JPH0822797B2 - Crystal growth method - Google Patents

Crystal growth method

Info

Publication number
JPH0822797B2
JPH0822797B2 JP61204681A JP20468186A JPH0822797B2 JP H0822797 B2 JPH0822797 B2 JP H0822797B2 JP 61204681 A JP61204681 A JP 61204681A JP 20468186 A JP20468186 A JP 20468186A JP H0822797 B2 JPH0822797 B2 JP H0822797B2
Authority
JP
Japan
Prior art keywords
crystal
magnetic field
melt
crucible
convection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61204681A
Other languages
Japanese (ja)
Other versions
JPS6360191A (en
Inventor
純夫 小林
喜一郎 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMITOMO SHICHITSUKUSU KK
Nippon Steel Corp
Original Assignee
SUMITOMO SHICHITSUKUSU KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMITOMO SHICHITSUKUSU KK, Sumitomo Metal Industries Ltd filed Critical SUMITOMO SHICHITSUKUSU KK
Priority to JP61204681A priority Critical patent/JPH0822797B2/en
Publication of JPS6360191A publication Critical patent/JPS6360191A/en
Publication of JPH0822797B2 publication Critical patent/JPH0822797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン単結晶等の結晶の成長方法に関し、
更に詳述するとチョクラルスキー法による結晶の成長中
に縦磁場を融液に印加することにより実効偏析係数を向
上せしめ、また低酸素の結晶を成長させ得る方法を提供
するものである。
The present invention relates to a method for growing a crystal such as a silicon single crystal,
More specifically, the present invention provides a method in which a longitudinal magnetic field is applied to the melt during crystal growth by the Czochralski method to improve the effective segregation coefficient and to grow low oxygen crystals.

〔従来技術〕[Prior art]

シリコン単結晶等の結晶を成長させる方法として、チ
ョクラルスキー法による結晶の成長中に、融液に静磁場
を印加する方法がある(日経エレクトロニクス1980.9.1
5、ULSI1985.8)。この方法は真空雰囲気下のるつぼ内
の融液に、主方向が水平方向である磁場を印加する横磁
場法と、主方向が鉛直方向、つまり結晶引上げ方向であ
る磁場を印加する縦磁場法とに大別される。
As a method of growing a crystal such as a silicon single crystal, there is a method of applying a static magnetic field to the melt during the crystal growth by the Czochralski method (Nikkei Electronics 1980.9.1.
5, ULSI1985.8). This method uses a transverse magnetic field method for applying a magnetic field whose main direction is a horizontal direction to a melt in a crucible under a vacuum atmosphere, and a vertical magnetic field method for applying a magnetic field whose main direction is a vertical direction, that is, a crystal pulling direction. It is roughly divided into.

第10図は後者の方法に使用する結晶成長装置の縦断面
図であり、縦磁場法は真空容器101内においてヒータ102
により加熱される石英製のるつぼ103内の融液104に、真
空容器101の外側に軸心を鉛直方向として設けられたコ
イル106により鉛直方向の磁場163を印加した状態で、そ
の融液104を上方に引上げて凝固させて結晶105を成長さ
せる方法である。
FIG. 10 is a vertical cross-sectional view of the crystal growth apparatus used in the latter method.
The melt 104 in the quartz crucible 103 heated by the, while the vertical magnetic field 163 is applied by the coil 106 provided with the axial center as the vertical direction outside the vacuum vessel 101, the melt 104 In this method, the crystal 105 is grown by pulling it up and solidifying it.

そして、縦磁場法による場合には鉛直方向の磁場によ
りそれがない場合と比べて実効偏析係数が高くなるとい
う効果がある。
The longitudinal magnetic field method has the effect of increasing the effective segregation coefficient due to the vertical magnetic field as compared with the case without it.

第11図は、縦磁場の強さを変えて製造した単結晶につ
いてその単結晶の成長方向(Z方向)の磁場強度Bz/T
(横軸)と、単結晶へ添加したドーパント(リン)の実
効偏析係数Ke〔P〕(縦軸)との関係を示したグラフで
あり、図中の●印,▲印は夫々結晶方位が〔100〕であ
る単結晶を結晶回転数10rpm,15rpmで成長させた場合、
△印は結晶方位が〔111〕である単結晶を結晶回転数15r
pmで成長させた場合を示す。
FIG. 11 shows the magnetic field strength Bz / T in the growth direction (Z direction) of a single crystal produced by changing the strength of the longitudinal magnetic field.
It is a graph showing the relationship between the (horizontal axis) and the effective segregation coefficient Ke [P] of the dopant (phosphorus) added to the single crystal (vertical axis). When a single crystal that is [100] is grown at a crystal rotation speed of 10 rpm and 15 rpm,
△ indicates a single crystal with a crystal orientation of [111] at a crystal rotation speed of 15 r
Shown when grown in pm.

