JPH0995525A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH0995525A
JPH0995525A JP25165895A JP25165895A JPH0995525A JP H0995525 A JPH0995525 A JP H0995525A JP 25165895 A JP25165895 A JP 25165895A JP 25165895 A JP25165895 A JP 25165895A JP H0995525 A JPH0995525 A JP H0995525A
Authority
JP
Japan
Prior art keywords
epoxy resin
fused silica
resin composition
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25165895A
Other languages
Japanese (ja)
Inventor
Hironori Osuga
浩規 大須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP25165895A priority Critical patent/JPH0995525A/en
Publication of JPH0995525A publication Critical patent/JPH0995525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a resin composition which shows excellent cracking resistance when subjected to thermal stress resulting from an abrupt temperature change in a soldering step. SOLUTION: This resin composition essentially consists of an epoxy resin, a phenolic resin curing agent, a cure accelerator and fused silica, and is an epoxy resin composition for semiconductor sealing in which the fused silica comprises 5-40wt.% broken fused silica of a mean particle diameter of 10-30μm and 95-60wt.% spherical fused silica of a mean particle diameter of 10-30μm and is contained in an amount of 80-93wt.% based on the entire composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイスの
表面実装化における半田耐熱性に優れた半導体封止用エ
ポキシ樹脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation which is excellent in solder heat resistance in surface mounting semiconductor devices.

【0002】[0002]

【従来の技術】従来、ダイオード、トランジスタ、集積
回路等の電子部品を熱硬化性樹脂で封止しているが、特
に集積回路では耐熱性、耐湿性に優れたO−クレゾール
ノボラック型エポキシ樹脂をノボラック型フェノール樹
脂で硬化させたエポキシ樹脂が用いられている。ところ
が近年、集積回路の高集積化に伴いチップがだんだん大
型化し、かつパッケージには従来のDIPタイプから表
面実装化された小型、薄型のフラットパッケージ、SO
P、TSOP、SOJ、QFP、TQFP等に変わって
きている。即ち、大型チップを小型で薄いパッケージに
封入することになり、応力によりクラック発生、これら
のクラックによる耐湿性の低下等の問題が大きくクロー
ズアップされてきている。特に半田付けの工程において
急激に200℃以上の高温にさらされることによりパッ
ケージの割れや樹脂とチップの剥離により耐湿性が劣化
してしまうといった問題点がでてきている。これらの大
型チップを封止するのに適した、信頼性の高い封止用樹
脂組成物の開発が望まれてきている。
2. Description of the Related Art Conventionally, electronic parts such as diodes, transistors and integrated circuits have been sealed with a thermosetting resin. Especially in integrated circuits, an O-cresol novolac type epoxy resin excellent in heat resistance and moisture resistance is used. An epoxy resin cured with a novolac type phenolic resin is used. However, in recent years, as the integration of integrated circuits has increased, the size of chips has gradually increased, and the package is a small and thin flat package that is surface-mounted from the conventional DIP type.
P, TSOP, SOJ, QFP, TQFP, etc. That is, a large chip is to be enclosed in a small and thin package, and cracks due to stress and a decrease in moisture resistance due to these cracks have been greatly highlighted. In particular, in the soldering process, when exposed to a high temperature of 200 ° C. or more, the moisture resistance is deteriorated due to cracking of the package and peeling of the resin and the chip. It has been desired to develop a highly reliable encapsulating resin composition suitable for encapsulating these large chips.

