JPH08208369A - Method for growing single crystal - Google Patents

Method for growing single crystal

Info

Publication number
JPH08208369A
JPH08208369A JP1618895A JP1618895A JPH08208369A JP H08208369 A JPH08208369 A JP H08208369A JP 1618895 A JP1618895 A JP 1618895A JP 1618895 A JP1618895 A JP 1618895A JP H08208369 A JPH08208369 A JP H08208369A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
crystal
pulling
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1618895A
Other languages
Japanese (ja)
Inventor
Takayuki Kubo
高行 久保
Toshiyuki Fujiwara
俊幸 藤原
Hideki Fujiwara
秀樹 藤原
Shuichi Inami
修一 稲見
Masahiko Okui
正彦 奥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1618895A priority Critical patent/JPH08208369A/en
Publication of JPH08208369A publication Critical patent/JPH08208369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE: To control the concn. of oxygen in a single crystal without causing the dislocation lowering of the single crystal by accelerating the rotation of a crucible up to a required velocity while pulling up the single crystal from a crucible. CONSTITUTION: Polycrystalline silicone is charged into the crucible 1 and a phosphorus-silicon alloy is added as an impurity thereto. The pressure in a chamber is reduced and gaseous argon is supplied thereto. All of both raw materials are melted by adjusting the power of an upper heater 3a and a lower heater 3b and thereafter a solid layer S is gradually grown up to a prescribed amt. from the bottom of the crucible 1 by adjusting the power of the upper heater 3a and the lower heater 3b. Dipping of a seed crystal 5 is executed by setting the rotating velocity of a pulling-up shaft 4/the rotating speed of the crucible 1 at 10rpm/0rpm after the solid layer S and the molten layer L attains a stationary state. The seed crystal 5 is then pulled up at a prescribed pulling-up speed, by which the neck and shoulder of the seed crystal 6 are grown at the bottom end of the seed crystal 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は回転引上げ法を用いてシ
リコン等の単結晶を成長させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a single crystal such as silicon by using a rotary pulling method.

【0002】[0002]

【従来の技術】半導体基板に用いられるシリコン単結晶
の製造には種々の方法があるが、その一つに回転引上げ
法であるチョクラルスキー法(以下CZ法という)があ
る。図3は前記CZ法の実施態様を示す模式図であり、
図中1はチャンバ内に配設された坩堝である。坩堝1は
有底円筒状をなす石英製の内容器1aと該内容器1aの外側
を保持すべく適合された黒鉛製の外容器1bとを備えてお
り、回転並びに昇降可能な支持軸2の上端部に固定され
ている。坩堝1の外側には抵抗加熱式のヒータ3が略同
心状に配設されており、前記坩堝1内にはヒータ3によ
り溶融された結晶用原料の溶融液9が充填されている。
坩堝1の中心軸上には、支持軸2と同一軸心で所定の速
度で回転するワイヤ等の引上げ軸4が配設されており、
引上げ軸4には種結晶5が吊り下げられている。
2. Description of the Related Art There are various methods for producing a silicon single crystal used for a semiconductor substrate, and one of them is the Czochralski method (hereinafter referred to as CZ method) which is a rotary pulling method. FIG. 3 is a schematic view showing an embodiment of the CZ method,
In the figure, 1 is a crucible arranged in the chamber. The crucible 1 is provided with an inner container 1a made of quartz and having a cylindrical shape with a bottom, and an outer container 1b made of graphite adapted to hold the outside of the inner container 1a. It is fixed to the upper end. A resistance heating type heater 3 is arranged substantially concentrically outside the crucible 1, and the crucible 1 is filled with a melt 9 of a raw material for crystal melted by the heater 3.
On the central axis of the crucible 1, there is provided a pulling shaft 4 such as a wire that rotates at a predetermined speed with the same axis as the supporting shaft 2,
A seed crystal 5 is suspended on the pulling shaft 4.

【0003】このような結晶成長装置にあっては、坩堝
1内に結晶用原料を投入し、減圧下,不活性ガス雰囲気
中で結晶用原料を坩堝1の周囲に配したヒータ3にて溶
融した後、その溶融液9中に引上げ軸4に吊り下げられ
た種結晶5を浸漬し、坩堝1及び引上げ軸4を回転させ
つつ、引上げ軸4を上方に引上げて種結晶5の下端に単
結晶6を成長させる。
In such a crystal growth apparatus, a raw material for crystal is charged into the crucible 1 and melted by a heater 3 arranged around the crucible 1 under reduced pressure in an inert gas atmosphere. After that, the seed crystal 5 suspended on the pulling shaft 4 is immersed in the melt 9 and the crucible 1 and the pulling shaft 4 are rotated, and the pulling shaft 4 is pulled up to the lower end of the seed crystal 5. The crystal 6 is grown.