この図より理解される如く、Bz/T=0、つまり縦磁場
を印加しない場合にはKe〔P〕が0.35と小さいがBz/Tを
増大させていくとKe〔P〕が増大していき、Bz/T=0.1
のときにはそれが0.6となる。
As can be seen from this figure, Ke [P] is as small as 0.35 when Bz / T = 0, that is, when no longitudinal magnetic field is applied, but Ke [P] increases as Bz / T increases. , Bz / T = 0.1
Then it becomes 0.6.

これは、結晶の回転によって生じる結晶直下の融液の
強制対流が縦磁場により抑制され、このため結晶の成長
に伴って融液中に放出される溶質原子の移動に寄与する
主な駆動力が拡散だけとなるからであると考えられる。
This is because the forced convection of the melt just below the crystal caused by the rotation of the crystal is suppressed by the longitudinal magnetic field, so that the main driving force that contributes to the movement of solute atoms released into the melt as the crystal grows. It is thought that this is because it is only diffusion.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

第12図は、縦磁場法によりシリコン単結晶を製造する
場合のBz/T(横軸)と、シリコン単結晶中の酸素量〔O
i〕/1018cm-3(縦軸)との関係を示したグラフであり、
図中の破線と一点鎖線は夫々磁場を印加しない場合及び
横磁場法により製造する場合夫々の酸素量の上限値を示
している。なお、図中の●,▲,△印は第11図と同様で
あり、■印は結晶方位が〔100〕である単結晶を結晶回
転数25rpmで成長させた場合、○印,□印は夫々結晶方
位が〔111〕である単結晶を結晶回転数10rpm,25rpmで成
長させた場合を示す。なお、るつぼ回転数ncは0.5rpmと
2rpmと2通りで行った。
Fig. 12 shows Bz / T (horizontal axis) when producing a silicon single crystal by the longitudinal magnetic field method, and the oxygen content [O] in the silicon single crystal.
i] / 10 18 cm -3 (vertical axis) is a graph showing the relationship,
The broken line and the alternate long and short dash line in the figure show the upper limit values of the oxygen amount in the case of not applying a magnetic field and in the case of manufacturing by the transverse magnetic field method, respectively. The symbols ●, ▲, and △ in the figure are the same as those in Fig. 11, and the symbols ■ indicate the symbols ○ and □ when a single crystal with a crystal orientation of [100] was grown at a crystal rotation speed of 25 rpm. The case where single crystals each having a crystal orientation of [111] are grown at crystal rotation speeds of 10 rpm and 25 rpm is shown. The crucible rotation speed nc is 0.5 rpm.
It was performed at 2 rpm and 2 ways.

この図により縦磁場法による場合は結晶中の酸素量が
他の方法に比して高くなる現象があると言える。
From this figure, it can be said that there is a phenomenon that the amount of oxygen in the crystal is higher in the case of the longitudinal magnetic field method than in the other methods.

本発明はこの現象が生ずる理由を解明することによっ
て結晶中の酸素濃度の低減化を計ることが可能である縦
磁場法による結晶成長方法を提供することを目的とす
る。
An object of the present invention is to provide a crystal growth method by a longitudinal magnetic field method, which can reduce the oxygen concentration in the crystal by elucidating the reason why this phenomenon occurs.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は結晶直下でのみ対流を抑制する。即ち、本発
明に係る結晶成長方法は、結晶の引上方向に沿う直流磁
場を融液に印加しつつ結晶を引上げるチョクラルスキー
法による結晶成長方法において、 結晶直下の融液部分での対流のみを抑制すべく、複数
の磁石を結晶の引上方向に沿う方向を主たる磁場の方向
とし、またそのうちの少なくとも1磁石を他と逆極性と
して配し、融液表面における引上方向磁場の強度が結晶
直下から融液容器の側壁に向けて低下し、側壁近傍又は
その少し内側で0となしてあることを特徴とする。
The present invention suppresses convection just below the crystal. That is, the crystal growth method according to the present invention, in the crystal growth method by the Czochralski method of pulling up the crystal while applying a DC magnetic field along the crystal pulling direction, convection in the melt portion immediately below the crystal In order to suppress only the above, a plurality of magnets are arranged in the direction of the main magnetic field in the direction of the crystal pulling direction, and at least one of the magnets is arranged in the opposite polarity to the other, and the strength of the pulling direction magnetic field at the melt surface is set. Is decreased from immediately below the crystal toward the side wall of the melt container, and is 0 near the side wall or slightly inside thereof.

