JPH037405Y2 - - Google Patents

Info

Publication number
JPH037405Y2
JPH037405Y2 JP1985032474U JP3247485U JPH037405Y2 JP H037405 Y2 JPH037405 Y2 JP H037405Y2 JP 1985032474 U JP1985032474 U JP 1985032474U JP 3247485 U JP3247485 U JP 3247485U JP H037405 Y2 JPH037405 Y2 JP H037405Y2
Authority
JP
Japan
Prior art keywords
crucible
melt
single crystal
heater
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985032474U
Other languages
Japanese (ja)
Other versions
JPS61150862U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985032474U priority Critical patent/JPH037405Y2/ja
Publication of JPS61150862U publication Critical patent/JPS61150862U/ja
Application granted granted Critical
Publication of JPH037405Y2 publication Critical patent/JPH037405Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は例えば半導体装置の材料として使用さ
れるシリコン単結晶等の結晶を成長させる装置に
関する。 〔従来技術〕 単結晶を成長させるには種々の方式があるが、
その中に回転引上方式がある。この方式は第3図
に示すようにるつぼ13内に挿入した単結晶用材
料を誘動加熱コイル又は抵抗加熱コイル12にて
全部溶融させた後、その溶融液14を引上げ棒1
7により上方に引上げていくことにより、溶融液
14が凝固してなる単結晶15を成長させる方式
である。この方式では結晶成長に伴つて溶融液量
が減少するため成分元素が単結晶15の成長方向
に偏析するという問題が生ずる。 これを解決するために溶融層方式が提案されて
いる。この方式は第4図に示す如くるつぼ13の
外側に昇降可能に設けた誘導加熱コイル12をる
つぼ13の上側から下側へ徐々に降下させてい
き、成長せしめられた単結晶15の量に拘わら
ず、るつぼ13内の溶融液14の量を一定に維持
して単結晶15を成長させる方式である
(JOURNAL OF THE ELECTROCHEMICAL
SOCIETY.July,1985,P393〜365)。 〔考案が解決しようとする問題点〕 しかしながら上記溶融層方式による場合は偏析
が改善されるのであるが、結晶成長装置の加熱手
段が誘導加熱コイルであるため、その誘導電磁力
にて溶融液に強制対流が生じ、例えば石英
(SiO2)製るつぼを使用している場合にはその対
流により石英製るつぼが溶解して酸素が溶出し、
単結晶中に酸素が含有される。 このようにして酸素を含有するシリコン単結晶
を半導体装置用材料として用いるべく、これをス
ライスして得たシリコンウエハを熱処理した場合
には含有酸素に起因して結晶欠陥の発生原因とな
る。このため溶融層方式による場合は低酸素の単
結晶を製造できなかつた。 また上記るつぼを使用する場合は、その鉛直方
向へ伝熱するため例えば熱を必要とする上部側か
ら不要な下部側が熱が逃げるので、加熱効率が悪
く、また溶融液を一定量に維持すべく管理するこ
とが困難であつた。 〔問題点を解決するための手段〕 本考案は斯かる事情に鑑みてなされたものであ
り、るつぼを内、外2層にして外層を鉛直方向に
分割した構造とし、またそのるつぼの周囲に抵抗
加熱式のヒータを設けることにより、るつぼ内に
挿入した結晶用材料を上側から下側へ向けて溶融
しつつその溶融液を上方に引上げて偏析の発生を
防止して結晶を成長させる場合にあつても、るつ
ぼ内の溶融液の対流を抑制して含有酸素が低減せ
しめられた結晶を成長させ得、またるつぼの鉛直
方向での熱移動を抑制でき、これにより加熱効率
に優れ、また溶融液量の管理が容易な結晶成長装
置を提供することを目的とする。 本考案に係る結晶成長装置は、るつぼ内に挿入
した結晶用材料を上側から下側へ向けて溶融しつ
つその溶融液を上方に引上げて結晶を成長させる
装置において、一体型の内層るつぼの外側に、前
記溶融液の熱対流を防止すべく環状のるつぼ素体
を上下に積層してなる外層るつぼを一体的に取付
けたるつぼと、該るつぼの周囲に上下方向に複数
個設けられ、個々に加熱制御可能とした抵抗加熱
式ヒータと、該ヒータの周囲に設けた熱遮蔽体と
を具備することを特徴とする。 〔実施例〕 以下に本考案を図面に基づく具体的に説明す
る。第1図は本考案の実施例を示す模式的側断面
図であり、図中1はチヤンバーを示す。チヤンバ
ー1は軸長方向を垂直とした略円筒状の真空容器
であり、上面中央部には矢符方向に所定速度で回
転する引上げチヤツク7の回転軸7′がエアシー
ルドされて貫通されている。引上げチヤツク7に
はシード(結晶成長の核となる単結晶)5′が取
付けられている。 チヤンバー1の底面中央部には、前記引上げチ
ヤツク7とは同一軸心で逆方向に所定速度で回転
するるつぼ3の支持軸6がエアシールドされて貫
通している。支持軸6の先端には黒鉛製るつぼ
3′がその内側に石英(SiO2)製るつぼ3を嵌合
する状態で取り付けられている。 上記黒鉛製るつぼ3′はその軸長方向に例えば
5分割され、上4段の環状るつぼ素体31′,3
2′,33′,34′と最下段の有底環状のるつぼ
素体35′とからなつており、該有底環状のるつ
ぼ素体35′は石英製るつぼ3をその半径方向へ
移動するのを防止している。 るつぼ3の上にはチヤンバー1を貫通して不純
物添加用の管9が設けられており、るつぼ3の回
転域の外側には抵抗加熱式ヒータ2が、その更に
外側にチヤンバー1との間の位置には熱遮蔽体8
が夫々同心円筒状に配設されている。 ヒータ2はその軸長方向寸法がるつぼ3の軸長
方向寸法よりも十分短い寸法である抵抗加熱用コ
イル21,22,23,24,25,26,27
を例えば7個、るつぼ3の側壁前面にその軸長方
向に沿つて設けられている。各抵抗加熱式コイル
21,……,27は夫々図示しない電流値制御装
置の電源端子に接続されており、各コイル21等
は電流値制御装置により電流の給断及び電流値の
大きさが制御される。 このように構成された本考案装置により溶融層
方式に基づいて単結晶を成長させる場合につき以
下に説明する。例えばオペレータは、まずるつぼ
3内に単結晶用材料10を挿入し、ヒータ2の上
側のコイル21等数個に通電して材料10の上部
を加熱溶融させる。そしてるつぼ3内の溶融液4
が所定量又は所定深さとなると不純物を管9より
添加し、然る後引上げチヤツク7を一旦下げて、
シード5′を溶融液4に接触させたのち、チヤツ
ク7を回転させつつ上方に引上げていき、単結晶
5を成長させる。単結晶5を成長させる一方、る
つぼ3内の溶融液4の量又は深さを一定とすべ
く、上方のコイル21等から下方のコイル22等
への電力量を増加させる制御を行う。 上述の材料溶融の際、るつぼ3が軸長方向に分
割された構造であるので、その接合部にて熱伝達
率が低下してるつぼ3の鉛直方向への熱流が阻止
される。従つて、このようなるつぼを使用してヒ
ータ2により加熱する場合は、加熱するるつぼ3
部分近傍のみが昇温されることになり、加熱効率
が高く、また溶融液を所定量に管理することが容
易となつた。そして、成長せしめられた結晶は偏
析がなく、また抵抗加熱式のヒータにより加熱さ
れているので、溶融液に対流が生じ難いため酸素
レベルが低い。 なお、上記実施例では外側の黒鉛製るつぼ3′
を5分割としているが、本考案はこれに限るもの
ではなく、るつぼ3′を適当数に分割したもので
もよい。加熱効率はるつぼ3′をなるべく多く分
割した方が優れ、またそのようなるつぼを使用し
た場合は溶融液量の管理が容易である。 また、上記実施例では例えば7個のコイルをる
つぼの側壁全面に覆うように設けているが、本考
案はこれに限らず、第2図に示すようにるつぼ3
の軸長方向寸法の半分程度の幅寸法となるように
例えば4個のコイル21′,22′,23′,2
4′を1組としたヒータ2′を、るつぼ3の外側に
昇降させるようにしてもよいことは勿論である。 そしてまた、上記実施例ではヒータを分割した
場合を示しているが、本考案は場合によつてはる
つぼを幅の広い1個のヒータで覆う構成としても
よい。 シリコン単結晶用材料10をるつぼ3内に挿入
してこれを溶融層方式にて単結晶に成長させべ
く、その上側を所定の溶融液深さとなるまでヒー
タ2にて溶融し、その後るつぼ3を0.5rpmで回
転させ、またチヤツク7をそれと逆方向に20rpm
で回転させながら引上げると共に材料10を溶融
し、シリコン単結晶を約4m成長させた。なお材
料10を溶融させ始めて以降、管9より不純物で
あるPを所定のピツチで適当量づつ添加した。 第1表は成長させたシリコン単結晶から50mm間
隔でサンプルを採取してウエハを作成し、ウエハ
の抵抗率を測定した結果を示す。
[Industrial Application Field] The present invention relates to an apparatus for growing crystals such as silicon single crystals used as materials for semiconductor devices, for example. [Prior art] There are various methods for growing single crystals.
Among them, there is a rotating pull-up method. In this method, as shown in FIG. 3, the single crystal material inserted into a crucible 13 is completely melted by an induction heating coil or a resistance heating coil 12, and then the molten liquid 14 is pulled up to a pulling rod 1.