【0004】ところで成長させた単結晶を半導体基板等
として用いる場合は、単結晶の電気抵抗率及び電気伝導
型を調整するために、引上げ前に坩堝内の溶融液中に不
純物元素を添加する。しかし、前述したように坩堝内の
結晶用原料を全て溶融した溶融液から単結晶を引上げる
方法では、溶融液と結晶との界面における結晶中不純物
濃度CS と、溶融液中の不純物濃度CL との比で表され
る実行偏析係数Ke (Ke =CS /CL )が1より小さ
く、結晶の成長に伴って溶融液中の不純物及び結晶中の
不純物が濃化するため、単結晶の引上げ方向に前記不純
物が偏析し、その全長にわたって不純物の均一な濃度分
布を有する単結晶を得難いという問題があった。
When the grown single crystal is used as a semiconductor substrate or the like, an impurity element is added to the melt in the crucible before pulling in order to adjust the electric resistivity and electric conductivity type of the single crystal. However, as described above, in the method of pulling a single crystal from a melt obtained by melting all the crystal raw materials in the crucible, the impurity concentration C S in the crystal at the interface between the melt and the crystal and the impurity concentration C in the melt are The effective segregation coefficient K e (K e = C S / C L ) represented by the ratio with L is smaller than 1, and the impurities in the melt and the impurities in the crystal are concentrated as the crystal grows. There has been a problem that the impurities segregate in the pulling direction of the single crystal, and it is difficult to obtain a single crystal having a uniform impurity concentration distribution over the entire length thereof.

【0005】このような不純物の偏析を抑制して単結晶
を引上げる方法として、溶融層法が知られている。図4
は特開平 6−80495 号公報に記載された従来の溶融層法
の実施態様を示す模式図であり、図中、図3と対応する
部分には同じ番号を付す。坩堝1内に結晶用原料及び不
純物を投入し、ヒータ3にて両者を全て溶融した後、例
えばヒータ3の出力を減少して坩堝1の底から固体層S
を徐々に成長させる。
A melt layer method is known as a method of pulling a single crystal by suppressing such segregation of impurities. FIG.
FIG. 3 is a schematic view showing an embodiment of a conventional melt layer method described in Japanese Patent Laid-Open No. 6-80495, in which parts corresponding to those in FIG. 3 are given the same numbers. After the crystallization raw material and the impurities are put into the crucible 1 and all of them are melted by the heater 3, for example, the output of the heater 3 is reduced to reduce the solid layer S from the bottom of the crucible 1.
Grow gradually.

【0006】固体層Sの成長と該固体層Sの溶融による
溶融層Lの生成とが定常状態に達すると、引上げ軸4の
下端に取り付けられた種結晶5を溶融層Lに浸漬して該
種結晶の界面と溶融層Lの界面とが一体化するように馴
染ませた後、種結晶5と溶融層Lとの界面が引上げに適
した温度になるようにヒータ3のパワーを調節する(デ
ィップ工程)。そして、転位を排除する目的で、引上げ
速度が略3mm/分となるように種結晶5を引上げるこ
とによって、その直径が略3mmと細く絞ったネック6a
を形成する(ネック工程)。ネック6aが形成されると、
引上げ速度を略1mm/分以下に低下させて、その直径
が徐々に大きくなるショルダ6bを形成し(ショルダ工
程)、その後は、一定の直径のボディ6cを所定長まで引
上げる(ボディ工程)。
When the growth of the solid layer S and the formation of the molten layer L by the melting of the solid layer S reach a steady state, the seed crystal 5 attached to the lower end of the pulling shaft 4 is immersed in the molten layer L, After acclimatizing the interface of the seed crystal and the interface of the molten layer L so as to be integrated, the power of the heater 3 is adjusted so that the interface between the seed crystal 5 and the molten layer L has a temperature suitable for pulling up ( Dip process). Then, in order to eliminate dislocations, the seed crystal 5 is pulled up so that the pulling speed is approximately 3 mm / min, and the diameter of the neck 6a is narrowed to approximately 3 mm.
Are formed (neck process). When the neck 6a is formed,
The pulling speed is reduced to about 1 mm / min or less to form a shoulder 6b having a gradually increasing diameter (shoulder step), and then a body 6c having a constant diameter is pulled up to a predetermined length (body step).

