JPH11251122A - 磁性粉製造用先駆物質およびこれから得た強磁性金属粉末 - Google Patents

磁性粉製造用先駆物質およびこれから得た強磁性金属粉末

Info

Publication number
JPH11251122A
JPH11251122A JP10071409A JP7140998A JPH11251122A JP H11251122 A JPH11251122 A JP H11251122A JP 10071409 A JP10071409 A JP 10071409A JP 7140998 A JP7140998 A JP 7140998A JP H11251122 A JPH11251122 A JP H11251122A
Authority
JP
Japan
Prior art keywords
particles
powder
ferromagnetic metal
magnetic
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10071409A
Other languages
English (en)
Inventor
Seiichi Kuno
誠一 久野
Kazuhisa Saito
和久 斉藤
Kazuji Sano
和司 佐野
Kazuyuki Matsumoto
和幸 松本
Shinichi Konno
慎一 紺野
Akio Sawabe
明朗 沢辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP10071409A priority Critical patent/JPH11251122A/ja
Publication of JPH11251122A publication Critical patent/JPH11251122A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

(57)【要約】 【課題】 高密度記録に適した塗布型磁気記録媒体用の
強磁性金属粉末とその先駆物質を得る。 【解決手段】 オキシ水酸化鉄または酸化鉄にCo,A
lおよびR(RはYを含む希土類元素の少なくとも一種
を表す)を含有させた針状粒子からなる磁性粉製造用先
駆物質であって,該針状粒子が,Feに対してCoを0
超え〜50at.%含有し,且つ,Feに対して0.1〜3
0at.%のAlを固溶した粒子の表層部にR層(ただし,
粒子中のR含有量はFeに対して0.1〜15at.%であ
る)が被着したものである磁性粉製造用先駆物質。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は,強磁性金属粉末を
製造するのに好適な先駆物質に係り,特に,高密度磁気
記録媒体用強磁性金属粉末の製造に適するように変性さ
れたオキシ水酸化鉄系または酸化鉄系の粉末に関する。
【0002】
【従来の技術】磁気テープや磁気デイスク等の塗布型磁
気記録媒体の分野において,小型化,高容量化および長
時間耐久化等の要望から高記録密度化が進んでいる。高
記録密度化が進むと,磁性粉自体が高Hcおよび高σs
を有していることに加え,テープ特性として保磁力が高
く且つSFDが狭いこと(小さいこと)と角形比(Br
/Bm)が大きいこと等が要求される。
【0003】ここで,SFD値は,周知のように,テー
プのヒステリシスループのHc(保磁力) に対するその微
分半値幅ΔHの比, ΔH/Hc 分布で表されるものであ
り,SFD値が大きいと磁化の立上りが急峻でなくな
り,したがって,記録された信号の磁化反転の遷移領域
の幅が大きくなるので,高密度の記録には適さない。S
FD値の小さいものとしてはバリウムフエライトの磁性
粉を用いたものが知られている。しかし,メタル系磁性
粉を用いたものでは一般にSFD値が高くなり,この値
が0.40以下のものは知られていない。酸化鉄磁性粉
(Coで変性したもの)ではSFD値が0.40に達し
たものも報告されている。
【0004】角形比(Br/Bm)は,テープの飽和磁
束密度Bmに対するテープの残留磁束密度Brの比であ
り,Bmは磁性粉の飽和磁気量σs とテープにしたとき
の磁性粉の充填性で決まる。この角形比(Br/Bm)
が高いと出力が向上する。したがって,高密度記録には
角形比が高ければ高いほどよいが,メタル磁性粉を用い
たテープではこれまでのところ角形比が0.88までに
達したものが報告されている。しかし,角形比が0.8
9以上でSFD値が0.40以下を示すような高密度記
録媒体は,メタル磁性粉を用いたテープでは知られてい
ない。
【0005】現在,高いHcと高いσs を有するメタル
磁性粉として,鉄を主成分とする金属磁性粉末が実用化
され,オーデイオ用,8mmVTR用,データ保存用テ
ープ等の磁気記録媒体の磁性層を構成するのに幅広く利
用されている。このような鉄を主成分とする金属磁性粉
末は,針状の酸化鉄またはオキシ水酸化鉄の粉末を原料
として,これを加熱還元することによって一般に製造さ
れる。この加熱還元時に,針状性が失われたり,粒子間
の焼結が発生したりして品質が劣化するので,これを改
善するための様々な提案がなされている。
【0006】例えば,針状粒子表面にSi,Al,T
i,Ca,Zr,Mn,Zn,Ni,B,Mo,Cd,
Pなどの元素やY,La,Ce,Pr,Nd,Pmをは
じめとする希土類元素などを被着させる提案(特開平8
−236327号公報,特開平8−236326号公
報,特開平8−102037号公報,特開平7−210
856号公報,特開平6−25702号公報,特開平4
−61302号公報,特開平2−107701号公報,
特開昭63−13121号公報など)や,Alを固溶し
たオキシ水酸化鉄または酸化鉄を還元する方法(特公昭
59−17161号公報)が知られている。このような
提案について一般的に言えることは,AlまたはSiを
含有したオキシ水酸化鉄や酸化鉄を原料として加熱還元
すると,針状性の保持や焼結防止に有益に作用するとい
うことである。
【0007】
【発明が解決しようとする課題】前記のような様々な提
案がなされているにも拘わらず,これまでの鉄を主成分
として金属磁性粉末の分野では,高記録密度化のための
さらなる要求には対応できなかったというのが実状であ
る。例えば,テープ特性として保磁力が2300(Oe
)以上,角形比(Br/Bm)が0.89以上,SFD
値が0.40以下を同時に達成できるような高密度磁気
記録に適する塗布型磁気記録媒体用の磁性粉は,針状の
オキシ水酸化鉄や酸化鉄を原料として製造する鉄を主体
とする金属磁性粉末の分野では,実現できていなかっ
た。本発明の課題はこれを実現することにある。
【0008】
【課題を解決するための手段】前記の課題を解決するた
めの手段として,本発明によれば,オキシ水酸化鉄また
は酸化鉄にCo,AlおよびR(RはYを含む希土類元
素の少なくとも一種を表す)を含有させた針状粒子から
なる磁性粉製造用先駆物質であって,該針状粒子が,F
eに対してCoを0超え〜50at.%含有し,且つ,Fe
に対して0.1〜30at.%のAlを固溶した粒子の表層
部にR層(ただし,粒子中のR含有量はFeに対して
0.1〜15at.%である)が被着したものである磁性粉
製造用先駆物質を提供する。
【0009】また本発明によれば,オキシ水酸化鉄また
は酸化鉄にCo,AlおよびR(RはYを含む希土類元
素の少なくとも一種を表す)を含有させた針状粒子から
なる粉末をガス還元してなる強磁性金属粉末であって,
還元前の前記の針状粒子が,Feに対してCoを0超え
〜50at.%含有し,且つ,Feに対して0.1〜30at.