【0003】これらの問題を解決するために半田付け時
の熱衝撃を緩和する目的で、熱可塑性オリゴマーの添加
(特開昭62−115849号公報)や各種シリコーン
化合物の添加(特開昭62−11585号公報、62−
116654号公報、62−128162号公報)、更
にはシリコーン変性(特開昭62−136860号公
報)等の手法で対応しているが、樹脂強度が低下するた
めに、半田付け工程での熱ストレスに対して、かえって
樹脂クラックを発生するのが常であった。一方、半田付
け時の耐熱ストレス性、つまり半田耐熱性に優れた半導
体封止用エポキシ樹脂組成物を得るために、樹脂系とし
てビフェニル型エポキシ樹脂の使用(特開昭64−65
116号公報)等が検討されてきたが、ビフェニル型エ
ポキシ樹脂の使用によりリードフレームとの密着性及び
低吸水性が向上し、半田耐熱性の向上、特にクラック発
生が低減するが、250℃以上の高温では半田耐熱性が
不十分であり、信頼性の優れた半導体封止用エポキシ樹
脂組成物を得るまでには至らなかった。また、充填材と
して流動性に優れた球状の溶融シリカを多量に配合し、
低吸水化、低熱膨張化をはかる手法も検討されたが形状
が球であるために樹脂強度が低下し、半田耐熱性は不十
分であった。
In order to solve these problems, the addition of a thermoplastic oligomer (Japanese Patent Laid-Open No. 62-15849) and various silicone compounds (Japanese Patent Laid-Open No. 62- 11585, 62-
No. 116654, 62-128162), and further silicone modification (Japanese Patent Laid-Open No. 62-136860), but the resin strength is reduced, so that thermal stress in the soldering process is applied. On the contrary, resin cracks were always generated. On the other hand, in order to obtain an epoxy resin composition for semiconductor encapsulation which is excellent in heat stress resistance during soldering, that is, solder heat resistance, use of a biphenyl type epoxy resin as a resin system (Japanese Patent Laid-Open No. 64-65).
No. 116) has been studied, but the use of a biphenyl type epoxy resin improves the adhesion to the lead frame and the low water absorption, and improves the solder heat resistance, in particular, the occurrence of cracks is reduced. At high temperatures, the solder heat resistance was insufficient, and it was not possible to obtain a highly reliable epoxy resin composition for semiconductor encapsulation. In addition, a large amount of spherical fused silica with excellent fluidity is blended as a filler,
A method of achieving low water absorption and low thermal expansion was also studied, but the resin strength was lowered because of the spherical shape, and the solder heat resistance was insufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
問題に対して、充填材である溶融シリカの形状、粒径及
び充填量を調整し、低吸水化、低熱膨張化、高強度化を
はかり、基板実装時における半導体パッケージの半田耐
熱性を著しく向上させた半導体封止用エポキシ樹脂組成
物を提供するものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention adjusts the shape, particle size and filling amount of fused silica as a filler to lower water absorption, lower thermal expansion and higher strength. The present invention provides an epoxy resin composition for semiconductor encapsulation, in which solder heat resistance of a semiconductor package during mounting on a substrate is remarkably improved.

【0005】[0005]

【問題を解決するための手段】本発明は、(A)エポキ
シ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進
剤、及び(D)溶融シリカを必須成分とするエポキシ樹
脂組成物であって、該溶融シリカが平均粒径3〜8μm
の破砕溶融シリカ5〜40重量%、平均粒径10〜30
μmの球状溶融シリカ95〜60重量%からなり、かつ
全組成物中に80〜93重量%含むことを特徴とする半
導体封止用エポキシ樹脂組成物である。
The present invention is an epoxy resin composition containing (A) an epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, and (D) fused silica as essential components. And the fused silica has an average particle size of 3 to 8 μm.
Crushed fused silica 5 to 40% by weight, average particle size 10 to 30
An epoxy resin composition for semiconductor encapsulation, comprising 95 to 60% by weight of spherical fused silica having a particle size of 80 μm, and 80 to 93% by weight in the total composition.