【0007】ボディ工程中にあっては、溶融層Lの表面
の位置が一定になるように坩堝1を上昇させる。このた
め、坩堝1の底に形成された固体層Sが溶出し、偏析に
よる溶融層L中の不純物濃度の増加が防止され、引上げ
方向に均一な不純物濃度を有する単結晶6が得られる。
During the body process, the crucible 1 is raised so that the position of the surface of the molten layer L becomes constant. Therefore, the solid layer S formed on the bottom of the crucible 1 is eluted, the increase of the impurity concentration in the molten layer L due to segregation is prevented, and the single crystal 6 having a uniform impurity concentration in the pulling direction is obtained.

【0008】一方、石英製の内容器1aの溶融層Lと接触
している部分では、内容器1aが次の(1)式のように溶
融層Lと反応して徐々に溶解して溶融層LにSiOが混
入する。 SiO2 +Si→2SiO …(1)
On the other hand, in the portion of the inner container 1a made of quartz which is in contact with the molten layer L, the inner container 1a reacts with the molten layer L as shown in the following formula (1) and gradually melts to form a molten layer. SiO is mixed in L. SiO 2 + Si → 2SiO (1)

【0009】溶融層L中に混入したSiOの大部分は溶
融層Lの表面からSiOとして蒸発するが、一部は固液
界面から単結晶6中に混入して不純物酸素になる。単結
晶6中の酸素は、デバイスプロセスでの熱処理におい
て、ウェハ表面の結晶欠陥及び重金属等の不純物を取り
込み、無欠陥で清浄なウェハ表面層を形成し、また、ウ
ェハの強度を高める等の効果がある。反面、過剰な酸素
はデバイスプロセスでの熱処理において、酸素析出によ
る結晶欠陥を発生させるという問題があった。
Most of the SiO mixed in the melted layer L evaporates as SiO from the surface of the melted layer L, but a part thereof mixes in the single crystal 6 from the solid-liquid interface to become impurity oxygen. Oxygen in the single crystal 6 takes in crystal defects on the wafer surface and impurities such as heavy metals in the heat treatment in the device process, forms a defect-free and clean wafer surface layer, and has the effect of increasing the strength of the wafer. There is. On the other hand, there is a problem that excessive oxygen causes crystal defects due to oxygen precipitation in the heat treatment in the device process.

【0010】この問題を解決するため、特開平 5−3248
0 号公報に記載されているように、引上げ軸4の回転方
向とは逆の方向に坩堝1を回転させる方法が実施されて
いる。この方法では、坩堝1の回転速度を大きくするに
従って、単結晶6中の酸素の濃度を低減することがで
き、所定の酸素濃度にすべく決定した回転速度で坩堝21
を回転することによって、単結晶6中の酸素濃度を制御
していた。
In order to solve this problem, Japanese Patent Laid-Open No. 3248/1993
As described in Japanese Patent No. 0, a method of rotating the crucible 1 in a direction opposite to the rotation direction of the pulling shaft 4 is implemented. In this method, as the rotation speed of the crucible 1 is increased, the concentration of oxygen in the single crystal 6 can be reduced, and the crucible 21 can be rotated at a rotation speed determined to reach a predetermined oxygen concentration.
The oxygen concentration in the single crystal 6 was controlled by rotating the.

【0011】[0011]

【発明が解決しようとする課題】しかしながら前述した
如き従来の方法にあっては、ネック及びショルダを形成
する単結晶成長初期段階から坩堝を回転させていたた
め、坩堝の回転による溶融層の温度変動の影響によっ
て、所定直径以下にネックを形成することが困難とな
り、成長結晶が有転位化し易くなるという問題があっ
た。本発明はかかる事情に鑑みてなされたものであっ
て、その目的とするところは単結晶を引き上げている間
に、坩堝の回転を所要の速度まで加速することによって
単結晶を有転位下させることなく、単結晶中の酸素の濃
度を制御し得る単結晶成長方法を提供することにある。
However, in the conventional method as described above, since the crucible is rotated from the initial stage of single crystal growth forming the neck and the shoulder, the temperature fluctuation of the molten layer due to the rotation of the crucible is caused. Due to the influence, it becomes difficult to form a neck with a diameter smaller than a predetermined diameter, and there is a problem that the grown crystal is likely to have dislocations. The present invention has been made in view of the above circumstances, and an object thereof is to bring a single crystal into a dislocation state by accelerating the rotation of the crucible to a required speed while pulling the single crystal. The purpose of the present invention is to provide a single crystal growth method capable of controlling the concentration of oxygen in a single crystal.

