 allows the atmospheric gas in the inner tube to escape through the inside of the growth furnace to the outside of the growth furnace.
次に、内管内部を再び加圧して、種付け及び成長を行な
った。この結果、成長結晶中の炭素濃度は約2×1015cm
-3と低減された。Next, the inside of the inner tube was pressurized again to perform seeding and growth. As a result, the carbon concentration in the grown crystal was about 2 × 10 15 cm.
It was reduced to -3 .
これに対して、第2図の従来の化合物半導体成長方法で
は、保温材12,ヒータ13,サセプタ14等のグラファイト製
部材と封止剤であるB2O310とが雰囲気ガスを共有するこ
とにより、雰囲気ガス中の炭酸ガスがB2O3により還元さ
れて成長したGaAs結晶中に、約5×1015cm-3の濃度の炭
素が混入していた。On the other hand, in the conventional compound semiconductor growth method shown in FIG. 2, the graphite members such as the heat insulating material 12, the heater 13, the susceptor 14 and the sealant B 2 O 3 10 share the atmospheric gas. As a result, carbon of a concentration of about 5 × 10 15 cm -3 was mixed in the GaAs crystal grown by reducing carbon dioxide in the atmosphere gas with B 2 O 3 .
次に本発明の化合物半導体単結晶成長方法の他の例を示
す。Next, another example of the compound semiconductor single crystal growth method of the present invention will be described.
高温状態に長時間されされる石英内管から雰囲気ガス中
へ飛散する珪素及び酸化珪素は、炭酸ガスの場合と同様
にB2O3と反応し、結果として成長結晶中に混入して浅い
ドナー順位を形成し、半絶縁性化しない。Silicon and silicon oxide, which are scattered from the inner tube of quartz for a long time at high temperature into the atmosphere gas, react with B 2 O 3 as in the case of carbon dioxide gas, and as a result, they are mixed in the grown crystal and become shallow donors. Form a rank and do not become semi-insulating.
そこで、雰囲気ガスの対流があまり発生しない様に低圧
状態(5気圧)とし、かつB2O3を厚く(通常2cm程度の
厚さを6cmとした)することにより、約1×107Ω・cmの
半絶縁性化GaAs結晶を成長することができた。Therefore, by setting the pressure to a low pressure (5 atm) so that convection of the atmospheric gas does not occur so much, and thickening B 2 O 3 (usually about 2 cm to 6 cm), about 1 × 10 7 Ω ・We were able to grow cm semi-insulating GaAs crystals.
このGaAsの直接合成時に飛散するAsが石英内管内壁に付
着して、一種のコーティングの役目をはたし、石英内管
からの珪素及び酸化珪素の飛散を抑制していることも、
半絶縁性化に寄与していると考えられる。The As that is scattered during the direct synthesis of GaAs adheres to the inner wall of the quartz inner tube, serves as a kind of coating, and suppresses the scattering of silicon and silicon oxide from the quartz inner tube.
It is considered that this contributes to the semi-insulating property.
以上の様に本発明により半絶縁性基板の成長に適用可能
である。As described above, the present invention can be applied to growth of a semi-insulating substrate.
以上説明したように本発明は、ルツボ,化合物半導体融
液,封止剤であるB2O3とヒータ,保温材,等のグラファ
イト製部材とが雰囲気ガスを共有することがない様に、
石英製などの内管を配置することにより、成長した結晶
に混入する炭素の濃度を低減できる効果がある。As described above, according to the present invention, the crucible, the compound semiconductor melt, the sealant B 2 O 3 and the graphite member such as the heater and the heat insulating material do not share the atmospheric gas.
By arranging the inner tube made of quartz or the like, there is an effect that the concentration of carbon mixed in the grown crystal can be reduced.
【図面の簡単な説明】 第1図は本発明の化合物半導体単結晶成長装置の一実施
例の縦断面図、第2図は従来の化合物半導体成長方法の
一例を説明する結晶成長装置の縦断面図である。 1…上部石英内管、2…不活性ガス導入パイプ、3…上
部石英内管と種結晶ホルダとの間の封止用B2O3、4…バ
ルブ、5…下部石英内管、6…種結晶ホルダ、7…上
軸、8…種結晶、9…結晶、10…封止用B2O3、11…融
液、12…保温材、13…ヒータ、14…サセプタ、15…ルツ
ボ、16…ペデスタル、17…下軸、18…容器。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view of an embodiment of a compound semiconductor single crystal growth apparatus of the present invention, and FIG. 2 is a vertical sectional view of a crystal growth apparatus for explaining an example of a conventional compound semiconductor growth method. It is a figure. 1 ... upper quartz inner tube, 2 ... inert gas inlet pipe, 3 ... for sealing between the upper quartz inner tube and the seed crystal holder B 2 O 3, 4 ... bulb, 5 ... lower quartz inner tube, 6 ... Seed crystal holder, 7 ... Upper axis, 8 ... Seed crystal, 9 ... Crystal, 10 ... Sealing B 2 O 3 , 11 ... Melt solution, 12 ... Heat insulating material, 13 ... Heater, 14 ... Susceptor, 15 ... Crucible, 16 ... Pedestal, 17 ... Lower shaft, 18 ... Container.