In this method, the single crystal 15 formed by solidifying the molten liquid 14 is grown by pulling the molten liquid 14 upward. In this method, a problem arises in that the component elements are segregated in the growth direction of the single crystal 15 because the amount of melt decreases as the crystal grows. To solve this problem, a fused layer method has been proposed. In this method, as shown in FIG. 4, an induction heating coil 12, which is movable up and down outside the crucible 13, is gradually lowered from the upper side of the crucible 13 to the lower side, regardless of the amount of single crystal 15 grown. First, the amount of the melt 14 in the crucible 13 is maintained constant to grow the single crystal 15 (JOURNAL OF THE ELECTROCHEMICAL
SOCIETY.July, 1985, P393-365). [Problems to be solved by the invention] However, although segregation is improved when using the above-mentioned molten layer method, since the heating means of the crystal growth apparatus is an induction heating coil, the induced electromagnetic force causes the molten liquid to Forced convection occurs; for example, if a quartz (SiO 2 ) crucible is used, the convection causes the quartz crucible to melt and oxygen to elute.
Oxygen is contained in the single crystal. When a silicon wafer obtained by slicing a silicon single crystal containing oxygen in this manner is heat-treated in order to use it as a material for a semiconductor device, crystal defects may occur due to the oxygen content. For this reason, it was not possible to produce a low-oxygen single crystal using the fused layer method. Furthermore, when using the above-mentioned crucible, heat is transferred in the vertical direction, so heat escapes from the upper part where heat is needed to the lower part where it is not needed, resulting in poor heating efficiency. It was difficult to manage. [Means for solving the problem] The present invention was made in view of the above circumstances, and has a structure in which the crucible has two layers, an inner and outer layer, and the outer layer is divided vertically, and By providing a resistance heating type heater, the crystal material inserted into the crucible is melted from the top to the bottom and the molten liquid is pulled upward to prevent segregation and grow crystals. Even if there is a problem, convection of the molten liquid in the crucible can be suppressed to grow crystals with reduced oxygen content, and heat transfer in the vertical direction of the crucible can be suppressed, resulting in excellent heating efficiency and An object of the present invention is to provide a crystal growth apparatus that allows easy control of liquid volume. The crystal growth apparatus according to the present invention is an apparatus for growing crystals by melting a crystal material inserted into a crucible from the upper side to the lower side and pulling the melt upward, and the crystal growth apparatus is an apparatus for growing crystals by pulling the melt upward. In order to prevent heat convection of the melt, a crucible is integrally attached with an outer layer crucible formed by stacking annular crucible bodies vertically, and a plurality of crucibles are provided in the vertical direction around the crucible, and each It is characterized by comprising a resistance heating type heater that can control heating, and a heat shield provided around the heater. [Example] The present invention will be specifically explained below based on the drawings. FIG. 1 is a schematic side sectional view showing an embodiment of the present invention, and numeral 1 in the figure indicates a chamber. The chamber 1 is a substantially cylindrical vacuum container with its axial direction perpendicular, and a rotation shaft 7' of a lifting chuck 7 that rotates at a predetermined speed in the direction of the arrow is passed through the center of the upper surface with an air shield. . A seed (a single crystal serving as a nucleus for crystal growth) 5' is attached to the pulling chuck 7. A support shaft 6 for a crucible 3, which rotates at a predetermined speed in the opposite direction on the same axis as the pulling chuck 7, passes through the center of the bottom surface of the chamber 1 in an air-shielded manner. A crucible 3' made of graphite is attached to the tip of the support shaft 6 with a crucible 3 made of quartz (SiO 2 ) fitted inside the crucible 3'. The graphite crucible 3' is divided into, for example, five parts in the axial direction, and the upper four stages of annular crucible bodies 31', 3