【0012】[0012]

【課題を解決するための手段】第1発明に係る単結晶成
長方法は、坩堝内の結晶用原料を溶融して溶融層を形成
し、該溶融層に種結晶を浸漬し、前記種結晶を回転させ
ながら引き上げ、その下側に単結晶を成長させる方法に
おいて、前記単結晶を引き上げている間に、前記坩堝の
回転を所要の速度まで加速することを特徴とする。
A method for growing a single crystal according to a first aspect of the present invention is to melt a raw material for a crystal in a crucible to form a molten layer, and immerse the seed crystal in the molten layer to form the seed crystal. In the method of pulling while rotating and growing a single crystal on the lower side, the rotation of the crucible is accelerated to a required speed while pulling the single crystal.

【0013】第2発明に係る単結晶成長方法は、坩堝内
の結晶用原料を溶融して溶融層を形成し、該溶融層に種
結晶を浸漬し、前記種結晶を回転させながら引き上げ、
その下側に単結晶のネック,ショルダ及びボディを成長
させる方法において、単結晶のショルダの成長からボデ
ィの成長へ移行する間に、前記坩堝の回転を所要の速度
まで加速することを特徴とする。
In the method for growing a single crystal according to the second aspect of the invention, the crystal raw material in the crucible is melted to form a molten layer, the seed crystal is immersed in the molten layer, and the seed crystal is pulled up while rotating.
A method of growing a single crystal neck, a shoulder and a body thereunder, characterized in that the rotation of the crucible is accelerated to a required speed during the transition from the growth of the single crystal shoulder to the growth of the body. .

【0014】第3発明に係る単結晶成長方法は、第1又
は第2発明において、前記坩堝の回転の加速は略5分間
以内で行うことを特徴とする。
The single crystal growth method according to the third invention is characterized in that, in the first or second invention, the rotation of the crucible is accelerated within about 5 minutes.

【0015】第4発明に係る単結晶成長方法は、第1又
は第2発明において、前記坩堝の回転を加速する前に、
該坩堝の加熱量を増大し、坩堝の回転を所要の速度まで
加速した後に、前記坩堝の加熱量を減少することを特徴
とする。
A method for growing a single crystal according to a fourth aspect of the present invention is the method for growing a single crystal according to the first or second aspect, wherein the rotation of the crucible is accelerated.
The heating amount of the crucible is increased, and after the rotation of the crucible is accelerated to a required speed, the heating amount of the crucible is decreased.

【0016】[0016]

【作用】第1及び第2発明の単結晶成長方法にあって
は、坩堝の回転による溶融層の温度変動の影響によっ
て、成長結晶中に転位が発生し易いネック及びショルダ
の成長段階では、坩堝は回転させないか、又は転位が発
生する虞がない程度の速度、例えば1rpm以下の回転
速度で回転させる。その後に、坩堝の回転を所定の酸素
濃度にすべく決定した回転速度まで加速する。特に、単
結晶のショルダの成長からボディの成長へ移行する間に
加速を行うと、加速によるネック及びショルダの形成へ
の影響がなく、その全長にわたって無転位であると共
に、ボディの先頭から酸素濃度が好適に制御された単結
晶が得られる。
In the single crystal growth method according to the first and second aspects of the present invention, at the stage of growth of the neck and the shoulder where the dislocation is likely to occur in the grown crystal due to the influence of the temperature change of the molten layer due to the rotation of the crucible, the crucible is grown. Is not rotated, or is rotated at a speed at which dislocation does not occur, for example, at a rotation speed of 1 rpm or less. After that, the rotation of the crucible is accelerated to the rotation speed determined to bring the oxygen concentration to a predetermined value. In particular, if acceleration is performed during the transition from the growth of a single-crystal shoulder to the growth of a body, there is no effect on the formation of the neck and shoulder due to the acceleration, there is no dislocation over the entire length, and the oxygen concentration from the beginning of the body is high. , A single crystal having a favorable control can be obtained.

【0017】第3発明の単結晶成長方法にあっては、坩
堝の回転の加速は略5分間以内で行う。坩堝の回転を徐
々に加速させると、溶融層の流れ及び温度が長時間安定
化しないため、結晶径制御等に係る引上げ制御が困難に
なる。これに対して、本発明では、坩堝の回転を、例え
ば1rpm以下から,単結晶中の酸素濃度を所要値に制
御できる5〜20rpmまで加速する場合、加速操作を
略5分間以内に行うので、溶融層の流れ及び温度が短時
間で制御され、引上げ制御に支障が生じない。
In the single crystal growth method of the third aspect of the invention, the rotation of the crucible is accelerated within about 5 minutes. If the rotation of the crucible is gradually accelerated, the flow and temperature of the molten layer are not stabilized for a long time, and thus pulling control related to crystal diameter control and the like becomes difficult. On the other hand, in the present invention, when accelerating the rotation of the crucible from, for example, 1 rpm or less to 5 to 20 rpm at which the oxygen concentration in the single crystal can be controlled to a required value, the acceleration operation is performed within about 5 minutes. The flow and temperature of the molten layer are controlled in a short time, and pulling control is not hindered.