%のAlを固溶した粒子の表層部にR層(ただし,粒子
中のR含有量はFeに対して0.1〜15at.%である)
が被着したものである,強磁性金属粉末を提供する。
【0010】
【発明の実施の形態】本発明者らは前記の課題を解決す
べく,針状のオキシ水酸化鉄または酸化鉄を原料とし
て,これに各種の元素をその種類や含有形態を変えなが
ら加える試験を数多く実施し,どのようにしたら,高密
度磁気記録媒体に適する強磁性金属粉末が得られるかを
知るべく研究を重ねた。その結果,数ある元素のなか
で,Co,Al,R(RはYを含む希土類元素の少なく
とも一種を表す)の3種の元素を組み合わせ,これらの
含有形態をそれぞれ特定の形態にしてオキシ水酸化鉄ま
たは酸化鉄に含有させると,これを還元した粉末は優れ
た特性をもつ金属磁性粉末となることがわかった。そし
て,この金属磁性粉末を用いると,後記の実施に示すよ
うに,保磁力(Hc)が2300(Oe )以上,角形比
(Br/Bm)が0.89以上,SFD値が0.40以下
を同時に満足する塗布型磁気記録媒体が得られることが
わかった。
【0011】以下に本発明の内容を具体的に説明する。
【0012】本願と同一出願人に係る特公昭59−17
161号公報には,Alを固溶したα−FeOOH又は
Fe23 を還元することにより保磁力が1100(Oe
)レベル,飽和磁束密度が140emu/g レベルの磁性
粉が得られることが記載されているが,これだけでは,
前記のような最近の高密度記録化への要求を満足するこ
とは困難である。しかし,Alを固溶したα−FeOO
H又はFe23 を強磁性金属粉末を得るための還元用
原料とすることは,加熱還元時の針状形状の保持効果や
焼結防止効果がそれなりに良好であることがその後の実
施でも確認された。
【0013】そこで,このようなAlを固溶するオキシ
水酸化鉄または酸化鉄をベースとして,これをさらに改
善すべく種々の試験を行ったところ,このようなAl固
溶の針状粒子にCoを含有させ且つRを被着させること
が非常に有効であることを知った。
【0014】まず,Coについては,Co/Feの原子
比(%)が0超え〜50at.%となるような量で含有させ
ると,含有させない場合に比べて, 得られる磁性粉のと
くに飽和磁束密度(σs)を改善することができる。ま
た,Coの含有により磁性粉の結晶粒径(X線粒径D
x)を小さくする効果や耐候性改善効果が奏される。C
oの好ましい含有量は,Co/Feの原子比(%)で0
超え〜50at.%,さらに好ましくは1〜40at.%,最も
好ましくは3〜35at.%である。Coの含有形態につい
ては,AlやRの場合とは異なり,粒子中に含有されて
いても粒子の表層部に存在していてもよい。
【0015】Rについては,R/Feの原子比(%)が
0.1〜15at.%,好ましくは2〜10at.%となるよう
な量で含有させ且つその含有形態が針状粒子の表層部に
Rが被着した状態とすることにより,後述の実施例に示
すように様々な有利な改善効果が得られることがわかっ
た。とくに,RをFeに対して2at.%以上,さらに好ま
しくは5at.%以上の量で被着させると,磁気記録媒体の
Hc,Br/BmおよびSFD値が顕著に改善されるこ
とがわかった。針状粒子表面にRが“被着”した状態と
は,実際には該粒子表面にRもしくはR化合物の濃縮層
が形成されていることを意味しており,この濃縮層内に
添加したRの実質上全てが存在するような被着状態が理
想的である。このR濃縮層はアモルフアス,結晶,化合
物層(酸化物や塩化物等)であることができる。また,
針状粒子表面にRが被着した状態はESCA等の表面分
析機器で解析すれば明瞭に判別できる。
【0016】R元素はYおよびランタノイド元素やアク
チノイド元素を言うが,とくにYまたはランタノイド元
素であるのが好ましく,ランタノイド元素のうちでもL
a,Ce,Pr,Nd,Sm,Eu,Tb,Dy,G
d,Ho等が使用に便である。これらの元素を複合して
含有する場合には,その含有量については,その総量を
0.1〜15at.%とする。好ましい含有量は2〜10at.