【0006】[0006]

【発明の実施の態様】本発明に用いるエポキシ樹脂は、
1分子中にエポキシ基を2個以上有するものである。例
えば、ビスフェノール型エポキシ樹脂、クレゾールノボ
ラック型エポキシ樹脂、フェノールノボラック型エポキ
シ樹脂、トリフェノールメタン型エポキシ樹脂及びビフ
ェニル型エポキシ樹脂等が挙げられる。特に、式(1)
で示されるビフェニル型エポキシ樹脂、例えば、Rがメ
チル基である3,3′,5,5′−テトラメチルビフェ
ノールジグリシジルエーテル等の比較的低分子のものを
用いると、密着性や溶融粘度の設定上好ましい。これら
の樹脂は単独でも混合して用いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin used in the present invention is
It has two or more epoxy groups in one molecule. Examples thereof include bisphenol type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, triphenol methane type epoxy resin and biphenyl type epoxy resin. In particular, equation (1)
When a biphenyl type epoxy resin represented by, for example, a relatively low molecular weight compound such as 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether in which R is a methyl group is used, the adhesiveness and melt viscosity are It is preferable in terms of settings. These resins may be used alone or as a mixture.

【0007】本発明に用いるフェノール樹脂硬化剤は、
フェノール性水酸基を有するポリマー全般を言う。例え
ば、フェノールノボラック樹脂、クレゾールノボラック
樹脂、フェノールアラルキル樹脂、ジシクロペンタジエ
ン変性フェノール樹脂及びテルペン変性フェノール樹脂
等が挙げられる。これらの樹脂は単独でも混合して用い
てもよい。
The phenol resin curing agent used in the present invention is
It refers to all polymers having a phenolic hydroxyl group. Examples thereof include phenol novolac resin, cresol novolac resin, phenol aralkyl resin, dicyclopentadiene modified phenol resin, and terpene modified phenol resin. These resins may be used alone or as a mixture.

【0008】本発明に用いる硬化促進剤は、エポキシ基
とフェノール性水酸基との反応を促進するものであれば
よく、一般に封止用材料に使用されているものを広く使
用することができ、例えば、ジアザビシクロウンデセ
ン、トリフェニルホスフィン、ベンジルジメチルアミン
や2−メチルイミダゾール等が挙げられ、これらは単独
もしくは2種類以上混合して用いてもよい。
The curing accelerator used in the present invention may be any one as long as it accelerates the reaction between the epoxy group and the phenolic hydroxyl group, and those generally used for sealing materials can be widely used. , Diazabicycloundecene, triphenylphosphine, benzyldimethylamine, 2-methylimidazole and the like, and these may be used alone or in combination of two or more kinds.

【0009】本発明に用いる溶融シリカは、平均粒径3
〜8μmの破砕溶融シリカと、平均粒径10〜30μm
の球状溶融シリカからなる。ここで、平均粒径とは、累
積重量が50%になる粒径のことを言う。破砕溶融シリ
カの平均粒径が3μm未満では、樹脂強度が低下し、半
田耐熱性が不十分であり、8μmを超えると流動性が低
下し、成形性が悪くなる。また、球状溶融シリカの平均
粒径が10μm未満では、流動性が低下し、成形性が悪
くなり、30μmを超えると半導体表面のパッシベーシ
ョン膜やアルミ配線等にダメージを与える。本発明に用
いる溶融シリカにおいて、破砕溶融シリカと球状溶融シ
リカの配合割合は、破砕溶融シリカが5〜40重量%、
球状溶融シリカが95〜60重量%である。破砕溶融シ
リカが5重量%未満では、樹脂強度が低下し、半田耐熱
性が不十分であり、40重量%を越えると、流動性が低
下し、成形性が悪くなる。また、球状溶融シリカが95
重量%を越えると樹脂強度が低下し、半田耐熱性が不十
分である。60重量%未満だと流動性が低下し、成形性
が悪くなる。本発明に用いる溶融シリカの配合量は、全
組成物中の80〜93重量%である。80重量%未満で
は吸水性及び熱膨張が増大し、半田耐熱性が不十分であ
り、93重量%を超えると、流動性が低下し、成形性が
悪くなる。
The fused silica used in the present invention has an average particle size of 3
~ 8 μm crushed fused silica and average particle size 10-30 μm
Of spherical fused silica. Here, the average particle size means a particle size at which the cumulative weight becomes 50%. When the average particle diameter of the crushed fused silica is less than 3 μm, the resin strength is lowered and the solder heat resistance is insufficient, and when it exceeds 8 μm, the fluidity is lowered and the moldability is deteriorated. Further, if the average particle diameter of the spherical fused silica is less than 10 μm, the fluidity is lowered and the formability is deteriorated, and if it exceeds 30 μm, the passivation film on the semiconductor surface, the aluminum wiring and the like are damaged. In the fused silica used in the present invention, the blending ratio of the crushed fused silica and the spherical fused silica is 5 to 40% by weight of the crushed fused silica,
The spherical fused silica is 95-60% by weight. If the content of the crushed fused silica is less than 5% by weight, the resin strength is lowered and the solder heat resistance is insufficient. If it exceeds 40% by weight, the fluidity is lowered and the moldability is deteriorated. Also, spherical fused silica is 95
If the content exceeds 10% by weight, the resin strength decreases and the solder heat resistance is insufficient. If it is less than 60% by weight, the fluidity is lowered and the moldability is deteriorated. The amount of fused silica used in the present invention is 80 to 93% by weight based on the total composition. If it is less than 80% by weight, water absorption and thermal expansion are increased and the solder heat resistance is insufficient, and if it exceeds 93% by weight, fluidity is lowered and moldability is deteriorated.

