JPS623408Y2 - - Google Patents

Info

Publication number
JPS623408Y2
JPS623408Y2 JP1982084742U JP8474282U JPS623408Y2 JP S623408 Y2 JPS623408 Y2 JP S623408Y2 JP 1982084742 U JP1982084742 U JP 1982084742U JP 8474282 U JP8474282 U JP 8474282U JP S623408 Y2 JPS623408 Y2 JP S623408Y2
Authority
JP
Japan
Prior art keywords
crucible
container
gallium arsenide
quartz
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982084742U
Other languages
Japanese (ja)
Other versions
JPS59463U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8474282U priority Critical patent/JPS59463U/en
Publication of JPS59463U publication Critical patent/JPS59463U/en
Application granted granted Critical
Publication of JPS623408Y2 publication Critical patent/JPS623408Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は融解温度で高い蒸気圧を示す元素を含
す化合物半導体の合成や単結晶の製造において、
所望材料の融液ないし所望材料を含す溶液を入れ
る結晶製造用るつぼに関するものである。
[Detailed description of the invention] This invention is useful in the synthesis of compound semiconductors containing elements that exhibit high vapor pressure at melting temperatures and in the production of single crystals.
The present invention relates to a crucible for crystal production into which a melt of a desired material or a solution containing the desired material is placed.

ガリウムヒ素を代表とする−族化合物半導
体やシリコンはその特異な電気的特性を活かして
多種の半導体素子用基板材料として用いられてい
る。半導体材料を半導体素子用基板として用いる
ためには所定の不純物を導入し、または導入せ
ず、所望の比抵抗に制御する必要がある。このた
めには、所定不純物以外の不純物(以後残留不純
物と呼ぶ)の当該結晶中への混入を可能なかぎり
減らすことが重要である。半導体材料の製造にお
いては、所望材料の融液あるいは所望材料を含む
溶液を収納する容器からのこれらへの残留不純物
混入が第一に問題となる。このため従来より種々
の材質、構造の容器が考えられている。これら
は、例えば、石英、カーボン、アルミナ、窒化ホ
ウ素、窒化ケイ素あるいは石英ないしカーボン容
器内壁に炭化ケイ素、窒化ケイ素、三酸化ホウ素
を被覆したもの等がある。しかし工業的には経済
性、容器材質の純度の面から主に石英容器が用い
られている。現在工業的に多量生産されている。
BACKGROUND ART - Group compound semiconductors, typified by gallium arsenide, and silicon are used as substrate materials for various semiconductor devices, taking advantage of their unique electrical properties. In order to use a semiconductor material as a substrate for a semiconductor element, it is necessary to control the resistivity to a desired level by introducing or not introducing certain impurities. For this purpose, it is important to reduce as much as possible the incorporation of impurities other than predetermined impurities (hereinafter referred to as residual impurities) into the crystal. In the production of semiconductor materials, the primary problem is the contamination of a melt of a desired material or a solution containing a desired material with residual impurities from a container containing the material. For this reason, containers made of various materials and structures have been considered. These include, for example, quartz, carbon, alumina, boron nitride, silicon nitride, or those in which the inner wall of a quartz or carbon container is coated with silicon carbide, silicon nitride, or boron trioxide. However, industrially, quartz containers are mainly used from the viewpoint of economy and purity of the container material. Currently, it is industrially produced in large quantities.