〔発明の原理〕[Principle of Invention]

まず、本発明の原理について説明する。第12図に明ら
かな如く磁場を印加しない方法による場合に比して横磁
場法による場合の方が結晶中の酸素濃度が低い。横磁場
を印加した場合に酸素濃度が低い理由は、従来以下のよ
うに説明されてきた。即ち、結晶中の酸素の供給源はる
つぼであり、これから溶出した酸素もしくはSiOが対流
によって融液表面を経て結晶直下へ入り込み、結晶へ取
り込まれる。横磁場を印加した場合には融液表面での対
流が抑制され、融液表面にある時間が長くなり、この間
に酸素もしくはSiOが蒸発し、その結果、結晶直下へ流
れ込む酸素量が少なくなるというのである。
First, the principle of the present invention will be described. As is clear from FIG. 12, the oxygen concentration in the crystal is lower in the case of the transverse magnetic field method than in the case of not applying a magnetic field. The reason why the oxygen concentration is low when a transverse magnetic field is applied has been conventionally explained as follows. That is, the source of oxygen in the crystal is the crucible, and oxygen or SiO eluted from the crucible enters into the crystal directly below the crystal through the surface of the melt by convection and is taken into the crystal. When a transverse magnetic field is applied, convection on the surface of the melt is suppressed, the time on the surface of the melt becomes longer, and during this time oxygen or SiO evaporates, and as a result, the amount of oxygen flowing directly under the crystal decreases. Of.

ところが、縦磁場を印加する場合にも融液表面の対流
が抑制されるから縦磁場法による場合にも酸素濃度が低
くなる筈であるが、実際には第12図に明らかな如くその
酸素濃度が高い。つまり、上記理由では縦磁場法の場合
の現象は不可能である。そこで数値解析手法を用いて縦
磁場法による場合の高酸素濃度化の原因を解明すること
を試みた。第1図は融液静止を初期条件とし、マランゴ
ニ流の発生原因である表面張力の温度係数KをK=0.1m
J/m-2K-1として計算により求めた融液の流速(破線)と
結晶中の酸素濃度(実線)とを示すグラフであり、横軸
に時間(t/秒)をとり、縦軸に酸素濃度と流速(ms-1
とをとって示している。なお、融液の流速は第2図
(イ)を付して示す如く結晶軸から100mm,融液表面下0.
05mmの位置の半径方向(軸心向)の流速(Vr)であり、
また酸素濃度は結晶軸上の値であって飽和濃度を1.0と
して正規化して示している。
However, even if a longitudinal magnetic field is applied, the convection on the melt surface is suppressed, so the oxygen concentration should be low even when the longitudinal magnetic field method is used. Is high. That is, for the above reason, the phenomenon in the case of the longitudinal magnetic field method is impossible. Therefore, we tried to elucidate the cause of the high oxygen concentration by the longitudinal magnetic field method by using the numerical analysis method. Fig. 1 shows the temperature coefficient K of the surface tension, which is the cause of the Marangoni flow, as K = 0.1 m, with the melt stationary as the initial condition.
It is a graph showing the flow velocity of the melt (broken line) and the oxygen concentration in the crystal (solid line) calculated as J / m -2 K -1 , with the horizontal axis representing time (t / sec) and the vertical axis. Oxygen concentration and flow rate (ms -1 )
And is shown. The flow velocity of the melt is 100 mm from the crystal axis as shown in Fig. 2 (a), below the melt surface.
The flow velocity (Vr) in the radial direction (axial direction) at the position of 05 mm,
The oxygen concentration is a value on the crystal axis and is normalized by setting the saturation concentration to 1.0.

この図より理解される如く、時刻t=0、つまり融液
静止時(a点)には融液中の酸素濃度は飽和レベルに達
しており、流速が増加するにつれて酸素濃度は低下して
いき、最小の値0.001程度(b点)となった後、増加し
ていき、例えば0.95のとき(c点)に0.02程度となる。
As understood from this figure, at time t = 0, that is, when the melt is at rest (point a), the oxygen concentration in the melt reaches the saturation level, and the oxygen concentration decreases as the flow velocity increases. After reaching the minimum value of about 0.001 (point b), it increases, and becomes about 0.02 at 0.95 (point c), for example.

このような特性を示す理由は以下のように推定され
る。
The reason for exhibiting such characteristics is estimated as follows.

第3図の(イ),(ロ),(ハ)は、第1図のa,b,c
のときの融液対流の状態を示す模式図である。融液対流
の速さが遅いaの場合には、第3図(イ)に示す如く融
液4中の酸素が結晶5の直下を除く融液表層部から蒸発
し、その融液表層部に低酸素域h(ハッチング部)が形
成されるが、マランゴニ流の速度が遅いので低酸素域h
の融液が結晶直下部分へ流入しにくく、結晶直下部分で
は低酸素域h以外の部分での対流にて高酸素域となり、
その結果、製造された単結晶は高酸素濃度となる。
(A), (b), and (c) of FIG. 3 are a, b, and c of FIG.
It is a schematic diagram which shows the state of melt convection at this time. When the melt convection speed is slow a, as shown in FIG. 3 (a), oxygen in the melt 4 evaporates from the melt surface layer except immediately below the crystal 5, and the melt surface layer is formed. A low oxygen region h (hatched portion) is formed, but the low oxygen region h is due to the slow Marangoni flow velocity.
It is difficult for the melt to flow into the portion just below the crystal, and in the portion directly below the crystal, a high oxygen region is formed due to convection in a portion other than the low oxygen region h,
As a result, the produced single crystal has a high oxygen concentration.