%である。なお,この含有量はこれらの元素が化合物と
して含有されている場合,化合物の量ではなく化合物中
の当該元素の含有量を言う。このR元素の被着含有によ
り磁性粉のX線粒径が小さくなることもわかった。X線
粒径(Dx)とはX線を用いて針状粒子の結晶子の大き
さ(微粒子では短軸長に相当する)を測定した値であ
り,この値が小さいほど磁気変換特性のノイズが小さく
なると言われている。また,このR元素の被着含有によ
り磁性粉の針状性が良好となり保磁力も向上する。
【0017】Alについては,前記のようにオキシ水酸
化鉄または酸化鉄に“固溶”した状態で含有されている
ことが肝要であり,その含有量はAl/Feの原子比
(%)で0.1〜30at.%であればよく,好ましくは1
〜20at.%,さらに好ましくは2〜15at.%である。A
l含有量は,Al元素が化合物として含有されている場
合,化合物の量ではなく化合物中のAl元素の含有量を
言い,このため,Feに対するAlの原子比(%)でA
l含有量を表す。
【0018】ここで,オキシ水酸化鉄または酸化鉄にA
lを“固溶”するとは,オキシ水酸化鉄または酸化鉄の
結晶を構成しているFeの一部がAlで置換されている
ような状態を言う。先の特公昭59−17161号公報
には,オキシ水酸化鉄にAlを固溶した場合とAlを被
着した場合のX線回折による格子定数の変化の様子が記
載されており,Al固溶α−FeOOHの格子定数はα
−FeOOHの格子定数とAlOOHの格子定数の中間
の値となり,その値はAl/Feの原子比に比例したも
のとなると記載されている。すなわち,AlはFeより
もイオン半径が小さいので,α−FeOOHの結晶中の
Feの一部がAlで置換されると,その置換量に応じ
て,その格子定数はα−FeOOHよりも小さくなると
言える。他方,α−FeOOHの結晶の表面にAl(A
lOOH)が被着した状態では,α−FeOOHの格子
定数に近くなる。したがって,オキシ水酸化鉄または酸
化鉄にAlが固溶しているか否かは,X線回折による格
子定数の測定から明瞭に判別できる。
【0019】図1,図2および図3は,後記の実施例2
(Al固溶)と比較例4(Al被着)の条件で磁気テー
プを製造し,そのさいYの被着量を変化させたときのテ
ープの保磁力の変化(図1),角形比(Br/Bm)の
変化(図2)およびSFD値の変化(図3)を示したも
のである。これらの図に見られるように,オキシ水酸化
鉄にAlを固溶させた場合には,Al被着させた場合に
比べてどのYの量でも保磁力,Br/BmおよびSFD
値が全体に上昇することがわかる。また,これらの結果
から,Al固溶オキシ水酸化鉄にYを被着させると,Y
の被着量に応じて保磁力,Br/BmおよびSFD値と
も向上すること,とくに,Yの被着量がY/Feの原子
比でほぼ5at.%以上で,保磁力がほぼ2300(Oe )
以上,角形比(Br/Bm)が0.89以上,SFD値
が0.40以下となることがわかる。また,Yの被着量
がY/Feの原子比でほぼ15at.%で,これらの値はほ
ぼ飽和値(保磁力≒2600(Oe ),角形比(Br/
Bm)≒0.925,SFD値≒0.25)に近づくこと
がわかる。
【0020】このようにAl,CoおよびRを適切な量
で且つその含有形態を適切にしてオキシ水酸化鉄または
酸化鉄に含有させてなる本発明に従う先駆物質を還元処
理すると,従来のものにはない保磁力,Br/Bmおよ
びSFD値をもつ磁気テープとすることができる金属磁
性粉末が得られるが,この針状粒子からなる先駆物質の
粒径や軸比は,先駆物質がオキシ水酸化鉄系である場合
には,長軸長が0.01〜0.60μm,短軸長が0.0
01〜0.060μm,軸比が1〜30であるのがよ
く,このオキシ水酸化鉄系のものから脱水して酸化物系
とした先駆物質の場合には,長軸長が0.01〜0.50
μm,短軸長が0.001〜0.050μm,軸比が1〜
30であるのがよい。
【0021】このような本発明に従う先駆物質を製造す
るには,Al固溶のオキシ水酸化鉄を製造し,これにR
被着処理を行うことを原則とし,Coについてはオキシ
水酸化鉄の生成過程の途中またはその前後に含有させれ
ばよい。以下にその代表的な方法を説明する。
【0022】まずAl固溶のオキシ水酸化鉄を製造する
には,通常のオキシ水酸化鉄の生成反応である第一鉄塩
水溶液(FeSO4 やFeCl2 の水溶液)を水酸化ア
ルカリ(NaOHやKOH水溶液)で中和したあと空気
等で酸化してα−FeOOHを生成させる方法におい
て,このα−FeOOHの生成反応を水溶性Al塩やア
ルミン酸塩の存在下で行えばよい。別法として,前記の
ような第一鉄塩溶液を炭酸アルカリで中和したあと空気
等で酸化してα−FeOOHを生成させる方法において
(この方法では紡錘状の水酸化鉄が得られやすい),こ
のα−FeOOHの生成反応を水溶性Al塩やアルミン
酸塩の存在下で行えばよい。さらに別法として,第二鉄
塩水溶液(FeCl3 水溶液等)をNaOH等で中和す
る反応を水溶性Al塩やアルミン酸塩の存在下で行う方
法でもよい。最後の方法では平針状の水酸化鉄が得られ
やすい。
【0023】このAl固溶オキシ水酸化鉄の製造におい
て,Coを含有させるには,前記のオキシ水酸化鉄生成
前の鉄塩水溶液,或いはオキシ水酸化鉄生成途中の液に
水溶性Co塩(例えばCoCl2 )を添加しておけばよ
い。また,得られたAl固溶オキシ水酸化鉄を水中に分
散させたあと,これに前記のCo塩を添加してアルカリ
で中和する方法や,該分散液から水を蒸発させる方法な
どによっても,Al固溶オキシ水酸化鉄にCoを含有さ