【0018】第4発明の単結晶成長方法にあっては、坩
堝の回転を加速する前に、該坩堝の加熱量を増大するた
め、坩堝の回転速度が増大することによって溶融層の温
度が低下することが防止される。そして、坩堝の回転を
所要の速度まで加速した後に、坩堝の加熱量を減少し、
坩堝の回転速度増大の前後で溶融層の温度を略同じにす
る。
In the single crystal growth method of the fourth invention, the heating amount of the crucible is increased before the rotation of the crucible is accelerated. Therefore, the rotation speed of the crucible is increased and the temperature of the molten layer is lowered. Is prevented. Then, after accelerating the rotation of the crucible to the required speed, the heating amount of the crucible is reduced,
The temperature of the molten layer is made substantially the same before and after the rotation speed of the crucible is increased.

【0019】[0019]

【実施例】以下本発明をその実施例を示す図面を用いて
具体的に説明する。図1は本発明に係る単結晶成長方法
を実施するための結晶成長装置の模式的断面図であり、
図中7は中空円筒状のチャンバ、1はチャンバ7内の略
中央に配設された坩堝を示している。チャンバ7は、円
筒状をなすメインチャンバ7a,メインチャンバ7aの上端
部に連接固定された円筒状のプルチャンバ7b等から構成
されている。また坩堝1は、有底円筒状をなす石英製の
内容器1a及び黒鉛製の外容器1bとを同心状に配して構成
されており、回転並びに昇降可能な支持軸2の上端部に
固設されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a schematic sectional view of a crystal growth apparatus for carrying out the single crystal growth method according to the present invention,
In the figure, reference numeral 7 indicates a hollow cylindrical chamber, and 1 indicates a crucible disposed in the chamber 7 at substantially the center thereof. The chamber 7 is composed of a main chamber 7a having a cylindrical shape, a cylindrical pull chamber 7b connected and fixed to the upper end of the main chamber 7a, and the like. Further, the crucible 1 is configured by concentrically arranging a quartz inner container 1a and a graphite outer container 1b, each of which has a bottomed cylindrical shape, and is fixed to an upper end portion of a support shaft 2 which can be rotated and moved up and down. It is set up.

【0020】坩堝1の外側には、短い発熱長の上側ヒー
タ3a及び下側ヒータ3bから構成されるヒータ3が同心状
に配設されており、ヒータ3の外側には保温筒8が配設
されている。坩堝1内には、その上側に結晶用原料の溶
融層L、その下側に結晶用原料の固体層Sが形成されて
いる。そして坩堝1とヒータ3との相対的な上下方向の
位置調節、上側ヒータ3a及び下側ヒータ3bのパワー調節
によって、坩堝1内の溶融層L,固体層Sのそれぞれの
量が調整されるようになっている。坩堝1の中心軸上に
は、支持軸2と同一軸心で回転並びに昇降可能な引上げ
軸4がプルチャンバ7aを通じて吊設されており、引上げ
軸4の下端には種結晶5が装着されている。
A heater 3 composed of an upper heater 3a and a lower heater 3b having a short heat generation length is concentrically arranged outside the crucible 1, and a heat insulating cylinder 8 is arranged outside the heater 3. Has been done. Inside the crucible 1, a molten layer L of the crystallization raw material is formed on the upper side thereof, and a solid layer S of the crystallization raw material is formed on the lower side thereof. The relative amounts of the molten layer L and the solid layer S in the crucible 1 are adjusted by adjusting the relative vertical positions of the crucible 1 and the heater 3 and adjusting the power of the upper heater 3a and the lower heater 3b. It has become. On a central axis of the crucible 1, a pulling shaft 4 capable of rotating and ascending / descending with the same axis as the support shaft 2 is suspended through a pull chamber 7a, and a seed crystal 5 is attached to a lower end of the pulling shaft 4. .