また、融液の対流が速いcの場合には、第3図(ロ)
に示す如くるつぼ壁近傍の高酸素域の融液が酸素の蒸発
が十分に行われないままに結晶直下部分へ流入するの
で、結晶中の酸素濃度は低レベルとならない。
Further, when the convection of the melt is fast c, FIG.
As shown in (4), since the melt in the high oxygen region near the crucible wall flows into the portion directly below the crystal without sufficient evaporation of oxygen, the oxygen concentration in the crystal does not reach a low level.

そして、融液の対流速度が適当なbの場合には第3図
(ハ)に示す如く酸素蒸発による低酸素域の形成とその
領域の融液の結晶直下への流入がバランスよく同時に進
行するため、結晶直下部分に低酸素域hが形成され、製
造する結晶の低酸素濃度化が可能となる。つまり、融液
表面の水平方向の対流速度を適当な値にすることにより
結晶中の酸素濃度を低減できるのである。横磁場法の場
合は磁力線の方向と平行方向の融液表層における水平方
向流動を抑制できないため、ある程度の流動が残存して
b点の如く酸素濃度が極小値を示す速度値付近の対流が
生じていたものと推定される。
When the convection velocity of the melt is appropriate b, the formation of the low oxygen region due to oxygen evaporation and the inflow of the melt into the region just below the crystal in a well-balanced manner simultaneously proceed as shown in FIG. Therefore, the low oxygen region h is formed immediately below the crystal, and the oxygen concentration of the manufactured crystal can be reduced. That is, the oxygen concentration in the crystal can be reduced by setting the horizontal convection velocity on the surface of the melt to an appropriate value. In the case of the transverse magnetic field method, horizontal flow in the melt surface layer parallel to the direction of the magnetic field lines cannot be suppressed, so some flow remains and convection occurs near the velocity value at which the oxygen concentration has a minimum value as at point b. It is presumed that

これに対して縦磁場法の場合には磁力線の方向とマラン
ゴニ流の駆動方向が直交し、水平方向流動に抑制が働く
ため、磁場増加とともに対流は非常に抑制されると考え
られる。即ち、a点の如き遅い対流を生じていたと考え
られる。
On the other hand, in the case of the longitudinal magnetic field method, the direction of the magnetic field lines and the driving direction of the Marangoni flow are orthogonal to each other, and the horizontal flow is suppressed. Therefore, it is considered that the convection is significantly suppressed as the magnetic field increases. That is, it is considered that a slow convection such as the point a was generated.

第13図は磁場を印加しないチョクラルスキー法による
場合(破線)と縦磁場法による場合(実線)との融液表
面温度の測定結果を示し、後者の方がるつぼ軸心とるつ
ぼ側壁との温度差が大であって縦磁場法の方が表面対流
が遅いことが裏付けられる。
Figure 13 shows the measurement results of the melt surface temperature in the case of the Czochralski method without applying a magnetic field (broken line) and in the case of the longitudinal magnetic field method (solid line). The latter is the one with the crucible axis and the crucible side wall. This proves that the temperature difference is large and the surface convection is slower in the longitudinal magnetic field method.

従って、縦磁場法により単結晶の低酸素化を図るには
結晶直下の融液部分での対流を抑制して縦磁場法の本来
の目的である実効偏析係数の向上を図る一方でまた、そ
れ以外の融液表層部でこれより速い適当な流速の水平方
向の対流を融液に生ぜしめる必要がある。
Therefore, in order to lower the oxygen content of a single crystal by the longitudinal magnetic field method, convection in the melt portion immediately below the crystal is suppressed to improve the effective segregation coefficient, which is the original purpose of the longitudinal magnetic field method. It is necessary to generate horizontal convection at an appropriate flow velocity higher than this in the surface layer of the melt other than the above in the melt.

次に、このような対流を実現する方法について説明す
る。
Next, a method for realizing such convection will be described.

第4図はコイル内の径方向位置(r)の磁場の強さ
を、軸長方向の異なるるつぼの位置について図示したも
のであり、パラメータとして第5図に示す如くコイルと
同高の位置dと、それよりも高い位置eと、更に高い位
置fとをとり、各位置における磁場の強さBをコイル軸
心上の磁場の強さがB0で除して正規化して示している。
FIG. 4 illustrates the strength of the magnetic field at the radial position (r) in the coil at different crucible positions in the axial direction. As a parameter, the position d at the same height as the coil is used as shown in FIG. And a position e higher than that and a position f higher than that, and the magnetic field strength B at each position is shown normalized by dividing the magnetic field strength on the coil axis by B 0 .

