JP3235799B2 - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JP3235799B2
JP3235799B2 JP25094992A JP25094992A JP3235799B2 JP 3235799 B2 JP3235799 B2 JP 3235799B2 JP 25094992 A JP25094992 A JP 25094992A JP 25094992 A JP25094992 A JP 25094992A JP 3235799 B2 JP3235799 B2 JP 3235799B2
Authority
JP
Japan
Prior art keywords
epoxy resin
curing agent
solder
resin
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25094992A
Other languages
Japanese (ja)
Other versions
JPH06100659A (en
Inventor
直樹 茂木
茂久 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP25094992A priority Critical patent/JP3235799B2/en
Priority to TW082103448A priority patent/TW272981B/zh
Priority to EP93107683A priority patent/EP0589143B1/en
Priority to SG9502396A priority patent/SG87725A1/en
Priority to DE69307442T priority patent/DE69307442T2/en
Priority to MYPI93000905A priority patent/MY109105A/en
Publication of JPH06100659A publication Critical patent/JPH06100659A/en
Priority to US08/287,592 priority patent/US5578660A/en
Application granted granted Critical
Publication of JP3235799B2 publication Critical patent/JP3235799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイスの表面
実装化における耐半田ストレス性に優れた半導体封止用
エポキシ樹脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation which is excellent in soldering stress resistance in surface mounting of a semiconductor device.

【0002】[0002]

【従来の技術】従来、ダイオード、トランジスタ、集積
回路等の電子部品を熱硬化性樹脂で封止しているが、特
に集積回路では耐熱性、耐湿性に優れたO−クレゾール
ノボラックエポキシ樹脂をノボラック型フェノール樹脂
で硬化させたエポキシ樹脂が用いられている。ところが
近年、集積回路の高集積化に伴いチップがだんだん大型
化し、かつパッケージは従来のDIPタイプから表面実
装化された小型、薄型のQFP,SOP,SOJ,TS
OP,TQFP,PLCCに変わってきている。
2. Description of the Related Art Conventionally, electronic components such as diodes, transistors, and integrated circuits are sealed with a thermosetting resin. In particular, in an integrated circuit, an O-cresol novolak epoxy resin having excellent heat resistance and moisture resistance is made of novolak. An epoxy resin cured with a mold phenol resin is used. However, in recent years, chips have become larger and larger with the increase in the degree of integration of integrated circuits, and small and thin QFPs, SOPs, SOJs, and TSs whose surfaces have been packaged from conventional DIP types.
OP, TQFP and PLCC have been changed.

【0003】即ち大型チップを小型で薄いパッケージに
封入することになり、応力によりクラック発生、これら
のクラックによる耐湿性の低下等の問題が大きくクロー
ズアップされてきている。特に半田付けの工程において
急激に200℃以上の高温にさらされることによりパッ
ケージの割れや樹脂とチップの剥離により耐湿性が劣化
してしまうといった問題点がでてきている。これらの大
型チップを封止するのに適した、信頼性の高い封止用樹
脂組成物の開発が望まれてきている。これらの問題を解
決するためにエポキシ樹脂として下記式(1)で示され
るエポキシ樹脂の使用(特開昭64−65116号公
報)が検討されてきた。
That is, a large chip is enclosed in a small and thin package, and cracks are generated due to stress, and problems such as a decrease in moisture resistance due to the cracks have been greatly highlighted. In particular, there has been a problem in that abrupt exposure to a high temperature of 200 ° C. or more in a soldering process causes a crack in a package and a peeling of a resin and a chip to deteriorate moisture resistance. Development of a highly reliable sealing resin composition suitable for sealing these large chips has been desired. In order to solve these problems, use of an epoxy resin represented by the following formula (1) as an epoxy resin (JP-A-64-65116) has been studied.

【0004】[0004]

【化3】 Embedded image

【0005】式(1)で示されるエポキシ樹脂の使用に
よりレジン系の低粘度化が図られ、従って溶融シリカ粉
末を更に多く配合することにより組成物の成形後の低熱
膨張化及び低吸水化より耐半田ストレス性の向上が図ら
れた。ただし、溶融シリカ粉末を多く配合することによ
る弾性率の増加も一方の弊害であり、更なる耐半田スト
レス性の向上が必要である。
[0005] The use of the epoxy resin represented by the formula (1) lowers the viscosity of the resin system. Therefore, by blending more fused silica powder, it is possible to reduce the thermal expansion and water absorption after molding the composition. Improvement of solder stress resistance was achieved. However, an increase in the modulus of elasticity due to the incorporation of a large amount of the fused silica powder is another adverse effect, and it is necessary to further improve the solder stress resistance.

【0006】[0006]

【発明が解決しようとする課題】本発明はこの様な問題
に対してエポキシ樹脂として式(1)で示されるエポキ
シ樹脂を用い、弾性率の低下による応力低下を達成せし
めるためにフェノール樹脂硬化剤として式(2)で示さ
れるフェノール樹脂硬化剤を用いることにより、基板実
装時における半導体パッケージの耐半田ストレス性を著
しく向上させた半導体封止用エポキシ樹脂組成物を提供
するところにある。
The present invention solves such a problem by using an epoxy resin represented by the formula (1) as an epoxy resin, and using a phenol resin curing agent in order to achieve a decrease in stress due to a decrease in elastic modulus. An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation in which the use of a phenol resin curing agent represented by the formula (2) significantly improves the solder stress resistance of a semiconductor package during mounting on a substrate.