【0021】次にこのような結晶成長装置を用いて単結
晶を成長させる方法について説明する。例えば表1に示
すように、内容器の直径が400mm,高さが350m
mの坩堝1に多結晶シリコン65kgを投入し、これに
不純物としてリン−シリコン合金0.6gを添加する。
チャンバ7内を10Torrに減圧し、アルゴンガスを
40リットル/分の流量で供給する。
Next, a method for growing a single crystal by using such a crystal growth apparatus will be described. For example, as shown in Table 1, the inner container has a diameter of 400 mm and a height of 350 m.
65 kg of polycrystalline silicon is put into the crucible 1 of m, and 0.6 g of phosphorus-silicon alloy is added as an impurity.
The pressure inside the chamber 7 is reduced to 10 Torr, and argon gas is supplied at a flow rate of 40 liters / minute.

【0022】[0022]

【表1】 [Table 1]

【0023】そして、上側ヒータ3a及び下側ヒータ3bの
パワーを調整して両原料を全て溶融した後、更に上側ヒ
ータ3a及び下側ヒータ3bのパワーを調整して、坩堝1の
底から固体層Sを所定量まで徐々に成長させる。固体層
Sと溶融層Lとが定常状態に達してから、引上げ軸4の
回転速度/坩堝1の回転速度=10rpm/0rpmに
して種結晶5のディップを行った。そして、種結晶5を
所定の引き上げ速度で引上げることによって前記種結晶
5の下端に単結晶6のネック及びショルダを成長させ
る。
Then, the powers of the upper heater 3a and the lower heater 3b are adjusted to melt both raw materials, and then the powers of the upper heater 3a and the lower heater 3b are adjusted to make a solid layer from the bottom of the crucible 1. S is gradually grown to a predetermined amount. After the solid layer S and the molten layer L reached a steady state, the seed crystal 5 was dipped with the rotation speed of the pulling shaft 4 / the rotation speed of the crucible 1 = 10 rpm / 0 rpm. Then, the neck of the single crystal 6 and the shoulder are grown at the lower end of the seed crystal 5 by pulling the seed crystal 5 at a predetermined pulling rate.

【0024】単結晶6の直径が140mmになった時点
で上側ヒータ3aのパワーを10kw増加すると、略7分
後に単結晶6の直径は略154mmで止まる。そこで坩
堝1を引上げ軸4とは逆の方向へ回転開始すると共に、
その回転速度を略5分以内に0rpmから5〜20rp
m程度まで加速する。その後、上側ヒータ3aのパワーを
例えば8kw減少して単結晶6のボディを引き上げる。
これによって、上側ヒータ3aのパワー増加による溶融層
Lの温度上昇と、坩堝1の回転速度の増大による溶融層
Lの温度下降とが相殺され、溶融層Lの温度は加速後の
坩堝1の回転速度において適した温度になる。なお、上
側ヒータ3aのパワーの増減のタイミング及びその程度
は、坩堝1内の原料容量,回転速度の変化量等に応じ
て、予め実験により求めておく。
When the power of the upper heater 3a is increased by 10 kW when the diameter of the single crystal 6 becomes 140 mm, the diameter of the single crystal 6 stops at about 154 mm after about 7 minutes. Therefore, the crucible 1 starts to rotate in the direction opposite to the pulling shaft 4, and
The rotation speed is changed from 0 rpm to 5 to 20 rp within about 5 minutes.
Accelerate to about m. Then, the power of the upper heater 3a is reduced by, for example, 8 kW, and the body of the single crystal 6 is pulled up.
As a result, the temperature rise of the molten layer L due to the increase in the power of the upper heater 3a and the temperature decrease of the molten layer L due to the increase in the rotation speed of the crucible 1 are offset, and the temperature of the molten layer L is the rotation of the crucible 1 after acceleration. The temperature is suitable at the speed. The timing and the degree of increase or decrease in the power of the upper heater 3a are determined in advance by experiments according to the raw material capacity in the crucible 1, the amount of change in the rotation speed, and the like.

【0025】次に本発明方法にて単結晶を成長させた結
果について説明する。図2は本発明方法を実施した場合
の単結晶の直径の変化及び上側ヒータのパワーの変化を
示したグラフであり、横軸はボディの結晶長を、縦軸は
ボディの直径及びヒータのパワーをそれぞれ示してい
る。なお、図中、実線は単結晶の直径の変化を、破線は
上側ヒータのパワーの変化をそれぞれ表している。図2
の如く、ショルダ工程からボディ工程へ移行する間に上
側ヒータのパワーを増加し、坩堝の回転速度を0rpm
から15rpmに30秒間で加速し、その後、上側ヒー
タのパワーを減少した。
Next, the result of growing a single crystal by the method of the present invention will be described. FIG. 2 is a graph showing changes in the diameter of a single crystal and changes in the power of the upper heater when the method of the present invention is carried out, where the horizontal axis represents the crystal length of the body and the vertical axis represents the diameter of the body and the power of the heater. Are shown respectively. In the figure, the solid line represents the change in the diameter of the single crystal, and the broken line represents the change in the power of the upper heater. Figure 2
As shown in the figure, the power of the upper heater is increased during the transition from the shoulder process to the body process, and the rotation speed of the crucible is set to 0 rpm.
To 15 rpm for 30 seconds and then the power of the upper heater was reduced.