この図より理解されるように位置dではコイルの軸心
から離れるほど磁場の強さが強くなり、また位置eでは
コイルの軸心上の磁場の強さよりもそれから少し離れた
位置での方が少し高くなり、それよりも更に離れるとよ
り磁場が弱くなる。
As can be seen from this figure, the magnetic field strength becomes stronger as it moves away from the coil axis at position d, and at a position a little away from the magnetic field strength on the coil axis at position e. It becomes a little higher, and the magnetic field becomes weaker further away.

更に、位置fではコイルの軸心上の磁場が最も強い傾
向を示す。
Further, at the position f, the magnetic field on the axial center of the coil tends to be the strongest.

従って、例えば第6図に示す如く負の磁場を生ずる
コイルをdの特性を示すように、また正の磁場を生ず
るコイルをe又はfの特性を示すように配し、夫々に適
宜の起磁力を設定すると、その複合磁場が融液面にお
いてるつぼ軸心部で強く、磁場がゼロとなる位置r0がる
つぼ側壁近傍又はそれよりも少し軸心側である磁場を
得ることができる。この磁場はるつぼ軸心部、つまり
結晶直下で縦磁場となって対流を抑制し、実効偏析係数
の向上に寄与すると共に、融液表面の他の部分ではゼロ
又は小さな値となって対流を抑制しない。
Therefore, for example, as shown in FIG. 6, a coil that produces a negative magnetic field is arranged so as to show the characteristic of d, and a coil that produces a positive magnetic field is arranged so as to show the characteristic of e or f, and an appropriate magnetomotive force is provided for each. By setting, it is possible to obtain a magnetic field in which the composite magnetic field is strong at the center of the crucible on the melt surface, and the position r 0 at which the magnetic field is zero is near the crucible side wall or slightly closer to the center. This magnetic field serves as a longitudinal magnetic field just under the crucible axis, that is, immediately below the crystal to suppress convection and contributes to the improvement of the effective segregation coefficient, while at other parts of the melt surface it becomes zero or a small value to suppress convection. do not do.

〔実施例〕〔Example〕

以下に本発明を図面に基づき具体的に説明する。第7
図は本発明の実施状態を示す模式的側断面図であり、図
中1はチャンバーを示す。チャンバー1は軸長方向を垂
直とした略円筒状の真空容器であり、上面中央部には矢
符方向に所定速度で回転する引上げチャック10の回転軸
10′がエアシールドされて貫通されている。
The present invention will be specifically described below with reference to the drawings. Seventh
FIG. 1 is a schematic side sectional view showing an embodiment of the present invention, in which 1 indicates a chamber. The chamber 1 is a substantially cylindrical vacuum container whose axial direction is vertical, and the rotation axis of the pulling chuck 10 that rotates at a predetermined speed in the arrow direction at the center of the upper surface.
10 'is air shielded and penetrated.

チャンバー1の底面中央部には、前記引上げチャック
10とは同一軸心で同また逆方向に所定速度で回転するる
つぼ3の支持軸9がエアシールドされて貫通している。
支持軸9の先端には黒鉛製るつぼ3′がその内側に石英
(SiO2)製るつぼ3を嵌合する状態で取り付けられてい
る。るつぼ3の上方のチャンバー1内には不純物を貯留
する図示しない貯留箱が設けられており、その底蓋を図
示しない開閉手段にて開けるとるつぼ3内に不純物を数
回にわたって所要量添加できるようになっている。
At the center of the bottom of the chamber 1, the pulling chuck
A supporting shaft 9 of the crucible 3 which has the same axis center as that of 10 and rotates at a predetermined speed in the same direction or in the opposite direction is penetrated by being air-shielded.
A graphite crucible 3 ′ is attached to the tip of the support shaft 9 with the quartz (SiO 2 ) crucible 3 fitted therein. A storage box (not shown) for storing impurities is provided in the chamber 1 above the crucible 3, and when the bottom lid is opened by an opening / closing means (not shown), the required amount of impurities can be added into the crucible 3 several times. It has become.

るつぼ3の回転域のやや外側位置には抵抗加熱式のヒ
ータ2が、その更に外側のチャンバー1との間の位置に
は熱遮蔽体21が夫々同心円筒状に配設されている。
A resistance heating type heater 2 is arranged at a position slightly outside the rotational range of the crucible 3, and a heat shield 21 is concentrically arranged at a position between the crucible 3 and the chamber 1 further outside thereof.

るつぼ3内には単結晶用原料が装入されるようになっ
ており、原料はヒータ2の加熱により溶融されて融液4
となる。
A raw material for a single crystal is charged into the crucible 3, and the raw material is melted by heating the heater 2 to form a melt 4
Becomes

上記引上げチャック10にはシード(結晶成長の核とな
る単結晶)が取付けられ、このシードをチャック10によ
り降下させて融液4に接触させたのち引上げることによ
り結晶5を成長させるようになっている。
A seed (a single crystal that serves as a nucleus for crystal growth) is attached to the pulling chuck 10, and the seed is lowered by the chuck 10 to come into contact with the melt 4 and then pulled to grow the crystal 5. ing.