ガリウムリン、インジウムリン、ガリウムヒ素
等の化合物半導体材料の合成や結晶製造には石英
容器が使用されているが、石英容器には石英と液
相半導体材料との反応により石英の構成元素であ
るシリコンと酸素が液相半導体材料中に溶け込む
結果、半導体材料中にはシリコンおよび酸素が残
留不純物として混入しており、これら残留不純物
が素子特性の劣化を生起したり、所望比抵抗結晶
の製造を困難にしているという欠点がある。また
ガリウムヒ素の合成や結晶製造においては、特に
シリコンの混入を防止する必要があるため、近年
高純度で化学的安定性に優れた熱分解法による窒
化ボロン(PBN)容器が用いられているが、非常
に高価である、ボロンが多量に混入する、という
欠点がある。一方、三酸化ホウ素(B2O3)は現在
化合物半導体の液体封止引き上げ法による単結晶
成長法において、高蒸気圧成分の蒸発を抑止する
カプセル剤として用いられている化学的に非常に
安定なガラス状物質であるが、軟化点が約450℃
と低いために半導体材料の合成や結晶製造用容器
としては用いることができないという欠点があ
る。
Quartz containers are used to synthesize and produce crystals of compound semiconductor materials such as gallium phosphide, indium phosphide, and gallium arsenide. As a result, silicon and oxygen are mixed into the semiconductor material as residual impurities, and these residual impurities cause deterioration of device characteristics and make it difficult to manufacture the desired resistivity crystal. It has the disadvantage of being. In addition, in the synthesis and crystal manufacturing of gallium arsenide, it is especially necessary to prevent the contamination of silicon, so in recent years boron nitride (PBN) containers made using the pyrolysis method, which are highly pure and have excellent chemical stability, have been used. , it has the disadvantages of being very expensive and containing a large amount of boron. On the other hand, boron trioxide (B 2 O 3 ) is currently used as an encapsulant to suppress the evaporation of high vapor pressure components in the single crystal growth method using the liquid confinement pulling method for compound semiconductors. It is a glassy substance with a softening point of approximately 450℃.
It has the disadvantage that it cannot be used as a container for synthesizing semiconductor materials or producing crystals because of its low temperature.

本考案は上記の事情に着目してなされたもの
で、その目的とするところは、半導体材料の合成
や結晶製造を行なうに際し、高純度の合成多結晶
および単結晶を安価に製造するためのるつぼを提
供することにある。
The present invention was developed in light of the above circumstances, and its purpose is to provide a crucible for manufacturing high-purity synthetic polycrystals and single crystals at low cost when synthesizing semiconductor materials and manufacturing crystals. Our goal is to provide the following.

従つて、本考案による液体封止法結晶製造用る
つぼは、石英あるいは窒化ボロン容器等を外周容
器とし、三酸化ホウ素を主成分とする物質により
形成された容器を内部容器とする二重構造を特徴
とするものである。
Therefore, the crucible for producing crystals using the liquid sealing method according to the present invention has a double structure in which the outer container is a quartz or boron nitride container, and the inner container is a container made of a substance whose main component is boron trioxide. This is a characteristic feature.

以下、本考案による液体封止法結晶製造用るつ
ぼの実施例を説明する。第1図及び第2図は直接
合成液体封止(Liquid Encapsulated
Czochralski:LEC)法によるガリウムヒ素の合
成および単結晶製造に適用した際の本考案による
容器の概略断面図であり、第1図は合成段階、第
2図は単結晶製造段階を示すものである。図中、
1は三酸化ホウ素(B2O3)から成る(内部)るつ
ぼ、2は石英るつぼ、3はカプセル剤(B2O3)、
4はガリウム容液、5はヒ素、6はカーボンサセ
プター、7はガリウムヒ素単結晶、8はガリウム
ヒ素融液である。このような容器によりガリウム
ヒ素を合成し、さらに単結晶を成長させるには、
容器1,2内を加熱し、ガリウム溶液4と共にヒ
素5及びカプセル剤3を溶融してガリウムヒ素融
液8を合成させる。ガリウムヒ素融液8を合成し
た後、第2図に示すように種結晶(図示せず)を
前記ガリウムヒ素融液に接触させてガリウムヒ素
単結晶7を形成せしめる。
Hereinafter, embodiments of the crucible for producing crystals using the liquid sealing method according to the present invention will be described. Figures 1 and 2 show direct synthetic liquid encapsulation.
These are schematic cross-sectional views of the container according to the present invention when applied to the synthesis and single crystal production of gallium arsenide by the Czochralski (LEC) method, with Fig. 1 showing the synthesis stage and Fig. 2 showing the single crystal production stage. . In the figure,
1 is an (internal) crucible made of boron trioxide (B 2 O 3 ), 2 is a quartz crucible, 3 is a capsule (B 2 O 3 ),
4 is a gallium liquid, 5 is arsenic, 6 is a carbon susceptor, 7 is a gallium arsenide single crystal, and 8 is a gallium arsenide melt. To synthesize gallium arsenide and grow a single crystal using such a container,
The insides of the containers 1 and 2 are heated to melt the arsenic 5 and the capsule 3 together with the gallium solution 4 to synthesize a gallium arsenide melt 8. After synthesizing the gallium arsenide melt 8, a seed crystal (not shown) is brought into contact with the gallium arsenide melt to form a gallium arsenide single crystal 7, as shown in FIG.