せることができる。
【0024】このようにして得られたCo含有Al固溶
オキシ水酸化鉄粒子にRを被着するには,水溶性R塩
(例えばRの硝酸塩等)の水溶液にこの粒子を分散さ
せ,この分散液から水分を蒸発させる方法や,この分散
液にアルカリを添加して中和する方法により,該粒子の
表面にRを被着させることができる。
【0025】また,前記のCo含有Al固溶オキシ水酸
化鉄粒子を脱水処理してCo含有Al固溶酸化鉄(Co
含有Al固溶のFe23 粒子)としたうえで,この酸
化鉄系粒子に前記のようなR被着処理を行ってもよい。
具体的には,前記のようにして得たCo含有Al固溶オ
キシ水酸化鉄粒子を200〜600℃で空気中で加熱処
理してCo含有Al固溶酸化鉄粒子とし,この酸化鉄系
粒子を水溶性R塩(例えばRの硝酸塩等)の水溶液に分
散させ,NaOH等のアルカリを添加して中和すること
によって,該粒子表面にRを被着させ,ろ過,水洗後,
空気中で適当な温度例えば200℃で焼成するのがよ
い。この方法においてCo含有Al固溶オキシ水酸化鉄
を加熱処理して脱水してもAlは該粒子中に固溶した状
態に維持される。また,これをRを被着させたあと20
0℃程度の温度で空気中加熱処理してもRの被着状態は
そのまま維持される。この方法に代えて,CoAl固溶
酸化鉄粒子を水溶性R塩(例えばRの硝酸塩等)の水溶
液中に分散させ,この分散液から水分を蒸発させる方法
でも,同様にCo含有Al固溶酸化鉄にRを被着させる
ことができる。このようにRを被着処理したあと,15
0〜250℃の比較的低温で焼成処理すると,Rを該粒
子表面に固定することができる。
【0026】なお,Coの含有処理については,前記の
オキシ水酸化鉄の状態で含有させる場合のほか,Al固
溶酸化鉄系粒子の状態から含有させもよい。例えば,A
l固溶オキシ水酸化鉄系粒子を得たあと,これを空気中
で加熱してAl固溶酸化鉄系粒子とし,この酸化鉄系粒
子を水中に分散させたあと,これに前記のCo塩を添加
してアルカリで中和する方法や,該分散液から水を蒸発
させる方法などによって,Co含有Al固溶酸化鉄系粒
子を得ることができ,このようにして得られたCo含有
Al固溶酸化鉄系粒子に対して,前記と同様のR被着処
理を行うことによっても,前記と同様の本発明に従う先
駆物質を得ることができる。
【0027】このようにして得られた本発明に従う先駆
物質は,これを還元処理するとAl,CoおよびRを含
有した金属磁性粉末となる。本発明に従う先駆物質がC
o含有Al固溶オキシ水酸化鉄系粒子の場合には,還元
処理に先立って,空気中で200〜600℃の温度に加
熱する脱水処理を行ない,これによってCo含有Al固
溶酸化鉄系粒子としてから,金属磁性粉末にまで還元す
るのがよい。もっともこの脱水処理のための加熱処理と
引続く還元処理は,同一反応容器で雰囲気ガスを切換え
ることによって,連続した操作で実施することもでき
る。
【0028】還元処理は,水素ガス等の還元性雰囲気中
で300〜700℃の温度で加熱還元すればよい。その
最適温度は先駆物質中のAl量,Co量およびR量によ
ってそれぞれ異なるが300〜700℃の範囲内で選定
される。還元処理後は調湿処理(水蒸気を含む雰囲気で
の処理)することにより,適量の水分を保有した耐酸化
性を有する金属磁性粉末が得られる。
【0029】金属磁性粉末が保有する水分は100℃で
検出(放出)される量が2.0重量%以下,好ましくは
1.5重量%以下であること,また300℃で検出(放
出)される量が4.0重量%,好ましくは3.0重量%以
下であるのが良い。該粉末が保有する水分量により,磁
性層にするための塗料の粘度が変化し,バイダー吸着量
も変化するが,100℃で検出される水分量が2.0重
量%を超えると,または300℃で検出される水分量が
4.0重量%を超えると塗布のさいに分散不十分とな
る。
【0030】そのほか,周期律表第1a族元素例えばL
i,Na,K等や周期律表第2a族元素例えばMg,C
a,Sr,Ba等が前記の金属磁性粉末粒子の表面に付
着していると,樹脂系バインダーに分散させる場合に分
散性を悪くし,また,媒体製品の保存安定性や耐候性を
劣化させる。また,第1a族元素が先駆物質中に存在す
ると還元工程で焼結を促進する作用もあることがわかっ
た。したがって,これらの元素類は還元工程前に出来る
だけ排除しておくのがよい。すなわち本発明に従う先駆
物質は,これを還元した後の周期律表第1a族元素の含
有量が0.05重量%以下(これら元素が複数含有する
場合にもその総量が0.05重量%以下),また同じく
還元した後の周期律表第2a族元素の含有量が0.1重
量%以下(これら元素が複数含有する場合にもその総量
が0.1重量%以下)となるものであるのが好ましい。
これらの元素は本発明の先駆物質を製造するさいの原料
や中和工程等で混入しやすいが,混入した場合にはその
除去処理を十分に行うのが望ましい。
【0031】また,本発明の先駆物質を還元して得た強
磁性金属粉末は平均長軸長が0.01〜0.40μmであ
るのが好ましい。平均長軸長が0.01μm未満では超
常磁性となり,また0.40μmを超えると粒子が多磁
区となりやすく,このためいずれもテープとしたときの
電磁変換特性が低下する。強磁性金属粉末の結晶子(X
線結晶粒径Dx)は50〜250オングストロームであ
るのがよく,50オングストローム未満では超常磁性と
なり,250オングストロームを超えるとノイズがが増
大してテープの電磁変換特性が低下する。
【0032】さらに,該強磁性金属粉末の真密度は5.