チャンバー1の外周には3つのコイル71,6,72がチャ
ンバー1と同心状にこの順に上側から適当に高さを変え
て設けられており、各コイル71,6,72には図示しない電
源から直流電流が供給されるようになっている。
On the outer circumference of the chamber 1, three coils 71, 6, 72 are provided concentrically with the chamber 1 in this order with the height appropriately changed from the upper side. Each coil 71, 6, 72 is provided with a power source (not shown). DC current is supplied.

この電源より上,下のコイル71,72と中間のコイル6
との磁極が逆方向となるように各コイル71,6,72へ通電
する。また、その電流値は前記磁場を発生するレベル
としてあり、発生した磁場63はるつぼ側壁周辺の融液部
分で磁場が弱く、るつぼ軸心部で磁場が強い分布とな
る。
Upper and lower coils 71, 72 and intermediate coil 6
The coils 71, 6, 72 are energized so that the magnetic poles of and are in opposite directions. The current value is set to a level for generating the magnetic field, and the generated magnetic field 63 has a weak magnetic field in the melt portion around the crucible side wall and a strong magnetic field distribution in the crucible axial center portion.

このような磁場雰囲気下で結晶を成長させることによ
り、第6図のに示すように結晶直下の融液部分では第
2図に(ロ)を付して示す対流が縦磁場により抑制さ
れ、またそれ以外の融液部分では磁場によって過剰に妨
げられることなく表層部でるつぼ軸心に向かう水平方向
の対流が生じる。
By growing the crystal in such a magnetic field atmosphere, the convection indicated by (B) in FIG. 2 is suppressed by the longitudinal magnetic field in the melt portion directly below the crystal as shown in FIG. 6, and In the other melt portion, horizontal convection toward the crucible axis is generated in the surface layer portion without being excessively disturbed by the magnetic field.

このため、融液は第3図(ハ)に示すように低酸素域
が形成されると共に、その領域の融液が結晶直下へ流入
するため、結晶直下部分に低酸素域が形成され、製造さ
れた結晶は低酸素濃度となる。また、結晶直下部分では
対流が抑制されているので実効偏析係数が向上する。
As a result, a low oxygen region is formed in the melt as shown in FIG. 3 (C), and the melt in that region flows into the region immediately below the crystal, so that a low oxygen region is formed in the region directly below the crystal. The formed crystals have a low oxygen concentration. Further, since the convection is suppressed in the portion directly below the crystal, the effective segregation coefficient is improved.

なお、上記実施例では3個のコイル71,6,72を用いて
いるが、本発明はこれに限らずコイル71,72のうちの一
方を省略した2個のコイルによる場合であってもよく、
またコイルを4個以上用いる場合であってもよく、少な
くとも1個のコイルが他と逆極性とする。また使用コイ
ルの径は同一であっても異なってよい。第8図は径は異
なった2個のコイル6と7とを用いた装置であるが、こ
の装置によっても結晶直下の融液の対流を抑制し、また
それ以外の融液表層部で対流を生ぜしめ得る。
Although the three coils 71, 6, 72 are used in the above embodiment, the present invention is not limited to this, and may be a case of two coils in which one of the coils 71, 72 is omitted. ,
Further, four or more coils may be used, and at least one coil has the opposite polarity to the others. The diameters of the coils used may be the same or different. FIG. 8 shows an apparatus using two coils 6 and 7 having different diameters. This apparatus also suppresses the convection of the melt just below the crystal, and the other convections at the surface layer of the melt. It can be born.

更に、本発明は電磁石に限らず永久磁石を用いても実
施できることは勿論である。
Further, it goes without saying that the present invention can be implemented not only by using electromagnets but also by using permanent magnets.

〔効果〕〔effect〕

次に本発明の効果を説明する。結晶方向が〔100〕で
あり、また抵抗率が10Ω・cm前後である5″φ径のPド
ープのシリコン単結晶を、第7図に示す装置を用いて本
発明により製造した。なお、製造条件としては、るつぼ
の内径:16″φ,るつぼ内への原料装入重量:30kg,引上
速度:1mm・min-1程度,結晶回転数:25rpm,るつぼ回転数
(結晶回転方向と逆方向):0.5rpmであった。
Next, the effect of the present invention will be described. A 5 ″ φ diameter P-doped silicon single crystal having a crystal orientation of [100] and a resistivity of around 10 Ω · cm was produced by the present invention using the apparatus shown in FIG. The conditions are as follows: inner diameter of crucible: 16 ″ φ, weight of raw material charged in crucible: 30 kg, pulling speed: 1 mm ・ min −1 , crystal rotation speed: 25 rpm, crucible rotation speed (direction opposite to crystal rotation direction) ): 0.5 rpm.