これらの過程において、ガリウムヒ素結晶中で
浅いドナーレベルを作る不純物であるシリコン
(特にMESFETをイオンインプランテーシヨン技
術で作成するための半絶縁性結晶としては極力混
入を避けなければならない不純物である)は、ガ
リウムヒ素融液8の合成初期(室温)から合成完
了時(約1250℃)までガリウム溶液
(Ga1-XAsX;X=0〜0.5)が直接石英るつぼ2
に接触することがないので、ガリウムヒ素単結晶
中に混入することはなくなる。即ち、従来のよう
に石英るつぼを用いる方法ではガリウム溶液と石
英の反応性が高いため、シリコンの混入を防止す
ることは困難であつたが、本考案による容器によ
れば、室温〜約450℃までは内部るつぼ1が、そ
れ以上の温度では、内部るつぼであるB2O3るつ
ぼ1及びカプセル剤であるB2O33が融解し3′の
領域ガリウム溶液4あるいはガリウムヒ素融液8
の周囲を覆い石英るつぼ2と溶(融)液との接触
を防止するのである。
In these processes, silicon is an impurity that creates a shallow donor level in the gallium arsenide crystal (this is an impurity that must be avoided as much as possible especially for semi-insulating crystals used to create MESFETs using ion implantation technology). ), the gallium solution (Ga 1-X As
Since the gallium arsenide does not come into contact with the gallium arsenide single crystal, it will not be mixed into the gallium arsenide single crystal. That is, in the conventional method using a quartz crucible, it was difficult to prevent silicon from being mixed in due to the high reactivity of the gallium solution and quartz, but with the container of the present invention, the temperature range from room temperature to approximately 450°C At higher temperatures, the internal crucible B 2 O 3 crucible 1 and the capsule B 2 O 3 3 melt and form the gallium solution 4 or the gallium arsenide melt 8 in the region 3'.
This prevents contact between the quartz crucible 2 and the melt.

内部るつぼ1の厚さを2mmとし、上記の手順に
従つてガリウムヒ素単結晶を製造し、質量分析法
により不純物分析を行なつた結果、シリコン濃度
は1014at/cm3以下となつており、従来法による混
入量1015〜1016at/cm3と比較して大巾な高純度化
が達成された。また、石英るつぼ2のかわりに
PBNるつぼを使用して同様に結晶の製造、不純物
分析を行なつた結果、ボロン濃度は1015at/cm3
下となり、従来法による混入量約1016at/cm3と比
較して約1/10に減少した。
The thickness of the internal crucible 1 was set to 2 mm, a gallium arsenide single crystal was produced according to the above procedure, and impurity analysis was performed using mass spectrometry. As a result, the silicon concentration was 10 14 at/cm 3 or less. , a significantly higher degree of purity was achieved compared to the conventional method, which had a contamination amount of 10 15 to 10 16 at/cm 3 . Also, instead of quartz crucible 2
As a result of similarly producing crystals and analyzing impurities using a PBN crucible, the boron concentration was less than 10 15 at/cm 3 , which was about 1% compared to the contamination amount of about 10 16 at/cm 3 by the conventional method. /10.

以上の実施例においては直接合成LEC法によ
るガリウムヒ素の合成および結晶製造について行
なつたが、本考案によるるつぼは以上説明した主
旨から、他の半導体材料の合成や結晶製造方法に
おいて高純度結晶を安価に得ることのできる容器
として利用することができる。
In the above embodiments, the synthesis and crystal production of gallium arsenide by the direct synthesis LEC method was carried out, but based on the purpose explained above, the crucible according to the present invention can be used to synthesize high purity crystals in the synthesis of other semiconductor materials and crystal production methods. It can be used as a container that can be obtained at low cost.

以上説明したように、B2O3Cから成るるつぼを
内部容器として用い、石英あるいはPBNるつぼを
外周容器として用いることにより、半導体材料の
溶(融)液は化学的に非常に安定なB2O3とのみ
接触し、石英等の容器との接触を避けることがで
きるから、本考案のるつぼには高純度の半導体材
料および単結晶を得ることができるという利点が
ある。
As explained above, by using a crucible made of B 2 O 3 C as the inner container and a quartz or PBN crucible as the outer container, the molten liquid of the semiconductor material is made of B 2 which is chemically very stable. The crucible of the present invention has the advantage of being able to obtain high-purity semiconductor materials and single crystals, since it contacts only O 3 and avoids contact with containers such as quartz.