2', 33', 34' and a bottomed annular crucible body 35' at the bottom, and the bottomed annular crucible body 35' moves the quartz crucible 3 in its radial direction. is prevented. A pipe 9 for adding impurities is provided above the crucible 3, passing through the chamber 1, and a resistance heater 2 is provided outside the rotation range of the crucible 3, and a resistance heater 2 is provided outside the rotation range of the crucible 3, and a Heat shield 8 in position
are arranged in a concentric cylindrical shape. The heater 2 includes resistance heating coils 21, 22, 23, 24, 25, 26, 27 whose axial dimension is sufficiently shorter than the axial dimension of the crucible 3.
For example, seven are provided on the front side wall of the crucible 3 along its axial direction. Each of the resistance heating coils 21, . . . , 27 is connected to a power terminal of a current value control device (not shown), and the current supply/disconnection and current value of each coil 21, etc. are controlled by the current value control device. be done. A case in which a single crystal is grown using the fused layer method using the apparatus of the present invention configured as described above will be described below. For example, the operator first inserts the single crystal material 10 into the crucible 3 and energizes several coils 21 and the like on the upper side of the heater 2 to heat and melt the upper part of the material 10. and the melt 4 in the crucible 3
When it reaches a predetermined amount or a predetermined depth, impurities are added through the tube 9, and then the lifting chuck 7 is lowered once.
After the seed 5' is brought into contact with the melt 4, the chuck 7 is rotated and pulled upward to grow the single crystal 5. While growing the single crystal 5, control is performed to increase the amount of electric power from the upper coil 21 etc. to the lower coil 22 etc. in order to keep the amount or depth of the melt 4 in the crucible 3 constant. During the above-mentioned melting of the material, since the crucible 3 has a structure in which it is divided in the axial direction, the heat transfer coefficient decreases at the joints and the heat flow in the vertical direction of the crucible 3 is blocked. Therefore, when heating with the heater 2 using such a crucible, the crucible 3 to be heated
The temperature was raised only in the vicinity of the part, resulting in high heating efficiency and easy control of the melt at a predetermined amount. The grown crystals are free from segregation, and since they are heated by a resistance heater, convection is less likely to occur in the melt, resulting in a low oxygen level. In the above embodiment, the outer graphite crucible 3'
Although the crucible 3' is divided into five parts, the present invention is not limited to this, and the crucible 3' may be divided into an appropriate number of parts. The heating efficiency is better when the crucible 3' is divided into as many parts as possible, and when such a crucible is used, the amount of melt can be easily controlled. Further, in the above embodiment, for example, seven coils are provided so as to cover the entire side wall of the crucible, but the present invention is not limited to this, and as shown in FIG.
For example, four coils 21', 22', 23', 2
It goes without saying that the heaters 2', each consisting of a set of heaters 4', may be moved up and down outside the crucible 3. Further, although the above embodiment shows a case where the heater is divided, the present invention may be configured to cover the crucible with a single wide heater depending on the case. In order to insert the silicon single crystal material 10 into the crucible 3 and grow it into a single crystal using the molten layer method, the upper side thereof is melted by the heater 2 until a predetermined melt depth is reached, and then the crucible 3 is Rotate at 0.5 rpm, and rotate chuck 7 at 20 rpm in the opposite direction.
The material 10 was pulled up while rotating, and material 10 was melted to grow a silicon single crystal of about 4 m. After starting to melt the material 10, an appropriate amount of P as an impurity was added through the tube 9 at a predetermined pitch. Table 1 shows the results of measuring the resistivity of wafers made by taking samples at 50 mm intervals from the grown silicon single crystal.