【0010】本発明の封止用エポキシ樹脂組成物は、エ
ポキシ樹脂、フェノール樹脂硬化剤、硬化促進剤、及び
溶融シリカを必須成分とするが、これ以外に必要に応じ
てシランカップリング剤、ブロム化エポキシ樹脂、三酸
化アンチモン、ヘキサブロムベンゼン等の難燃剤、カー
ボンブラック、ベンガラ等の着色剤、天然ワックス、合
成ワックス等の離型剤及びシリコーンオイル、ゴム等の
低応力添加剤等の種々の添加剤を適宜配合しても差し支
えがない。又、本発明の封止用エポキシ樹脂組成物を成
形材料として製造するには、エポキシ樹脂、フェノール
樹脂硬化剤、硬化促進剤、溶融シリカ、その他の添加剤
をミキサー等によって十分に均一に混合した後、更に熱
ロール又はニーダー等で溶融混練し、冷却後粉砕して成
形材料とすることができる。これらの成形材料は電子部
品あるいは電気部品の封止、被覆、絶縁等に適用するこ
とができる。
The encapsulating epoxy resin composition of the present invention contains an epoxy resin, a phenol resin curing agent, a curing accelerator, and fused silica as essential components. In addition to these, a silane coupling agent and bromine may be added if necessary. Flame retardants such as epoxidized epoxy resin, antimony trioxide and hexabromene, coloring agents such as carbon black and red iron oxide, mold release agents such as natural wax and synthetic wax, and low stress additives such as silicone oil and rubber. There is no problem even if additives are properly mixed. Further, in order to produce the encapsulating epoxy resin composition of the present invention as a molding material, an epoxy resin, a phenol resin curing agent, a curing accelerator, fused silica, and other additives are sufficiently uniformly mixed with a mixer or the like. After that, the mixture can be further melt-kneaded with a hot roll or a kneader, cooled and pulverized to obtain a molding material. These molding materials can be applied to sealing, coating, insulating, etc. of electronic parts or electric parts.