また、本考案のるつぼは、外周容器と内部容器
が別々に製造されて、外周容器の内側に内部容器
が納められるので、従来の外周容器の内側に三酸
化ホウ素が被覆・密着されて製造されていたるつ
ぼの製造歩留りが、外周容器の石英等の材料と三
酸化ホウ素の熱膨張係数が大きく異なるため低か
つたのを改善することができる。
In addition, in the crucible of the present invention, the outer container and the inner container are manufactured separately, and the inner container is housed inside the outer container, so boron trioxide is coated and adhered to the inside of the conventional outer container. It is possible to improve the low production yield of crucibles due to the large difference in thermal expansion coefficient between boron trioxide and the material such as quartz for the outer container.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本考案による液体封止法結
晶製造用るつぼの実施例の概略断面図である。 1……三酸化ホウ素るつぼ、2……石英るつ
ぼ、3……カプセル剤、4……ガリウム溶液、5
……ヒ素、6……カーボンサセプター、7……ガ
リウムヒ素単結晶、8……ガリウムヒ素融液。
1 and 2 are schematic cross-sectional views of an embodiment of a crucible for producing crystals using a liquid sealing method according to the present invention. 1...Boron trioxide crucible, 2...Quartz crucible, 3...Capsule, 4...Gallium solution, 5
...Arsenic, 6...Carbon susceptor, 7...Gallium arsenide single crystal, 8...Gallium arsenide melt.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 外周容器とは別の三酸化ホウ素を材料とする物
質により形成された内部容器を、該外周容器の内
側に配置して二重構造の容器としたことを特徴と
する液体封止法結晶製造用るつぼ。
A liquid sealing method for producing crystals, characterized in that an inner container made of a material made of boron trioxide, which is different from the outer container, is arranged inside the outer container to form a double-structured container. Crucible.
JP8474282U 1982-06-09 1982-06-09 Crucible for liquid sealing crystal production Granted JPS59463U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8474282U JPS59463U (en) 1982-06-09 1982-06-09 Crucible for liquid sealing crystal production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8474282U JPS59463U (en) 1982-06-09 1982-06-09 Crucible for liquid sealing crystal production

Publications (2)

Publication Number Publication Date
JPS59463U JPS59463U (en) 1984-01-05
JPS623408Y2 true JPS623408Y2 (en) 1987-01-26

Family

ID=30214710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8474282U Granted JPS59463U (en) 1982-06-09 1982-06-09 Crucible for liquid sealing crystal production

Country Status (1)

Country Link
JP (1) JPS59463U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116756A (en) * 1984-04-27 1986-01-24 テイ−・エム・シ−・コ−ポレイシヨン Ski binding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116756A (en) * 1984-04-27 1986-01-24 テイ−・エム・シ−・コ−ポレイシヨン Ski binding

Also Published As

Publication number Publication date
JPS59463U (en) 1984-01-05

Similar Documents

Publication Publication Date Title
US3741817A (en) Process for producing monocrystals from iii-v compound melts with a boron oxide rim
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
US3649193A (en) Method of forming and regularly growing a semiconductor compound
US7537659B2 (en) Method of obtaining a CdTe or CdZnTe single crystal and the single crystal thus obtained
JPS623408Y2 (en)
US3902860A (en) Thermal treatment of semiconducting compounds having one or more volatile components
JPH10259100A (en) Production of garium-arsenic single crystal
JP2529934B2 (en) Single crystal manufacturing method
US3933990A (en) Synthesization method of ternary chalcogenides
JPH06298600A (en) Method of growing sic single crystal
US3353912A (en) Preparation of high-purity materials
US3480472A (en) Method of growing epitaxial layers from binary semiconductor compounds
JPS6153186A (en) Heater for resistance heating
JP2527718B2 (en) Sealant for liquid capsule pulling method and single crystal growth method
JP2873449B2 (en) Compound semiconductor floating zone melting single crystal growth method
JPS6116756B2 (en)
JP2611163B2 (en) Method for manufacturing compound semiconductor crystal
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt
JP2766716B2 (en) Single crystal manufacturing method
JPS6036397A (en) Apparatus for growing compound single crystal
JPS6270299A (en) Starting raw material for production of compound semiconductor single crystal and production thereof
JPS5973500A (en) Preparation of compound semiconductor
JP2000327496A (en) Production of inp single crystal
JPS6046076B2 (en) Method for manufacturing compound semiconductor crystal
JPH02120297A (en) Production of iii-v compound semiconductor single crystal