【表】【table】

〔効果〕〔effect〕

以上詳述した如く本考案は抵抗加熱式ヒータに
より分割るつぼを加熱する構成としているので、
るつぼの個々に温度制御可能とした複数のヒータ
を上、下方向に配設したから、るつぼ内の温度勾
配を容易に設定出来、しかも環状のるつぼ素体を
上下に積層してなる外層るつぼの構成と相俟つて
溶融液の熱対流が防止され、これにより加熱効率
に優れ、溶融液量の管理が容易となる。また成長
した結晶に偏析が発生せず、本考案は結晶の製品
歩留を向上できる等優れた効果を奏する。
As detailed above, the present invention is configured to heat the split crucible using a resistance heater.
Since multiple heaters that can individually control the temperature of the crucible are arranged above and below, the temperature gradient inside the crucible can be easily set. Together with the structure, thermal convection of the molten liquid is prevented, resulting in excellent heating efficiency and easy control of the amount of molten liquid. Moreover, no segregation occurs in the grown crystals, and the present invention has excellent effects such as improving the product yield of crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す模式的断面図、
第2図は本考案の他の実施例を示す模式的断面
図、第3図、第4図は従来装置の説明図である。 2……抵抗加熱式ヒータ、3……るつぼ、4…
…溶融液、5……単結晶、31′,32′,33′,
34′,35′……るつぼ素体。
FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention;
FIG. 2 is a schematic sectional view showing another embodiment of the present invention, and FIGS. 3 and 4 are explanatory views of a conventional device. 2... Resistance heating type heater, 3... Crucible, 4...
...melt, 5...single crystal, 31', 32', 33',
34', 35'... Crucible element.