3Kg/cm3以上であるのがよい。比表面積はBET
法で30〜70m2/g であるのがよく,30m2/g 未
満ではテープ化するときの樹脂との相溶性が悪くなって
電磁変換特性を低下させ,70m2/g を超えるとテー
プ化時に分散不良を起こしてやはり電磁変換特性を低下
させやすくなる。
【0033】このような強磁性金属粉末で塗布型磁気記
録媒体の磁性層を形成する場合,磁性層の形態として
は,支持フイルム上に磁性層の単層を塗布するもののの
ほか,支持フイルムと磁性層の間に非磁性粉末を用いた
非磁性塗布層(下層)を形成することによって,より薄
くて平滑な磁性層(上層)を形成するいわゆる多層構造
の塗布型磁気記録媒体のいずれに対しても適用できる。
また,後者の下層と上層とからなる多層構造の場合に
は,下層を形成するための非磁性粉末として,本発明に
従う先駆物質をそのまま適用することができる。
【0034】
【実施例】〔実施例1〕0.2モル/L(Lはリット
ル)のFeSO4 水溶液10Lに,10モル/LのNa
OH水溶液1Lと,Al/Fe=13at.%となる量のア
ルミン酸ナトリウムを加えて53℃で空気を6時間吹込
んだ。この酸化処理のあと,Co/Fe=30at.%とな
る量のCoCl2 を加え,30時間熟成した。この沈澱
物を濾過,水洗,乾燥した。得られた粉体は,α−Fe
OOHに,Feに対しCoを29at.%含み且つFeに対
しAlを12.7at.%固溶した,長軸長さ0.14μm,
短軸長さ0.024μm,軸比6の針状粒子からなるも
のであった。
【0035】ついで,前記のオキシ水酸化鉄系粉体を空
気中で350℃で焼成して,酸化鉄系粉体とし,この酸
化鉄系粉体を水中に分散させた。この分散液にLa/F
e=6.5at.%となる量の硝酸ランタンを加え,NaO
Hを添加して53℃で中和し,該粒子表面にランタンを
被着させた。その後,液から濾別し,水洗後, 空気中で
200℃で焼成した。得られた粉体は,酸化鉄に,Fe
に対しCoを29at.%含み且つFeに対しAlを12.
7at.%固溶し,そしてFeに対しLaを6.2at.%被着
した,長軸長さ0.12μm,短軸長さ0.022μm,
軸比5.6の針状粒子からなるものであった。
【0036】こうして得られたAl固溶La被着Co含
有酸化鉄系粒子からなる粉末10gを回転炉に装填しH
2気流を導入して450℃で10時間加熱還元した。還
元終了後,N2ガスを導入して室温まで冷却した。つい
で,1%のO2を含むN2ガスを導入して5時間処理し
た。得られた金属磁性粉末は長軸長さ=0.10μm,
X線結晶粒径Dx=158オングストローム,比表面積
(BET)=51m2/gであり,その磁気特性は保磁力
(Hc)=2336(Oe),飽和磁化率(σs)=133
emu/g, σr/σs =0.52(σrは残留磁束密度emu/g
),Δσs=10%であった。Δσsは60℃・相対
湿度90%RHの雰囲気下で1週間放置後の飽和磁化率
σsの低下率であり,この値が小さいほど耐酸化性に優
れていることを示す。なおこの強磁性金属粉末粒子が含
有するCo量,Al量およびLa量はそれぞれFeに対
し29at.%,12.7at.%および6.2at.%であった。
【0037】なお,前記粒子の長軸長さ,短軸長さおよ
び軸比については,174000倍の電子顕微鏡写真か
ら測定した100個の粒子の平均値で示した。結晶粒径
(Dx)は,X線回折装置を用いて得られたプロフイル
から(110)面に相当するピークの半価幅を求め,こ
れをシェラーの式に代入して算出した。
【0038】得られた強磁性金属粉末を磁気テープ作製
試験に供した。試験は,強磁性金属粉末100重量部に
対し以下の材料を下記組成となるような割合で配合して
遠心ボールミルで1時間分散させて磁性塗料を作製し,
この磁性塗料をボリエチレンテレフタレートからなるベ
ースフイルム上にアプリケーターを用いて目標厚みが3
μmとなるように塗布することにより,磁気テープを作
製した。
【0039】〔塗料の組成〕 金属磁性粉末 100重量部 ポリウレタン樹脂 30重量部 メチルエチルケトン190重量部 シクロヘキサノン 80重量部 トルエン 110重量部 ステアリン酸 1重量部 アセチルアセトン 1重量部 αアルミナ 3重量部 カーボンブラック 2重量部
【0040】得られた磁気テープの磁気特性を測定した
ところ,保磁力Hc=2401(Oe ),残留磁束密度
Br=3690(ガウス),飽和磁束密度Bm=410
0(ガウス),角形比Br/Bm=0.90であり,磁
気テープのヒステリシスループから算出したSFD値は
0.36を示し,Hi8デッキを用いて測定した電磁変
換特性の出力とC/N比はそれぞれ2.4dB,0.8d
Bであった。
【0041】表1〜3に,本例で得られたオキシ水酸化
鉄系粒子粉末,酸化鉄系粒子粉末,強磁性金属粉末およ
び磁気テープの各特性を示した。
【0042】〔実施例2〕NaOHに代えてNa2CO3
を用い,そしてLaの代わりにY(Y/Fe=6.5a
t.%)に変更した(硝酸ランタンに変えて硝酸イットリ
ウムを使用した)以外は,実施例1に従った。実施例1
の場合と同様に,本例で得られたオキシ水酸化鉄系粒子
粉末,酸化鉄系粒子粉末,強磁性金属粉末および磁気テ
ープの各特性,並びに酸化鉄系粒子粉末(強磁性金属粉
末)のCo,AlおよびYのFeに対する含有割合(a
t.%)を表1〜3に併記した。
【0043】〔実施例3〕CoCl2を加えて30時間
熟成するまでは実施例1に従った。得られたAl固溶C
o含有オキシ水酸化鉄系粒子の分散液に,硝酸イットリ
ウムをY/Fe=8.4at.%となる量で添加し,NaO
Hで53℃で中和して該粒子にYを被着させた。その
後,液から濾別し,水洗してAl固溶Co含有Y被着の
オキシ水酸化鉄系粒子粉末を得た。次いで,この粉末を
空気中350℃で焼成してAl固溶・Co含有・Y被着
酸化鉄系粉末を得た。以後は実施例1と同様にして還元
処理して金属磁性粉末とし,これを用いて磁気テープを
作製した。本例で得られたオキシ水酸化鉄系粒子粉末,
酸化鉄系粒子粉末,強磁性金属粉末および磁気テープの
各特性,並びに各粒子粉末(強磁性金属粉末)のCo,
AlおよびYのFeに対する含有割合(at.%)を表1〜
3に併記した。
【0044】〔実施例4〕アルミン酸ナトリウムの添加
量をAl/Fe=5.3at.%相当量に変更した以外は,
実施例2に従った。得られたオキシ水酸化鉄系粒子粉
末,酸化鉄系粒子粉末,強磁性金属粉末および磁気テー
プの各特性,並びに酸化鉄系粒子粉末(強磁性金属粉
末)のCo,AlおよびYのFeに対する含有割合(a
t.%)を表1〜3に併記した。
【0045】〔実施例5〕CoCl2 の添加量をCo/
Fe=20at.%相当量に変更した以外は実施例2に従っ
た。得られたオキシ水酸化鉄系粒子粉末,酸化鉄系粒子
粉末,強磁性金属粉末および磁気テープの各特性,並び
に酸化鉄系粒子粉末(強磁性金属粉末)のCo,Alお
よびYのFeに対する含有割合(at.%)を表1〜3に併
記した。
【0046】〔実施例6〕YをPr(Pr/Fe=6.