Claims (1)
加熱して融液としこの融液表面を液体封止剤のB2O3によ
って覆いながら化合物半導体単結晶を成長させる液体封
止チョクラルスキー法を用いる化合物半導体単結晶成長
装置において、前記るつぼを前記ヒータと分離して収容
し雰囲気ガスと反応しない耐熱材からなる下部容器と、
この下部容器と同様の材料からなりその上端とすり合わ
せ構造をもつ下端を有し上端に前記結晶引上げ軸の挿入
部をもちさらに不活性ガスの供給端と出力端とをもつ上
部容器とを備え、これら上部容器および下部容器内に前
記るつぼが挿入されて前記不活性ガス内で密閉されるよ
うにしたことを特徴とする化合物半導体単結晶成長装
置。1. A liquid-sealed Czochralski that grows a compound semiconductor single crystal while heating a compound semiconductor material in a crucible with a heater to form a melt and covering the surface of the melt with B 2 O 3 as a liquid sealant. In the compound semiconductor single crystal growth apparatus using the method, a lower container made of a heat-resistant material that accommodates the crucible separately from the heater and does not react with atmospheric gas,
An upper container having a lower end having a rubbing structure made of the same material as that of the lower container and having an insert portion of the crystal pulling shaft at the upper end and further having an inert gas supply end and an output end is provided, A compound semiconductor single crystal growth apparatus, wherein the crucible is inserted into the upper container and the lower container so as to be sealed in the inert gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62119708A JPH0699234B2 (en) | 1987-05-15 | 1987-05-15 | Compound semiconductor single crystal growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62119708A JPH0699234B2 (en) | 1987-05-15 | 1987-05-15 | Compound semiconductor single crystal growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63285191A JPS63285191A (en) | 1988-11-22 |
JPH0699234B2 true JPH0699234B2 (en) | 1994-12-07 |
Family
ID=14768130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62119708A Expired - Lifetime JPH0699234B2 (en) | 1987-05-15 | 1987-05-15 | Compound semiconductor single crystal growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0699234B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200936824A (en) * | 2008-02-27 | 2009-09-01 | Green Energy Technology Inc | Crystal-growing furnace with emergency decompression arrangement |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60127295A (en) * | 1983-12-13 | 1985-07-06 | Toshiba Corp | Production of single crystal of gaas and device therefor |
JPS60176988A (en) * | 1984-02-22 | 1985-09-11 | Toshiba Corp | Production unit for single crystal of semiconductor |
JPS60264390A (en) * | 1984-06-08 | 1985-12-27 | Sumitomo Electric Ind Ltd | Growing method for single crystal |
JPS61158890A (en) * | 1984-12-28 | 1986-07-18 | Fujitsu Ltd | Crystal growth apparatus |
-
1987
- 1987-05-15 JP JP62119708A patent/JPH0699234B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63285191A (en) | 1988-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60251191A (en) | Process for growing single crystal of compound having high dissociation pressure | |
US5256381A (en) | Apparatus for growing single crystals of III-V compound semiconductors | |
JPH0699234B2 (en) | Compound semiconductor single crystal growth equipment | |
US5145550A (en) | Process and apparatus for growing single crystals of III-V compound semiconductor | |
JPH11147785A (en) | Production of single crystal | |
JPH06128096A (en) | Production of compound semiconductor polycrystal | |
JP2531875B2 (en) | Method for producing compound semiconductor single crystal | |
JP2690420B2 (en) | Single crystal manufacturing equipment | |
JPH07165488A (en) | Apparatus for producing single crystal and method therefor | |
JP3627255B2 (en) | III-V compound semiconductor single crystal growth method | |
JPH05139885A (en) | Method and device for producing single crystal | |
JP2830315B2 (en) | High dissociation pressure single crystal manufacturing equipment | |
JP3551607B2 (en) | Method for producing GaAs single crystal | |
JP2576239B2 (en) | Compound semiconductor crystal growth equipment | |
JPH03252385A (en) | Production of single crystal having high dissociation pressure | |
JPH07206584A (en) | Production of compound semiconductor single crystal | |
JPS62230694A (en) | Production of gaas single crystal | |
JPH11189499A (en) | Production of compound semiconductor single crystal | |
JP3392245B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JP2830307B2 (en) | Method for producing high dissociation pressure single crystal | |
JPS63274690A (en) | Method and apparatus for producing inp single crystal | |
JP2737990B2 (en) | Compound semiconductor single crystal manufacturing equipment | |
JPS63307193A (en) | Production of single crystal of compound of high dissociation pressure | |
JPS6395194A (en) | Production of compound single crystal | |
JPH0364477B2 (en) |