第9図は本発明により製造したシリコン単結晶を結晶
の長さ方向に100mmピッチでサンプルを採取し、各サン
プルの電気抵抗率より計算で求めた実効偏析係数と赤外
線吸収法による酸素量測定結果とを示しており、実施例
1は結晶直下が200mT,るつぼ壁近傍が50mTの場合、実施
例2は結晶直下が200mT,るつぼ壁近傍がゼロの場合であ
る。なお、比較のために結晶直下が200mT,るつぼ壁近傍
が220mTの従来の縦磁場法による場合(従来例1)の結
果と、融液に磁場を印加しないチョクラルスキー法によ
る場合(従来例2)の3チャージ分の結果とを併せて示
しており、4つの結果とも3チャージ分の平均値とバラ
ツキ範囲を示している。
FIG. 9 shows a sample of the silicon single crystal manufactured according to the present invention in the length direction of the crystal at a pitch of 100 mm, and the effective segregation coefficient calculated from the electrical resistivity of each sample and the oxygen content measurement result by the infrared absorption method. Example 1 shows the case where 200 mT immediately below the crystal and 50 mT near the crucible wall, and Example 2 the case where 200 mT immediately below the crystal and zero near the crucible wall. For comparison, the results obtained by the conventional longitudinal magnetic field method with 200 mT just below the crystal and 220 mT near the crucible wall (conventional example 1) and the Czochralski method without applying a magnetic field to the melt (conventional example 2) ) Is also shown together with the results for three charges, and the four results also show the average value and the variation range for three charges.

上記実効偏析係数(Ke)の測定は、4端子法によりサ
ンプルの電気抵抗率ρを測定し、その測定値と単結晶中
のP濃度とが反比例すると仮定し、下式にて示すPfann
の式 ρ=ρ(1−g)1-Ke 但し、 ρ0:単結晶の初期電気抵抗率 g:単結晶の引上げ率 を測定値に適合させることにより行った。
The above-mentioned effective segregation coefficient (Ke) is measured by measuring the electrical resistivity ρ of the sample by the four-terminal method, and assuming that the measured value is inversely proportional to the P concentration in the single crystal, Pfann shown in the following equation
Ρ = ρ 0 (1-g) 1-Ke where ρ 0 : initial electric resistivity of single crystal g: pulling rate of single crystal was adapted to the measured value.

この図より理解される如く、従来例1は従来例2と比
べて実効偏析係数を向上できるが、酸素レベルが上昇
し、また両測定値ともバラツキが大きい。実施例1では
酸素レベルが従来例2と同程度であるが、実効偏析係数
を向上せしめ得、また実施例2では実効偏析係数を実施
例1,従来例1と同様に向上でき、また酸素レベルについ
てもこれを低減できた。
As can be understood from this figure, Conventional Example 1 can improve the effective segregation coefficient as compared with Conventional Example 2, but the oxygen level rises and both measured values have large variations. Although the oxygen level in Example 1 is similar to that in Conventional Example 2, the effective segregation coefficient can be improved, and in Example 2, the effective segregation coefficient can be improved as in Example 1 and Conventional Example 1, and the oxygen level can be improved. This was also reduced.

以上詳述した如く、本発明による場合は、縦磁場法本
来の目的である実効偏析係数の向上と、従来不可能であ
った酸素濃度の低減化との両立を計り得、また当然であ
るが実効偏析係数の向上により結晶成長方向の電気抵抗
率が一定となり、これにより結晶から半導体製品を切り
出す場合の歩留が向上する等、本発明は優れた効果を奏
する。
As described above in detail, in the case of the present invention, both improvement of the effective segregation coefficient, which is the original purpose of the longitudinal magnetic field method, and reduction of the oxygen concentration, which has been impossible in the past, can both be achieved, and, of course, The present invention has excellent effects such that the electric resistivity in the crystal growth direction becomes constant due to the improvement of the effective segregation coefficient, which improves the yield when cutting semiconductor products from the crystal.

【図面の簡単な説明】[Brief description of drawings]