5at.%)に変更した(硝酸イットリウムを硝酸プラセオ
ジウムに変えた)以外は実施例2に従った。得られたオ
キシ水酸化鉄系粒子粉末,酸化鉄系粒子粉末,強磁性金
属粉末および磁気テープの各特性,並びに酸化鉄系粒子
粉末(強磁性金属粉末)のCo,AlおよびPrのFe
に対する含有割合(at.%)を表1〜3に併記した。
【0047】〔実施例7〕LaをNd(Nd/Fe=
6.5at.%)に変更した(硝酸ランタンに代えて硝酸ネ
オジムを用いた)以外は実施例1に従った。得られたオ
キシ水酸化鉄系粒子粉末,酸化鉄系粒子粉末,強磁性金
属粉末および磁気テープの各特性,並びに酸化鉄系粒子
粉末(強磁性金属粉末)のCo,AlおよびNdのFe
に対する含有割合(at.%)を表1〜3に併記した。
【0048】〔実施例8〕LaをSm(Sm/Fe=
6.5at.%)に変更した(硝酸ランタンに代えて硝酸サ
マリウムを用いた)以外は実施例1に従った。得られた
オキシ水酸化鉄系粒子粉末,酸化鉄系粒子粉末,強磁性
金属粉末および磁気テープの各特性,並びに酸化鉄系粒
子粉末(強磁性金属粉末)のCo,AlおよびSmのF
eに対する含有割合(at.%)を表1〜3に併記した。
【0049】〔実施例9〕LaをEu(Eu/Fe=
6.5at.%)に変更した(硝酸ランタンに代えて硝酸ユ
ーロビウムを用いた)以外は実施例1に従った。得られ
たオキシ水酸化鉄系粒子粉末,酸化鉄系粒子粉末,強磁
性金属粉末および磁気テープの各特性,並びに酸化鉄系
粒子粉末(強磁性金属粉末)のCo,AlおよびEuの
Feに対する含有割合(at.%)を表1〜3に併記した。
【0050】〔実施例10〕YをGd(Gd/Fe=
6.5at.%)に変更した(硝酸イットリウムに代えて硝
酸ガドリニウムを用いた)以外は実施例2に従った。得
られたオキシ水酸化鉄系粒子粉末,酸化鉄系粒子粉末,
強磁性金属粉末および磁気テープの各特性,並びに酸化
鉄系粒子粉末(強磁性金属粉末)のCo,AlおよびG
dのFeに対する含有割合(at.%)を表1〜3に併記し
た。
【0051】〔実施例11〕YをDy(Dy/Fe=
6.5at.%)に変更した(硝酸イットリウムに代えて硝
酸ジスプロシウムを用いた)以外は実施例2に従った。
得られたオキシ水酸化鉄系粒子粉末,酸化鉄系粒子粉
末,強磁性金属粉末および磁気テープの各特性,並びに
酸化鉄系粒子粉末(強磁性金属粉末)のCo,Alおよ
びDyのFeに対する含有割合(at.%)を表1〜3に併
記した。
【0052】〔実施例12〕LaをHo(Ho/Fe=
6.5at.%)に変更した(硝酸ランタンに代えて硝酸ホ
ルミウムを用いた)以外は実施例1に従った。得られた
オキシ水酸化鉄系粒子粉末,酸化鉄系粒子粉末,強磁性
金属粉末および磁気テープの各特性,並びに酸化鉄系粒
子粉末(強磁性金属粉末)のCo,AlおよびHoのF
eに対する含有割合(at.%)を表1〜3に併記した。
【0053】〔実施例13〕硝酸イットリウムの添加量
をY/Fe=2.2at.%相当量に変更した以外は,実施
例3に従った。オキシ水酸化鉄系粒子粉末,酸化鉄系粒
子粉末,強磁性金属粉末および磁気テープの各特性,並
びに各粒子粉末(強磁性金属粉末)のCo,Alおよび
YのFeに対する含有割合(at.%)を表1〜3に併記し
た。
【0054】〔実施例14〕CoCl2 の添加量をCo
/Fe=3at.%相当量に変更した以外は実施例2に従っ
た。得られたオキシ水酸化鉄系粒子粉末,酸化鉄系粒子
粉末,強磁性金属粉末および磁気テープの各特性,並び
に,酸化鉄系粒子粉末(強磁性金属粉末)のCo,Al
およびYのFeに対する含有割合(at.%)を表1〜3に
併記した。
【0055】〔実施例15〕CoCl2 の添加量をCo
/Fe=1at.%相当量に変更した以外は実施例2に従っ
た。得られたオキシ水酸化鉄系粒子粉末,酸化鉄系粒子
粉末,強磁性金属粉末および磁気テープの各特性,並び
に,酸化鉄系粒子粉末(強磁性金属粉末)のCo,Al
およびYのFeに対する含有割合(at.%)を表1〜3に
併記した。
【0056】〔比較例1〕硝酸イットリウムを添加しな
かった以外は実施例2に従った。得られたオキシ水酸化
鉄系粒子粉末,酸化鉄系粒子粉末,強磁性金属粉末およ
び磁気テープの各特性,並びに酸化鉄系粒子粉末(強磁
性金属粉末)のCoおよびAlのFeに対する含有割合
(at.%)を表1〜3に併記した。
【0057】〔比較例2〕アルミン酸ナトリウムを添加
しなかった以外は実施例2に従った。得られたオキシ水
酸化鉄系粒子粉末,酸化鉄系粒子粉末,強磁性金属粉末
および磁気テープの各特性,並びに酸化鉄系粒子粉末
(強磁性金属粉末)のCoおよびYのFeに対する含有
割合(at.%)を表1〜3に併記した。
【0058】〔比較例3〕硝酸イットリウムに代えてケ
イ酸ナトリウム(Si/Fe=6.5at.%相当量)を加
えた後,HClで中和し,粒子表面にSiを被着後,濾
過,水洗し,200℃空気中で焼成した以外は,実施例
2に従った。得られたオキシ水酸化鉄系粒子粉末,酸化
鉄系粒子粉末,強磁性金属粉末および磁気テープの各特
性,並びに酸化鉄系粒子粉末(強磁性金属粉末)のC
o,AlおよびSiのFeに対する含有割合(at.%)を
表1〜3に併記した。
【0059】〔比較例4〕アルミン酸ナトリウムの添加
を,塩化コバルトを添加し熟成した後の時点に変更し,
ついでCO2 ガスを吹き込んで中和し,これによって,
粒子表面にAlを被覆させた以外は実施例2に従った。
得られたオキシ水酸化鉄系粒子粉末,酸化鉄系粒子粉
末,強磁性金属粉末および磁気テープの各特性,並びに
酸化鉄系粒子粉末(強磁性金属粉末)のCo,Alおよ
びYのFeに対する含有割合(at.%)を表1〜3に併記
した。
【0060】〔比較例5〕塩化コバルトを添加しなかっ
た以外は実施例2に従った。得られたオキシ水酸化鉄系
粒子粉末,酸化鉄系粒子粉末,強磁性金属粉末および磁
気テープの各特性,並びに酸化鉄系粒子粉末(強磁性金
属粉末)のAlおよびYのFeに対する含有割合(at.
%)を表1〜3に併記した。
【0061】
【表1】
【0062】
【表2】
【0063】
【表3】
【0064】表1〜3の結果から,本発明に従う先駆物
質は,良好な磁気特性を有する金属磁性粉末を得ること
ができ,この金属磁性粉末を用いた磁気テープは保磁力
が2300(Oe )以上,角形比(Br/Bm)が0.
89以上,SFD値が0.40以下を達成できることが
わかる。
【0065】これに対し,比較例1のようにR被着なし
の先駆物質や,比較例3のようにRに代えてSi被着し
た先駆物質では,たとえ実施例と同様にCoを含有しA
lを固溶していても,磁気テープの保磁力,角形比およ
びSFD値が実施例のものより劣り,本発明で目的とす
るような高密度磁気記録の特性を満足しない。
【0066】また,比較例2のようにAlを含有しない
先駆物質や,比較例4のようにAlを含有してもその形
態が被着である先駆物質では,たとえ実施例と同様にC
oを含有し且つRを被着していても,磁気テープの保磁
力,角形比およびSFD値が実施例のものより劣り,本
発明で目的とするような高密度磁気記録の特性を満足し
ない。
【0067】さらに,比較例5のように,Coを含有し
ない先駆物質では,たとえ実施例と同様にAlを固溶し
Rを被着していても,金属磁性粉のσs およびΔσs が
劣り, また磁気テープのSFD値も劣るようになり,本
発明で目的とするような高密度磁気記録の特性を満足し
ない。
【0068】
【発明の効果】以上説明したように,本発明によると,
高密度磁気記録に適した塗布型磁気記録媒体の性能向上
に大きく貢献できる。とくに,本発明の先駆物質を用い
ると,これまでの水準を超えた保磁力が2300(Oe
)以上,角形比(Br/Bm)が0.89以上およびS
FD値が0.40以下の特性を同時に満足する磁気テー
プを得ることができる。
【図面の簡単な説明】
【図1】実施例2(Al固溶)と比較例4(Al被着)
の条件で磁気テープを製造し,そのさいYの被着量を変
化させたときの両テープの保磁力の変化を示した図であ
る。
【図2】図1と同様に,実施例2と比較例4の条件で磁
気テープを製造し,そのさいYの被着量を変化させたと
きの両テープの角形比(Br/Bm)の変化を示した図
である。
【図3】図1と同様に,実施例2と比較例4の条件で磁
気テープを製造し,そのさいYの被着量を変化させたと
きの両テープのSFD値の変化を示した図である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 和幸 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 紺野 慎一 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 沢辺 明朗 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 オキシ水酸化鉄または酸化鉄にCo,A
    lおよびR(RはYを含む希土類元素の少なくとも一種
    を表す)を含有させた針状粒子からなる磁性粉製造用先
    駆物質であって,該針状粒子が,Feに対してCoを0
    超え〜50at.%含有し,且つ,Feに対して0.1〜3
    0at.%のAlを固溶した粒子の表層部にR層(ただし,
    粒子中のR含有量はFeに対して0.1〜15at.%であ
    る)が被着したものである磁性粉製造用先駆物質。
  2. 【請求項2】 粒子中のR含有量はFeに対して2〜1
    0at.%である請求項1に記載の磁性粉製造用先駆物質。
  3. 【請求項3】 オキシ水酸化鉄または酸化鉄にCo,A
    lおよびR(RはYを含む希土類元素の少なくとも一種
    を表す)を含有させた針状粒子からなる粉末をガス還元
    してなる強磁性金属粉末であって,還元前の前記の針状
    粒子が,Feに対してCoを0超え〜50at.%含有し,
    且つ,Feに対して0.1〜30at.%のAlを固溶した
    粒子の表層部にR層(ただし,粒子中のR含有量はFe
    に対して0.1〜15at.%である)が被着したものであ
    る,強磁性金属粉末。
  4. 【請求項4】 粒子中のR含有量はFeに対して2〜1
    0at.%である請求項3に記載の強磁性金属粉末。
JP10071409A 1998-03-05 1998-03-05 磁性粉製造用先駆物質およびこれから得た強磁性金属粉末 Pending JPH11251122A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10071409A JPH11251122A (ja) 1998-03-05 1998-03-05 磁性粉製造用先駆物質およびこれから得た強磁性金属粉末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10071409A JPH11251122A (ja) 1998-03-05 1998-03-05 磁性粉製造用先駆物質およびこれから得た強磁性金属粉末

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007101431A Division JP2007194666A (ja) 2007-04-09 2007-04-09 強磁性金属粉末製造用の先駆物質

Publications (1)

Publication Number Publication Date
JPH11251122A true JPH11251122A (ja) 1999-09-17