Claims (1)

【実用新案登録請求の範囲】 るつぼ内に挿入した結晶用材料を上側から下側
へ向けて溶融しつつその溶融液を上方に引上げて
結晶を成長させる装置において、 一体型の内層るつぼの外側に、前記溶融液の熱
対流を防止すべく環状のるつぼ素体を上下に積層
してなる外層るつぼを一体的に取付けたるつぼ
と、 該るつぼの周囲に上下方向に複数個設けられ、
個々に加熱制御可能とした抵抗加熱式ヒータと、 該ヒータの周囲に設けた熱遮蔽体と を具備することを特徴とする結晶成長装置。
[Scope of Claim for Utility Model Registration] In an apparatus for growing crystals by melting a crystal material inserted into a crucible from the top to the bottom and pulling the melt upward, , a crucible having an integrally attached outer layer crucible formed by stacking annular crucible bodies vertically to prevent thermal convection of the melt, and a plurality of crucibles provided in the vertical direction around the crucible,
A crystal growth apparatus comprising: a resistance heating type heater whose heating can be individually controlled; and a heat shield provided around the heater.
JP1985032474U 1985-03-06 1985-03-06 Expired JPH037405Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985032474U JPH037405Y2 (en) 1985-03-06 1985-03-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985032474U JPH037405Y2 (en) 1985-03-06 1985-03-06

Publications (2)

Publication Number Publication Date
JPS61150862U JPS61150862U (en) 1986-09-18
JPH037405Y2 true JPH037405Y2 (en) 1991-02-25

Family

ID=30534020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985032474U Expired JPH037405Y2 (en) 1985-03-06 1985-03-06

Country Status (1)

Country Link
JP (1) JPH037405Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539336Y2 (en) * 1990-03-15 1997-06-25 住友金属工業株式会社 Crystal growth equipment
JP2606046B2 (en) * 1992-04-16 1997-04-30 住友金属工業株式会社 Control method of single crystal oxygen concentration during single crystal pulling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840666U (en) * 1971-09-16 1973-05-23
JPS5345679A (en) * 1976-10-08 1978-04-24 Hitachi Ltd Pulling-up apparatus for sillicon single crystal
JPS55126597A (en) * 1979-03-23 1980-09-30 Nec Corp Single crystal growing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840666U (en) * 1971-09-16 1973-05-23
JPS5345679A (en) * 1976-10-08 1978-04-24 Hitachi Ltd Pulling-up apparatus for sillicon single crystal
JPS55126597A (en) * 1979-03-23 1980-09-30 Nec Corp Single crystal growing method

Also Published As

Publication number Publication date
JPS61150862U (en) 1986-09-18

Similar Documents

Publication Publication Date Title
CN105247115B (en) monocrystalline silicon manufacturing method
WO2006025238A1 (en) Magnetic field application method of pulling silicon single crystal
JP3598972B2 (en) Method for producing silicon single crystal
CA1290654C (en) Monocrystal growing apparatus
JP2813592B2 (en) Single crystal manufacturing method
JPH037405Y2 (en)
JP3907727B2 (en) Single crystal pulling device
JP2572070B2 (en) Single crystal manufacturing method
JP2550740B2 (en) Crystal growth equipment
JP2721242B2 (en) Silicon single crystal pulling method
JPH07277875A (en) Method for growing crystal
JP2640315B2 (en) Method for producing silicon single crystal
JPH07277870A (en) Method and device for growing single crystal
JPH0769778A (en) Equipment for single crystal growth
WO2024024155A1 (en) Silicon single crystal
JP2539336Y2 (en) Crystal growth equipment
JPH09202685A (en) Apparatus for pulling up single crystal
JPH0259494A (en) Production of silicon single crystal and apparatus
JP3011085B2 (en) Single crystal growth method
JPS5950627B2 (en) Single crystal silicon pulling equipment
JPH09255475A (en) Device for growing single crystal
JPH09208360A (en) Growth of single crystal
JPH0582355B2 (en)
JPH0822797B2 (en) Crystal growth method
JPS61281100A (en) Production of silicon single crystal