第1図は流速及び酸素濃度と時間との関係を示すグラ
フ、第2図はその流速と酸素濃度の算出位置の説明図、
第3図は本発明の原理説明図、第4,5図はコイルとその
周りの磁場方向等との関係の説明図、第6図は本発明の
原理を実現できる磁場分布の説明図、第7図は本発明の
実施状態を示す模式的縦断面図、第8図は本発明の他の
実施例を示す模式的縦断面図、第9図は本発明の効果説
明図、第10図は従来装置の模式的縦断面図、第11図は磁
場強度と実効偏析係数との関係図、第12,13図は従来技
術の問題点の説明図である。 4……融液、5……結晶、6,7,71,72……コイル
FIG. 1 is a graph showing the relationship between flow velocity and oxygen concentration and time, and FIG. 2 is an explanatory diagram of the calculation position of the flow velocity and oxygen concentration,
FIG. 3 is an explanatory view of the principle of the present invention, FIGS. 4 and 5 are explanatory views of the relationship between the coil and the magnetic field direction around the coil, and FIG. 6 is an explanatory view of magnetic field distribution that can realize the principle of the present invention. 7 is a schematic vertical sectional view showing an embodiment of the present invention, FIG. 8 is a schematic vertical sectional view showing another embodiment of the present invention, FIG. 9 is an explanatory view of the effect of the present invention, and FIG. FIG. 11 is a schematic vertical cross-sectional view of a conventional device, FIG. 11 is a relationship diagram between magnetic field strength and effective segregation coefficient, and FIGS. 12 and 13 are explanatory diagrams of problems of the conventional technique. 4 ... Melt, 5 ... Crystal, 6,7,71,72 ... Coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】結晶の引上方向に沿う直流磁場を融液に印
加しつつ結晶を引上げるチョクラルスキー法による結晶
成長方法において、 結晶直下の融液部分での対流のみを抑制すべく、複数の
磁石を結晶の引上方向に沿う方向を主たる磁場の方向と
し、またそのうちの少なくとも1磁石を他と逆極性とし
て配し、融液表面における引上方向磁場の強度が結晶直
下から融液容器の側壁に向けて低下し、側壁近傍又はそ
の少し内側で0となしてあることを特徴とする結晶成長
方法。
1. A method for growing a crystal by the Czochralski method in which a direct current magnetic field along the crystal pulling direction is applied to the melt while pulling the crystal, in order to suppress only convection in the melt directly below the crystal, A plurality of magnets are arranged so that the direction of the main magnetic field is along the pulling direction of the crystal, and at least one of the magnets is arranged with the opposite polarity to the others, and the strength of the pulling-up magnetic field on the melt surface is from directly below the crystal to the melt. A method for growing a crystal characterized by decreasing toward a side wall of a container and becoming 0 near or slightly inside the side wall.
JP61204681A 1986-08-29 1986-08-29 Crystal growth method Expired - Fee Related JPH0822797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61204681A JPH0822797B2 (en) 1986-08-29 1986-08-29 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61204681A JPH0822797B2 (en) 1986-08-29 1986-08-29 Crystal growth method

Publications (2)

Publication Number Publication Date
JPS6360191A JPS6360191A (en) 1988-03-16
JPH0822797B2 true JPH0822797B2 (en) 1996-03-06

Family

ID=16494540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61204681A Expired - Fee Related JPH0822797B2 (en) 1986-08-29 1986-08-29 Crystal growth method

Country Status (1)

Country Link
JP (1) JPH0822797B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572070B2 (en) * 1987-07-20 1997-01-16 東芝セラミツクス株式会社 Single crystal manufacturing method
US5196085A (en) * 1990-12-28 1993-03-23 Massachusetts Institute Of Technology Active magnetic flow control in Czochralski systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217493A (en) * 1982-06-11 1983-12-17 Nippon Telegr & Teleph Corp <Ntt> Method for pulling up single crystal
JPS6081086A (en) * 1983-10-07 1985-05-09 Shin Etsu Handotai Co Ltd Process and apparatus for growing single crystal
JPS61222984A (en) * 1985-03-28 1986-10-03 Toshiba Corp Unit for single crystal production

Also Published As

Publication number Publication date
JPS6360191A (en) 1988-03-16

Similar Documents

Publication Publication Date Title
US5178720A (en) Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
US6702892B2 (en) Production device for high-quality silicon single crystals
US4659423A (en) Semiconductor crystal growth via variable melt rotation
US20100107968A1 (en) Method and apparatus for producing a single crystal
JPS5874594A (en) Growing method for crystal
JP2011526876A (en) Control method of melt-solid interface shape of grown silicon crystal using unbalanced magnetic field and same direction rotation
JPH0455388A (en) Pulling-up method of semiconductor single crystal
JP3086850B2 (en) Method and apparatus for growing single crystal
JP2688137B2 (en) Method of pulling silicon single crystal
US5392729A (en) Method of producing silicon single crystal
JPH0822797B2 (en) Crystal growth method
JP2550739B2 (en) Crystal growth method
JP2567539B2 (en) FZ method silicon single crystal ingot growth method and apparatus
GB2120954A (en) Reducing impurity levels in pulled single crystals
JP3132412B2 (en) Single crystal pulling method
JP2720323B2 (en) Method for growing Si single crystal with controlled melt convection
JPH0733304B2 (en) Crystal growth method
JPH0822798B2 (en) Crystal growth method
JPH0524969A (en) Crystal growing device
JPH0480875B2 (en)
JPH07277875A (en) Method for growing crystal
JP4951186B2 (en) Single crystal growth method
JPH037405Y2 (en)
JPH06271384A (en) Method for pulling up single crystal
JPH11335198A (en) Silicon single crystal wafer and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees