JPS581040A - 希土類金属四元系水素吸蔵用合金 - Google Patents

希土類金属四元系水素吸蔵用合金

Info

Publication number
JPS581040A
JPS581040A JP56097781A JP9778181A JPS581040A JP S581040 A JPS581040 A JP S581040A JP 56097781 A JP56097781 A JP 56097781A JP 9778181 A JP9778181 A JP 9778181A JP S581040 A JPS581040 A JP S581040A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
rare earth
release
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56097781A
Other languages
English (en)
Other versions
JPS5839218B2 (ja
Inventor
Yasuaki Osumi
加藤明彦
Hiroshi Suzuki
小黒啓介
Akihiko Kato
大角泰章
Keisuke Oguro
中根正典
Masanori Nakane
鈴木博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56097781A priority Critical patent/JPS5839218B2/ja
Publication of JPS581040A publication Critical patent/JPS581040A/ja
Publication of JPS5839218B2 publication Critical patent/JPS5839218B2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本脅明σ希土類金属を含む四元系水sa蔵期用合金関し
、より詳IImには、金属水嵩化物の形悪で多量の水素
1吸薦でき、シかもわずかの加熱で容易に、かつ速やか
に水at放出で龜、その水素の吸蔵圧と放出圧の差、・
即ちヒステリシスの極めて小さい新規にして実用上極め
て有用なる希土類金属四元系水木吸賦用合金に関する亀
のである。
水素は資源的な制限がなくクリーンであること、輸送、
貯蔵が容易なこと等から化石燃料に代る新しりエネルギ
ー源として注目されている。
しかし、水素に常温で気体で69、しかも液化@度が極
めて低温であるために、その貯蔵技術の開尭が重要とな
る。この貯蔵方法として近1年注目さnているのが、金
属に水素を吸斌させ金属水素化−として貯蔵する方法で
ある。
又、金属上水素の吸蔵放出反応σ可逆的であり、反応に
伴って相尚量の反応熱が鞄生吸収され、水素の吸菫放出
圧力框温度に依存するととt利用して冷暖房装置あるい
ぼ熱エネルギー←圧力(機械)エネルギー変換装置など
に応用する研究が行なわnている。
かかる水素lkR材料として要求される性質と 。
してa1安価かつ資源的に豊富であること、活性化が容
易で水素吸蔵量が大きいこと、室温付近で連層な水素吸
蔵放出圧力圧を有し、吸蔵放出のヒステリシスが小さい
こと、水素吸蔵放出反応が可逆的であり、その速度が大
きいことなどがあげられる。
ところで代表的な公知の水累獣賦材料として汀、例えば
LaNi@ 、 FeTiが知られている。
しかしながらこnらの合金に、水素01iIkR放出反
応が可逆的であp1水素eLIL量も大きいものの、水
**、iic、放出反応の速度が遅く、活性化が容易と
に云えず、しかもヒステリシスが大きい等の欠点があり
、実用上大きな問題が6また。
そこで本発明看らに、これら従来の問題点を解消すべく
鋭意検討を行ない、希士餉金属、ニッケル、マンガン、
なラヒにチタン、ジルコニウム、バナジウムおよびニオ
ブからなる群から選ばれた金属元素より111成さnた
四元系合金が上記諸条件【具備し、従来0金金に比べて
極めて有用である事會見出し、発明を完成するに至つ友
即ち本発明に、一般式fLNi、−xMn、Mt、で表
わされる希土類金属四元系の水素吸蔵用合金である。
友だし、式中fur布土類金m原子七表わし、yt(x
チタン、ジルコニウム、バナジウムおよびニオブからな
る絆から遺ばnた金J1原子であp。
xrXα0f−40の範囲の数、7 r[QO1−40
)範囲の数、ztxQ!以下の数であり、aO≦6−X
+y十z≦a!なる関係が成立する。
ここで希土類金属原子(6)框単−金属の場合のみなら
ず、混合金属ミッシ島メタル1Mm)t−も含む。
ミシシ為メタルは一般にランタン2ト46%(重量、以
下同じ)、セリウム40〜60%、プラセオジウムl〜
16%、ネオジウム4〜16%、サマリウム十ガドリニ
ウムl〜7%、鉄al−5う、珪素(Ll−1%、マグ
ネシウムal−R%、アルixりムal〜1%勢からな
るものであり1丁でKgA円で市販さnて−る。
本発明の水素am用合金の組成は以下のようKmHされ
る。
脚ち、本発明の合金a基本的Ka希土−金属fLトニッ
ケルとの合金RNiiのニッケルの一部【マンガンで置
換し危RNj 、−、Mfl、系合金において、MuO
−@t−チタン、ジh−;ニクム、バナジウムおよびニ
オブからなる評から遺ばnた金属(Mt) テ置換すル
か、% L < rr”−N 1 s−aMrsa畢金
金にチタ/、ジルコニウム、バナジウムおよびニオブか
らなる評から選ばれた金属fMt)を添加したものであ
る。
一般に希十馴金5(2)とニッケルa、  (laOu
@摺〇六方摺電六方晶、RNj、 なる金属化合一とな
ることが知られているが、LaN輸以外のものはiI@
付近での水素吸蔵放出圧力がill+−11例えljM
mNlgでrXi!O〜40気圧、OeN1g中8mN
i@でり40〜80気圧である。そこでニッケルの一部
をマンガンで置換すると水素数置放出圧を低減させるこ
とができる。
即ち、希土類金属とニッケルとの合金RN j。
にお−て、ニッケルの一部をマンガンで置換した合金’
t RNi、−aMnaで表わすと、αQQO1〜20
のimtiiで調整し友とき、水素−眠放出圧の低下が
顕著である。好ましくσασal〜LOC)範■である
このασ本発明の合金aNi 、、Mfl、Mt、にお
けるXおよびyK相当するから、上記αのlll囲σx
kLびyの範囲となる。
Xおよびyが2019大きくなると、吸蔵水素の放出が
困繻とな9、高温加熱と時にσξnに減圧t−組合せな
1ljnばならないという問題点を生ずる。
tたXお1びyがα01より小さiとMnの置換量が少
な丁ぎて水嵩r&麓放出圧!琳下させることが困単にな
る。
しかしながら合金RNi、−aMna灯、Mnの尋人に
よりて一部でa*掌吸賦圧と水素放出圧の差、mちヒス
テリシスが大きくなる。
例えば、MmNt、、Mn、、E)組成(D合金でu、
水素吸蔵圧が60℃で約8気圧1、水素放出圧が約4気
圧でTo9、ヒステリシスσ約4気圧もめゐ、ヒステリ
シスが大龜いと、水素吸蔵放出の操作をする九めに、水
素吸蔵用合金もしくにその金属水素化物t19大きな温
tr、!!で加熱、〜却するか、あるInrXより大き
な圧力差で水素加圧、減圧しなけnばならず、水素貯蔵
能力、水素化反応Ws【有@に8用することができない
こOw ステリシス’fl1mrX% 64 RNi、
−、、,7,ei:のMnの−St−災にチタン、ジル
コニウム、バナジウムおよびニオブからなる群から選ば
rtた金Jl1Mtで置換するか、tしく t;[&N
i、−aMQaK チタン、ジルコニウム、バナジウム
お1びニオブ1IAt−上記金属Ml″′e置換した形
態でに、本発明の合金RNi、−,MnyMt 、にお
いて、xxx f 十31 、かつy≧2なる関係が成
立し、2はa!!以下、6−x+ y + x = 6
である。また、この場合の本発明の合金rX几Nl、 
Itの六方晶形の金属化合物となる。
合金AN輸−aMnaに上記金属(Ml)會添加した形
態でσ、本発明の合金RNis−xMU、Mt、におい
てX−y 、かつy≧2なる関係が成立し、xはa2以
下、好ましくσ(11以下であり、AO<5−x+y十
g≦42である。金属nt@加時の本発明の合金の構造
σ明らかでなμが、基本的KaRNh型の金属化合物で
ある。2がQfより大きくなると、合金の水素吸蔵量が
減少したり、水累吸賊、放出圧曲縁のプラトー域が2J
!2状になる傾向が現出するので好ましくなi。
上記の置換、又rra加の2つの典型的な例の他に、金
属MtがRNt=−αMnαの一部と置換している場合
と、添加されている場合の両1tK跨る範曲a幽然に存
在する。
金属Mtの存在により1例えば60℃で水素吸蔵放出圧
の差、ヒステリシスはMmN1gMn□、45 T j
@−でa約L4気圧、MrllN j4JM no、s
 T ta、osでσ約L4気圧、AJ+nNj4.@
 Mn@、46 V6.@−でU約12気圧、 肺t4
.jmqIB、43 Nha、osでa約LJI気圧で
69、チタン、バナジウムおよびニオブが置換および添
加されていなめ従来の合金M…Nj4.IMG11.1
に比べてヒステリシスが半分以下に減少し友。ま友、金
属Mlの存在は1水素放出圧にaはとんど影響を与えず
に、かえりて水素吸蔵圧のみ七低減させるのでヒステリ
シスが小さくなる。
このことrz*si水素化豐反応鉄置の設装上有益であ
る。なお、金属Mtの働自の拝mσ不明でTohが、上
述のようなヒステリシスに与える効果からしてaNiI
型の金属化合物の結晶構造に歇妙な変化【与えているこ
とば確実である。
本発明の希土類金JllI&!g元系水素吸駅用合金を
製造するに幽りてu1公知の各梳方法を採用できるが、
弧元熔融法の採用が好ましい、即ち、希土類金属、ニッ
ケル、マンガンおよび金属MtGD 各成分を分散して
混合し友後、任意の形状にプレス成形し次いでこの成形
物tgL元熔融炉に鉄人し、不活性雰囲気下で加熱熔融
し放冷することにより容易に製造できる。得ら′rL7
を水素吸蔵用合金に、その我面積を増大するため通富通
り粉末の形態で使用する。
本発明の希土類金JIl四元系水嵩1ilk蔵用合金a
極めて容易に活性化でき、活性化後汀大量の水Xt谷容
易、且つ急速にV&蔵及び放出で龜る。
活性化a合金tロータリーポンプで減圧下、80℃に加
熱して脱ガスを行ない、次いで水素を吸蔵及び放出する
操作を唯一回行なうこと【i実織される。
この水素の吸蔵放出操作、金属水素化物の形成は合金粉
末を適当な容器に充填、脱ガス操作のあと、viL@で
水素t′對入し、20に9/a11以下の水素圧を印加
することに19行なわれるゎこのように1本発明の希土
類金属四元系水素吸蔵用合金に水素印加が20ユ/−以
下という低圧て、しかも室温で数分以内の極めて短時間
に行ない得る。
この金属水素化物からの水素の放出σ、ia温で上記容
器管開放するだけで行ない得る。しかしながら、金属水
素化*¥rN温以下に加熱するか、減圧することにより
、更に短時間に且つ効率よく水sr放出することができ
る。
即ち、本発明の水sag用合金合金来の合金に比べて砺
めて容易に活性化でき、活性化後水嵩吸賦放出は高速で
行なえる。
このように本発明の希土類金属四元系水素吸蔵用合金σ
、始めて開発さt′L7を新規な合金にして、水嵩吸蔵
材料として要求さnる諸性貧を全て具備する。%のであ
り、特に水素吸蔵放出圧のヒステリシスa従来の水素吸
lL用合金に比べて大巾に改善さn1水嵩lil蔵用合
金としての水素計IEII力、水素吸蔵放出反応に伴う
反応mt−有効に利用することができるのである。
しかも、本発明の希土類金属四元系水素吸蔵用合金a水
S吸蔵放出反応の活性化が也めて容易で69、大量の水
St密度高く吸蔵し得ると共に、冨1付近Oamで水素
の@蔵放出を行なうことができ、水素数置放出を何度繰
返して4水素a或用合金の性能劣化a実質的に−められ
“ず、従って長期に亘る使用が可能であり、また酸素、
窒素、アルゴン、炭酸ガス等吸賦ガス中の不純物による
影響は殆んど−められない、寮用上極めて有用な水嵩吸
蔵材料と言うことができる。従りて、本来の水素貯蔵材
料としての用途灯もとより、水嵩吸蔵放出反応に伴う反
応熱を利用する他の用途に対してt卓越した効果を発揮
する。
以下、本発明を実111rf41にもとづき具体的に説
明する。
実施例1 市販のミッシ島メタル、ニッケル、マンガンstxび金
属Mt (Ti 、Zr、 V、又tlXNb)  の
原子数比でMtn:Nt :Mn:Mt==1 :t6
:a46:QOIとなるように分取し、こrtt−高真
9アーク熔融炉の鋼製ルツボに装入し、炉内t+1%純
屓アルゴン雰囲気とした後、約gooo℃に加熱溶融し
放冷してMmNi4,1 Mll@、4gTi畳、@i
 s MmNi5.s M(is、as Z r*、e
sMmN ii、s M ill、41 v+IJlお
よびlimN i4,1 Mam、n N t)を鱒な
る組成の合金tそrl’れ得友。
得らnた合金tlifeメツシ島に粉砕し、そのaOl
をステンレス製水素吸蔵、放出反応器に採取し、反応器
【排気装置に接続して、減圧下、80℃の@度に加熱し
て脱ガスを行つた。次−でMJ[911999%の水嵩
を導入し、器内の水素圧を10に&/d以下に保持する
と直ちに水嵩のl&蔵が繍めらn、水素の吸蔵が完了し
た後、再び排気を行りて水嵩の放出を完了させ友。これ
らの合金にこの操作で活性化が完了した。
活性化さrL次金合金反応器中で1Okf/C11以下
の水嵩圧、1tia下、純[91999%o水xt導入
し、水素′に吸蔵させた。
りこnらの両方食性なうことによってより効率的に行な
われる。
上記の方法で夫々の希土類金属四元系水素吸蔵用合金の
水素吸蔵、放出に及ぼす圧カー温縦の関係を求め九、そ
の1例として14mN14.−M#、4sTis、ei
H系について圧力の対数−絶対温屓の逆数で表わしたの
が箒1図である。
第1図におiて直線ムσ水素吸蔵圧、直線Bに水素放出
圧會表わし、点線で示した直IIOおよびDrJ比較例
としての14mNi4.IMl’l・、移の組成を有す
る三元系水素数層用合金を用いた場合を示し、直@Or
X水嵩吸蔵圧、直11DrX水素放出圧t−表わす。
第1図からも明らかなように本発明の合金に、比較例に
示し九従来の水嵩吸蔵用合金に比べてヒステリシスが大
幅に改善されている。
また下記第1表に上記で得た各合金の水素教蔵置と60
’Cにおける水′IIAIJIR圧と水素放出圧の比、
すなわちヒステリシス指数を示1シtもので、本18@
(D合金$41〜tfi4*従来の合金(MmNli、
sM口・護:試料m6)に比べてヒステリシス指数に小
さく、水嵩吸賦量もほぼ1lfl勢でToOた。
(以下余白) all   表 実施例! 実施例1と同機の方法で崩州41Mn・、IMt・、・
1 (金j1Mt トL?4夷JII111 トljl
様、TI、Zr、 V、 Nbt用いた)會夫々製造し
て活性化し、水素吸賦放出実*1−行な−、各合金につ
いて水素吸蔵放出に及ぼ1圧カ一温度の関係を求めた。
その1例としてMmNi4.s BJn@、I Ti@
、6g −HN&にっiて圧力の対数−絶対温度の逆数
で表わしたのが箒!!図である。
蕗意図において直線2およびGσ水水数吸蔵圧直線Fお
よびHは水素放出圧を表わし、点線で示した直1iIG
およびHは実施例1と同様に比較例としてOh/knN
i、、、 Mn 、、の組成を有する三元系水素吸蔵合
金を用いた場合の圧力一温度線図である。
第2図から418Aらかなように本発明の合金は、比較
例の合金に比べ七ヒステリシスが大幅に改善されている
。また本発明の合金と比較例の合金を比較すると水素放
出圧は殆んど差がなく、( 水素吸蔵圧のみが低下してお如、従来の合金の圧力特性
から大きくずれることがないから、金属水素化物反応装
置の設計に極めて有利である。
下記第2表は上記で得た各合金の水素′eL麓量と50
℃における水素吸蔵圧と水素放出圧の比、すなわちヒス
テリシス指at−示したもので、従来の合金(MOIN
144 Mn(、,5’試料A10)に比べてヒステリ
シス指数は小さく、水素吸蔵量もほぼ同等であった。
(以下余白ン 第   2   表 実施例3 実施例1と同様の方法で珈州iMnHMl@、1 (金
属Mtとしても実施例1と同様、Ti、 Zr、 V、
 Nb 1c用いfF−)t−夫々製造して活性化し、
水素吸蔵、放出実験全行ない、各合金について水素吸蔵
放出に及ぼす圧力一温度の関係を求めた。その1例とし
て励Ni4.@Mn、、、 v、、、 −H系について
圧力の対数−絶対温度の逆数の関係t−表わしたのが第
3図である。
第3図において直mJおよびLは水素吸蔵圧、直1II
KおよびMは水素放出圧t−表わし、点線で示す直線り
およびMは実施例1と同様にh/knN 14.。
Mn 、、5の圧力一温度線図である。
183図から明らかなように本発明の合金は、比較例の
従来の合金(MlnN14JMno、s)に比べてヒス
テリシスが大幅に改善されている。
を友実施例2と同様本発明の′合金紘従来の合金に比べ
て水素放出圧の変化は少なく、水素吸蔵圧のみが低下し
ているので、金属水素化物反応装置の設計が容易である
。尚これらの合金のヒステリシス指数は1.20〜1.
45で従来の合金よシ小さく、また水素吸蔵量も1.5
〜1.6重量−で従来の合金(1,5重量Uと#1ば同
勢であることが確認された。
【図面の簡単な説明】
第1図、第2図および第3図は本発明に係る希土類金属
四元系水素吸蔵用合金の実施例と従来の三元系合金の、
水素吸蔵放出に及ぼす圧力一温度の関係を示す図である
。 特杵出願人 工業技術院長   石板 誠−指定代理人
 工業技術院大阪工業技術試験所長内藤−男 第1図 2,4 2,6 2.8 3.0 3.2 3.410
00 / T (に) 第2図 2.5   2.6   2β   3.0   3,
2   3.41000/T(に)

Claims (1)

  1. 【特許請求の範囲】 L  −1を式RNis−xMt、yMt、で示さnる
    希土類金属四元系水素吸蔵用合金。 たにし、式中&i希土類金属原子會表わし、Mt[チタ
    ン、ジルコニウム、バナジウムおよびニオブからなる評
    から選ばれ次金属原子でh p Sx exα0l−I
    LOの範囲の数、7tff(101〜10の範囲の数、
    zrrug以下の数であp1&O≦6− x +y 十
    g≦&2なる関係が成立する。 g  z−y十g 、かつy≧2 である特許請求の範
    囲i1項記教の希土類金属四元系水素歇駅用合金。 &  X=7%F≧2であり、かつx rXQ 1  
    以下の数である特許請求の範Ii!I纂1項記載の希土
    鎮金属四元系水嵩吸賦用合金。
JP56097781A 1981-06-23 1981-06-23 希土類金属四元系水素吸蔵用合金 Expired JPS5839218B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56097781A JPS5839218B2 (ja) 1981-06-23 1981-06-23 希土類金属四元系水素吸蔵用合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56097781A JPS5839218B2 (ja) 1981-06-23 1981-06-23 希土類金属四元系水素吸蔵用合金

Publications (2)

Publication Number Publication Date
JPS581040A true JPS581040A (ja) 1983-01-06
JPS5839218B2 JPS5839218B2 (ja) 1983-08-29

Family

ID=14201363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56097781A Expired JPS5839218B2 (ja) 1981-06-23 1981-06-23 希土類金属四元系水素吸蔵用合金

Country Status (1)

Country Link
JP (1) JPS5839218B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143036A (ja) * 1983-02-02 1984-08-16 Agency Of Ind Science & Technol 希土類金属三元系水素吸蔵用合金
JPS6043451A (ja) * 1983-08-15 1985-03-08 Daido Steel Co Ltd 水素精製特性に優れた水素貯蔵用材料
JPS6070154A (ja) * 1983-09-27 1985-04-20 Japan Metals & Chem Co Ltd 水素貯蔵材料
US4744946A (en) * 1982-02-09 1988-05-17 Japan Metals And Chemicals Co., Ltd. Materials for storage of hydrogen
US4996002A (en) * 1987-11-30 1991-02-26 Ergenics, Inc. Tough and porus getters manufactured by means of hydrogen pulverization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147039U (ja) * 1984-09-01 1986-03-29 日本バイリ−ン株式会社 貼付剤

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744946A (en) * 1982-02-09 1988-05-17 Japan Metals And Chemicals Co., Ltd. Materials for storage of hydrogen
JPS59143036A (ja) * 1983-02-02 1984-08-16 Agency Of Ind Science & Technol 希土類金属三元系水素吸蔵用合金
JPS626739B2 (ja) * 1983-02-02 1987-02-13 Kogyo Gijutsuin
JPS6043451A (ja) * 1983-08-15 1985-03-08 Daido Steel Co Ltd 水素精製特性に優れた水素貯蔵用材料
JPS6364511B2 (ja) * 1983-08-15 1988-12-12
JPS6070154A (ja) * 1983-09-27 1985-04-20 Japan Metals & Chem Co Ltd 水素貯蔵材料
US4996002A (en) * 1987-11-30 1991-02-26 Ergenics, Inc. Tough and porus getters manufactured by means of hydrogen pulverization

Also Published As

Publication number Publication date
JPS5839218B2 (ja) 1983-08-29

Similar Documents

Publication Publication Date Title
JPS5839217B2 (ja) 水素吸蔵用ミツシユメタル−ニツケル系合金
JPH0436431A (ja) 水素吸蔵合金
US4222770A (en) Alloy for occlusion of hydrogen
JPS581040A (ja) 希土類金属四元系水素吸蔵用合金
US4347082A (en) Mischmetal alloy for storage of hydrogen
US4400348A (en) Alloy for occlusion of hydrogen
JPS59143036A (ja) 希土類金属三元系水素吸蔵用合金
JPS5947022B2 (ja) 水素吸蔵用合金
JPS61199045A (ja) 水素吸蔵合金
JPS5938293B2 (ja) チタン−クロム−バナジウム系水素吸蔵用合金
JPS6141741A (ja) 水素吸蔵合金
JPS58217655A (ja) 水素吸蔵用多元系合金
JPS61250136A (ja) チタン系水素吸蔵合金
JPS597772B2 (ja) チタン多元系水素吸蔵用合金
JPS6048580B2 (ja) 水素貯蔵用合金
JPS5928549A (ja) 希土類金属系水素吸蔵用合金
JPS5939493B2 (ja) チタン−コバルト多元系水素吸蔵用合金
JPS5822534B2 (ja) 水素貯蔵用金属材料
JPS63282226A (ja) 水素吸蔵合金
JPS604256B2 (ja) 水素貯蔵用合金
JPS5950742B2 (ja) チタン四元系水素吸蔵用合金
JPS6159389B2 (ja)
JPS597774B2 (ja) チタン−クロム−マンガン系水素吸蔵用合金
JPH0224764B2 (ja)
JPS5821021B2 (ja) 水素貯蔵用合金