【0011】以下本発明を実施例で具体的に説明する。 実施例1 破砕溶融シリカ(平均粒径5μm) 10.00重量部 球状溶融シリカ(平均粒径15μm) 75.00重量部 3,3′,5,5′−テトラメチルビフェノールジグリシジルエーテル (融点104℃、エポキシ当量194) 9.07重量部 フェノールノボラック樹脂硬化剤 (軟化点85℃、水酸基当量105) 4.88重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(DBU) 0.25重量部 カルナバワックス 0.50重量部 カーボンブラック 0.30重量部 をミキサーにて常温で混合し、80〜100℃で2軸ロ
ールにより混練し、冷却後粉砕し成形材料とした。得ら
れた成形材料のスパイラルフロー、半田クラック性及び
半田耐湿性試験を実施した。評価結果を表1に示す。
Hereinafter, the present invention will be described specifically with reference to examples. Example 1 Crushed fused silica (average particle size 5 μm) 10.00 parts by weight Spherical fused silica (average particle size 15 μm) 75.00 parts by weight 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether (melting point 104 C, epoxy equivalent 194) 9.07 parts by weight Phenol novolac resin curing agent (softening point 85 ° C., hydroxyl equivalent 105) 4.88 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (DBU) 0 0.25 parts by weight Carnauba wax 0.50 parts by weight Carbon black 0.30 parts by weight was mixed with a mixer at room temperature, kneaded with a biaxial roll at 80 to 100 ° C., cooled and pulverized to obtain a molding material. Spiral flow, solder crack resistance and solder moisture resistance tests of the obtained molding material were carried out. Table 1 shows the evaluation results.

【0012】評価方法 スパイラルフロー:EMMI−I−66に準じたスパイ
ラルフロー測定用の金型を用い、金型温度175℃、注
入圧力70kg/cm2、硬化時間2分で測定した。 金線変形:チップサイズ6×6mm、金線長さ3mmの
52pQFPを金型温度175℃、注入圧力70kg/
cm2、硬化時間2分で成形し、X線透視装置により金
線変形を観察した。 半田クラック性:チップサイズ6×6mmの52pQF
Pを金型温度175℃、注入圧力70kg/cm2、硬
化時間2分で成形し、得られた成形品を175℃、8時
間で後硬化した。この成形品を85℃、85%RHの環
境下で48時間、72時間及び120時間処理し、その
後260℃の半田槽に10秒浸漬後、顕微鏡で外部クラ
ックを観察した。 半田耐湿性:チップサイズ6×6mmの52pQFPを
金型温度175℃、注入圧力70kg/cm2、硬化時
間2分で成形し、得られた成形品を175℃、8時間で
後硬化した。この成形品を85℃、85%RHの環境下
で72時間処理し、その後260℃の半田槽に10秒間
浸漬後、プレッシャークッカー試験(125℃、100
%RH)を行い、回路のオープン不良を測定した。 実施例2〜5、比較例1〜7 表1、表2の配合に従い、実施例1と同様に成形材料を
得、実施例1と同様にして評価した。評価結果を表1、
表2に示す。
Evaluation method Spiral flow: A mold for spiral flow measurement according to EMMI-I-66 was used, and the mold temperature was 175 ° C., the injection pressure was 70 kg / cm 2 , and the curing time was 2 minutes. Deformation of gold wire: 52pQFP with a chip size of 6 × 6 mm and a gold wire length of 3 mm, mold temperature 175 ° C., injection pressure 70 kg /
It was molded at cm 2 and a curing time of 2 minutes, and the gold wire deformation was observed by an X-ray fluoroscope. Solder cracking property: 52pQF with chip size 6x6mm
P was molded at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes, and the obtained molded product was post-cured at 175 ° C. for 8 hours. This molded product was treated in an environment of 85 ° C. and 85% RH for 48 hours, 72 hours, and 120 hours, then immersed in a solder bath at 260 ° C. for 10 seconds, and external cracks were observed with a microscope. Solder moisture resistance: 52 pQFP with a chip size of 6 × 6 mm was molded at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes, and the obtained molded product was post-cured at 175 ° C. for 8 hours. This molded product was treated in an environment of 85 ° C. and 85% RH for 72 hours, then immersed in a solder bath at 260 ° C. for 10 seconds, and then subjected to a pressure cooker test (125 ° C., 100 ° C.).
% RH) to measure the open circuit failure of the circuit. Examples 2 to 5, Comparative Examples 1 to 7 According to the formulations in Tables 1 and 2, molding materials were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results.
It shows in Table 2.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】本発明に従うと、半田付け工程における
急激な温度変化による熱ストレスを受けた時の耐クラッ
ク性に非常に優れ、表面実装用パッケージにおいて信頼
性が向上するため、工業的価値は絶大である。
According to the present invention, the resistance to cracking when subjected to thermal stress due to a rapid temperature change in the soldering process is very excellent, and the reliability of the surface mounting package is improved, so that it has an industrial value. It is tremendous.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/31 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 23/31