【0026】その結果、図2から明らかな如く、ショル
ダ工程からボディ工程へは問題なく移行した。そして、
移行後のボディは全て無転位であり、その直径は全長で
略一定で安定しており、前述した加速及びヒータパワー
の変更がボディの引き上げに殆ど影響を及ぼしていない
ことが分かる。また、単結晶中の酸素濃度はボディの先
頭から所要の値であった。
As a result, as is apparent from FIG. 2, there was no problem in shifting from the shoulder process to the body process. And
After the transition, all the bodies were dislocation-free, their diameters were almost constant over the entire length and were stable, and it can be seen that the aforementioned changes in acceleration and heater power have little effect on the pulling up of the body. The oxygen concentration in the single crystal was the required value from the beginning of the body.

【0027】なお、本実施例では溶融層法について説明
したが、本発明はこれに限らず、CZ法等,他の回転引
き上げ法に適用し得ることはいうまでもない。
Although the molten layer method has been described in the present embodiment, it is needless to say that the present invention is not limited to this and can be applied to other rotary pulling methods such as the CZ method.

【0028】[0028]

【発明の効果】以上詳述した如く第1発明に係る単結晶
成長方法にあっては、その全長で転位が生じることな
く、所要の酸素濃度の単結晶を得ることができる。
As described in detail above, in the single crystal growth method according to the first aspect of the present invention, a single crystal having a required oxygen concentration can be obtained without causing dislocations along the entire length thereof.

【0029】第2発明に係る単結晶成長方法にあって
は、ボディの先頭から所要の酸素濃度の単結晶を得るこ
とができ、製品の歩留まりが高い。
In the single crystal growth method according to the second aspect of the invention, a single crystal having a required oxygen concentration can be obtained from the top of the body, and the product yield is high.

【0030】第3発明に係る単結晶成長方法にあって
は、溶融層が短時間で安定化され、安定した直径の単結
晶が得られる。
In the single crystal growth method according to the third aspect of the invention, the molten layer is stabilized in a short time, and a single crystal having a stable diameter can be obtained.

【0031】第4発明に係る単結晶成長方法にあって
は、回転の加速の前後で溶融層の温度を安定化でき、高
品質の製品が得られる等、本発明は優れた効果を奏す
る。
In the single crystal growth method according to the fourth aspect of the present invention, the temperature of the molten layer can be stabilized before and after the acceleration of rotation, and a high quality product can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る単結晶成長方法を実施するための
結晶成長装置の模式的断面図である。
FIG. 1 is a schematic sectional view of a crystal growth apparatus for carrying out a single crystal growth method according to the present invention.

【図2】本発明方法を実施した場合のボディ直径の変化
及び上側ヒータのパワーの変化を示したグラフである。
FIG. 2 is a graph showing changes in the body diameter and changes in the power of the upper heater when the method of the present invention is performed.

【図3】CZ法の実施態様を示す模式図である。FIG. 3 is a schematic view showing an embodiment of the CZ method.

【図4】溶融層法の実施態様を示す模式図である。FIG. 4 is a schematic view showing an embodiment of a melt layer method.

【符号の説明】[Explanation of symbols]

1 坩堝 2 支持軸 3 ヒータ 4 引上げ軸 5 種結晶 6 単結晶 6a ネック 6b ショルダ 6c ボディ 7 チャンバ L 溶融層 S 固体層 1 Crucible 2 Support Shaft 3 Heater 4 Pulling Shaft 5 Seed Crystal 6 Single Crystal 6a Neck 6b Shoulder 6c Body 7 Chamber L Molten Layer S Solid Layer