Family

ID=13459700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10071409A Pending JPH11251122A (ja) 1998-03-05 1998-03-05 磁性粉製造用先駆物質およびこれから得た強磁性金属粉末

Country Status (1)

Country Link
JP (1) JPH11251122A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852404B2 (en) 2002-03-29 2005-02-08 Tdk Corporation Magnetic recording medium
JP2005268389A (ja) * 2004-03-17 2005-09-29 Dowa Mining Co Ltd 窒化鉄系磁性粉末およびその製造法
JP2007081227A (ja) * 2005-09-15 2007-03-29 Dowa Holdings Co Ltd 強磁性粉末ならびにそれを用いた塗料および磁気記録媒体
CN104722766A (zh) * 2013-12-18 2015-06-24 深圳市格林美高新技术股份有限公司 一种高密度钴粉及其合成方法
JP2021186777A (ja) * 2020-06-02 2021-12-13 テクニカ合同株式会社 泥土や土砂に含まれるフッ素及び/又はヒ素の不溶化方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852404B2 (en) 2002-03-29 2005-02-08 Tdk Corporation Magnetic recording medium
JP2005268389A (ja) * 2004-03-17 2005-09-29 Dowa Mining Co Ltd 窒化鉄系磁性粉末およびその製造法
JP4534059B2 (ja) * 2004-03-17 2010-09-01 Dowaエレクトロニクス株式会社 窒化鉄系磁性粉末およびその製造法
JP2007081227A (ja) * 2005-09-15 2007-03-29 Dowa Holdings Co Ltd 強磁性粉末ならびにそれを用いた塗料および磁気記録媒体
CN104722766A (zh) * 2013-12-18 2015-06-24 深圳市格林美高新技术股份有限公司 一种高密度钴粉及其合成方法
JP2021186777A (ja) * 2020-06-02 2021-12-13 テクニカ合同株式会社 泥土や土砂に含まれるフッ素及び/又はヒ素の不溶化方法

Similar Documents

Publication Publication Date Title
US7510790B2 (en) Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US5968226A (en) Process of making goethite or iron-based alloy particles
JP5058889B2 (ja) 磁気記録媒体
US5580399A (en) Magnetic recording medium
JPH0722224A (ja) 強磁性金属粉末
JP3640577B2 (ja) 磁性粉製造用先駆物質およびこれから得た強磁性金属粉末
JPH1069629A (ja) 重層構造の塗布型磁気記録媒体
JPH11251122A (ja) 磁性粉製造用先駆物質およびこれから得た強磁性金属粉末
JP4143713B2 (ja) 磁気記録用の磁性粉
JP2004035939A (ja) 磁気記録用紡錘状合金磁性粒子粉末及びその製造法
JPH0636265A (ja) 磁気記録媒体
JPH10245233A (ja) 紡錘状ヘマタイト粒子粉末及びその製造法並びに該ヘマタイト粒子粉末を出発原料として得られる鉄を主成分とする紡錘状金属磁性粒子粉末及びその製造法
EP1220208A1 (en) Spindle-shaped magnetic alloy particles for magnetic recording, and magnetic recording medium
KR20030014085A (ko) 철을 주성분으로 함유하는 방추형 자성 금속입자 및 그의제조방법
JP5457260B2 (ja) 磁気記録媒体
JP2003247002A (ja) 鉄を主成分とする金属磁性粒子粉末及びその製造法並びに磁気記録媒体
JP4182310B2 (ja) 磁気記録用Fe及びCoを主成分とする紡錘状合金磁性粒子粉末の製造法
US5989516A (en) Spindle-shaped geothite particles
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JP2001355001A (ja) 紡錘状ゲータイト粒子粉末、紡錘状ヘマタイト粒子粉末及び鉄を主成分とする紡錘状金属磁性粒子粉末、並びにそれらの製造法
JP2007194666A (ja) 強磁性金属粉末製造用の先駆物質
JPH1025115A (ja) 酸化鉄系磁性粉末及びこれを用いた磁気記録媒体
JP2965606B2 (ja) 金属磁性粉末の製造方法
JPH0647681B2 (ja) 紡錘形状を呈した鉄を主成分とする金属磁性粒子粉末及びその製造法
JP2933397B2 (ja) 磁気記録用強磁性酸化鉄粉末の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070619

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080208