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)エポキシ樹脂、(B)フェノール
樹脂硬化剤、(C)硬化促進剤、及び(D)溶融シリカ
を必須成分とするエポキシ樹脂組成物であって、該溶融
シリカが平均粒径3〜8μmの破砕溶融シリカ5〜40
重量%、平均粒径10〜30μmの球状溶融シリカ95
〜60重量%からなり、かつ全組成物中に80〜93重
量%含むことを特徴とする半導体封止用エポキシ樹脂組
成物。
1. An epoxy resin composition containing (A) an epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, and (D) fused silica as essential components, the fused silica being an average. Crushed fused silica 5-40 with particle size 3-8 μm
95% by weight, spherical fused silica 95 having an average particle size of 10 to 30 μm
An epoxy resin composition for semiconductor encapsulation, which comprises 60 to 60% by weight, and 80 to 93% by weight in the total composition.
【請求項2】 エポキシ樹脂が式(1)で示されるビフ
ェニル型エポキシ樹脂である請求項1記載の半導体封止
用エポキシ樹脂組成物。(ここで、式中のRは水素、又
はメチル基で、同一でも異なってもよい) 【化1】
2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the epoxy resin is a biphenyl type epoxy resin represented by the formula (1). (Here, R in the formula is hydrogen or a methyl group, and may be the same or different.)
JP25165895A 1995-09-28 1995-09-28 Epoxy resin composition Pending JPH0995525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25165895A JPH0995525A (en) 1995-09-28 1995-09-28 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25165895A JPH0995525A (en) 1995-09-28 1995-09-28 Epoxy resin composition

Publications (1)

Publication Number Publication Date
JPH0995525A true JPH0995525A (en) 1997-04-08

Family

ID=17226098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25165895A Pending JPH0995525A (en) 1995-09-28 1995-09-28 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH0995525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121357A (en) * 2000-10-12 2002-04-23 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121357A (en) * 2000-10-12 2002-04-23 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Similar Documents

Publication Publication Date Title
JPH05148411A (en) Thermosetting resin composition and semiconductor device
JPH07268186A (en) Epoxy resin composition
JPH0597970A (en) Thermosetting resin composition and semiconductor device
JP2768088B2 (en) Thermosetting resin composition and semiconductor device
JPH062799B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH07118366A (en) Epoxy resin composition
JP3740988B2 (en) Resin composition for sealing and semiconductor device
JPH09143345A (en) Epoxy resin composition
JPH05148410A (en) Thermosetting resin composition and semiconductor device
JPH0995525A (en) Epoxy resin composition
JPH06184272A (en) Epoxy resin composition
JP3366456B2 (en) Epoxy resin composition
JP3310447B2 (en) Epoxy resin composition
JPH0940748A (en) Epoxy resin composition for semiconductor sealing
JP2843247B2 (en) Epoxy resin composition
JPH0625385A (en) Epoxy resin composition and semiconductor device
JPH07173255A (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition
JP3235799B2 (en) Epoxy resin composition
JPH07238139A (en) Epoxy resin composition
JP3568654B2 (en) Epoxy resin composition
JPH06298903A (en) Epoxy resin composition
JP3317473B2 (en) Epoxy resin composition
JP3093050B2 (en) Epoxy resin composition
JPH07126490A (en) Epoxy resin composition