フロントページの続き (72)発明者 稲見 修一 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 奥井 正彦 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内Front Page Continuation (72) Inventor Shuichi Inami 4-5-3 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. (72) Masahiko Okui 4-53-3 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 坩堝内の結晶用原料を溶融して溶融層を
形成し、該溶融層に種結晶を浸漬し、前記種結晶を回転
させながら引き上げ、その下側に単結晶を成長させる方
法において、 前記単結晶を引き上げている間に、前記坩堝の回転を所
要の速度まで加速することを特徴とする単結晶成長方
法。
1. A method of melting a raw material for a crystal in a crucible to form a molten layer, immersing the seed crystal in the molten layer, pulling the seed crystal while rotating, and growing a single crystal on the lower side thereof. 2. The method for growing a single crystal, wherein the rotation of the crucible is accelerated to a required speed while pulling the single crystal.
【請求項2】 坩堝内の結晶用原料を溶融して溶融層を
形成し、該溶融層に種結晶を浸漬し、前記種結晶を回転
させながら引き上げ、その下側に単結晶のネック,ショ
ルダ及びボディを成長させる方法において、 単結晶のショルダの成長からボディの成長へ移行する間
に、前記坩堝の回転を所要の速度まで加速することを特
徴とする単結晶成長方法。
2. A raw material for crystallization in a crucible is melted to form a molten layer, a seed crystal is immersed in the molten layer, the seed crystal is pulled up while being rotated, and a neck of a single crystal and a shoulder are provided below the seed crystal. And a method of growing a body, wherein the rotation of the crucible is accelerated to a required speed during the transition from the growth of the shoulder of the single crystal to the growth of the body.
【請求項3】 前記坩堝の回転の加速は略5分間以内で
行う請求項1又は2記載の単結晶成長方法。
3. The method for growing a single crystal according to claim 1, wherein the rotation of the crucible is accelerated within about 5 minutes.
【請求項4】 前記坩堝の回転を加速する前に、該坩堝
の加熱量を増大し、坩堝の回転を所要の速度まで加速し
た後に、前記坩堝の加熱量を減少する請求項1又は2記
載の単結晶成長方法。
4. The heating amount of the crucible is increased before the rotation of the crucible is accelerated, and the heating amount of the crucible is decreased after the rotation of the crucible is accelerated to a required speed. Single crystal growth method.
JP1618895A 1995-02-02 1995-02-02 Method for growing single crystal Pending JPH08208369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1618895A JPH08208369A (en) 1995-02-02 1995-02-02 Method for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1618895A JPH08208369A (en) 1995-02-02 1995-02-02 Method for growing single crystal

Publications (1)

Publication Number Publication Date
JPH08208369A true JPH08208369A (en) 1996-08-13

Family

ID=11909550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1618895A Pending JPH08208369A (en) 1995-02-02 1995-02-02 Method for growing single crystal

Country Status (1)

Country Link
JP (1) JPH08208369A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835293B1 (en) * 2006-12-29 2008-06-09 주식회사 실트론 Manufacturing method of silicon single crystal ingot
US20120304916A1 (en) * 2010-02-18 2012-12-06 Toyota Jidosha Kabushiki Kaisha Method of producing silicon carbide single crystal
CN115354387A (en) * 2022-08-10 2022-11-18 包头美科硅能源有限公司 Method for improving crystallization rate in ingot purification of monocrystalline crucible bottom waste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835293B1 (en) * 2006-12-29 2008-06-09 주식회사 실트론 Manufacturing method of silicon single crystal ingot
US20120304916A1 (en) * 2010-02-18 2012-12-06 Toyota Jidosha Kabushiki Kaisha Method of producing silicon carbide single crystal
CN115354387A (en) * 2022-08-10 2022-11-18 包头美科硅能源有限公司 Method for improving crystallization rate in ingot purification of monocrystalline crucible bottom waste

Similar Documents

Publication Publication Date Title
JP2937115B2 (en) Single crystal pulling method
US5392729A (en) Method of producing silicon single crystal
US5876495A (en) Method of pulling semiconductor single crystals
US5840116A (en) Method of growing crystals
JPH09249482A (en) Method for pulling up single crystal
JP4013324B2 (en) Single crystal growth method
JPH08208369A (en) Method for growing single crystal
JP4063904B2 (en) Semiconductor single crystal pulling method
JP3750440B2 (en) Single crystal pulling method
JPH07277875A (en) Method for growing crystal
JP2606046B2 (en) Control method of single crystal oxygen concentration during single crystal pulling
JPH09278581A (en) Apparatus for producing single crystal and production of single crystal
JP3885245B2 (en) Single crystal pulling method
JP2990661B2 (en) Single crystal growth method
JP2600944B2 (en) Crystal growth method
JPH06271383A (en) Production of silicon single crystal
JPH06239693A (en) Method for growing single crystal
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP7424282B2 (en) Method for manufacturing single crystal silicon ingot
JP3584497B2 (en) Crystal growth method
JP2760948B2 (en) Single crystal growing method using crucible with convection control function
JPH05221777A (en) Single crystal growth method
JP3552455B2 (en) Single crystal manufacturing method and single crystal pulling apparatus
JP2000016898A (en) Method and apparatus for pulling single crystal