【0007】[0007]

【課題を解決するための手段】本発明は、(A)下記式
(1)で示されるエポキシ樹脂を総エポキシ樹脂量に対
して30〜100重量%含むエポキシ樹脂、
According to the present invention, there is provided an epoxy resin containing (A) an epoxy resin represented by the following formula (1) in an amount of 30 to 100% by weight based on the total epoxy resin amount:

【0008】[0008]

【化4】 Embedded image

【0009】(B)下記式(2)で示されるフェノール
樹脂硬化剤を総フェノール樹脂硬化剤に対して30〜1
00重量%含むフェノール樹脂硬化剤、
(B) The phenol resin curing agent represented by the following formula (2) is added in an amount of 30 to 1 with respect to the total phenol resin curing agent.
Phenol resin curing agent containing 00% by weight,

【0010】[0010]

【化5】 Embedded image

【0011】(C)無機充填材および(D)硬化促進剤
を必須成分とする半導体封止用エポキシ樹脂組成物であ
る。従来のエポキシ樹脂組成物に比べ優れた耐半田スト
レス性を有するものである。
An epoxy resin composition for semiconductor encapsulation comprising (C) an inorganic filler and (D) a curing accelerator as essential components. It has excellent solder stress resistance as compared with conventional epoxy resin compositions.

【0012】式(1)の構造で示されるビフェニル型エ
ポキシ樹脂は1分子中に2つのエポキシ基を有する2官
能性エポキシ樹脂で、従来の多官能性エポキシ樹脂に比
べ溶融粘度が低くトランスファー成形時の流動性に優れ
る。従って組成物の溶融にシリカ粉末を多く配合するこ
とができ、低熱膨張化及び低吸水化が図られ、耐半田ス
トレス性に優れるエポキシ樹脂組成物を得ることができ
る。このビフェニル型エポキシ樹脂の使用量はこれを調
節することにより耐半田ストレス性を最大限に引き出す
ことができる。耐半田ストレス性の効果を出すためには
式(1)で示されるビフェニル型エポキシ樹脂を総エポ
キシ樹脂量の30重量%以上、好ましくは50重量%以
上使用するのが望ましい。30重量%未満だと低熱膨張
化及び低吸水性が得られず耐半田ストレス性が不充分で
ある。更に式中のR1〜R4はメチル基、R5〜R8は水素
原子が好ましい。
The biphenyl type epoxy resin represented by the structure of the formula (1) is a bifunctional epoxy resin having two epoxy groups in one molecule, and has a lower melt viscosity than conventional polyfunctional epoxy resins during transfer molding. Excellent fluidity. Accordingly, a large amount of silica powder can be added to the composition for melting, and an epoxy resin composition having low thermal expansion and low water absorption and having excellent solder stress resistance can be obtained. By adjusting the amount of the biphenyl type epoxy resin used, the solder stress resistance can be maximized. In order to achieve the effect of resistance to soldering stress, it is desirable to use the biphenyl type epoxy resin represented by the formula (1) in an amount of 30% by weight or more, preferably 50% by weight or more of the total epoxy resin amount. If it is less than 30% by weight, low thermal expansion and low water absorption cannot be obtained, and the solder stress resistance is insufficient. Further, in the formula, R 1 to R 4 are preferably a methyl group, and R 5 to R 8 are preferably a hydrogen atom.

【0013】式(1)で示されるビフェニル型エポキシ
樹脂以外に他のエポキシ樹脂を併用する場合、用いるエ
ポキシ樹脂とはエポキシ基を有するポリマー及びオリゴ
マー全般をいう。例えばビスフェノール型エポキシ樹
脂、クレゾールノボラック型エポキシ樹脂、フェノール
ノボラック型エポキシ樹脂、及びトリフェノールメタン
型エポキシ樹脂、アルキル変性トリフェノールメタン型
エポキシ樹脂等の3官能型エポキシ樹脂、トリアジン核
含有エポキシ樹脂等のことをいう。
When another epoxy resin is used in addition to the biphenyl type epoxy resin represented by the formula (1), the epoxy resin to be used refers to all polymers and oligomers having an epoxy group. For example, trifunctional epoxy resins such as bisphenol type epoxy resin, cresol novolak type epoxy resin, phenol novolak type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, and epoxy resin containing triazine nucleus. Say.

【0014】式(2)の分子構造で示される硬化剤はオ
ルソクレゾールとベンズアルデヒドを用い、縮合反応に
より得たものである。この使用は従来のフェノールノボ
ラック樹脂硬化剤等の使用と比べると半田処理温度近辺
での弾性率の低下とリードフレーム及び半導体チップと
の密着力を向上せしめ、また低吸水化を得ることができ
る。従って半田付時の熱衝撃に対し発生応力の低下とそ
れに伴う半導体チップ及びリードフレーム等との剥離不
良の防止に有効である。この様なフェノール樹脂硬化剤
の使用量はこれを調節することにより、耐半田ストレス
性を最大限に引き出すことが出来る。耐半田ストレス性
の効果を引き出すためには式(2)で示されるフェノー
ル樹脂硬化剤を総硬化剤量に対して30重量%以上、更
に好ましくは50重量%以上使用するのが望ましい。使
用が30重量%未満だと低弾性、低吸水性等及びリード
フレーム、半導体チップとの密着力が不充分で耐半田ス
トレス性の向上が望めない。
The curing agent represented by the molecular structure of formula (2) is obtained by a condensation reaction using orthocresol and benzaldehyde. This use can lower the elastic modulus near the soldering temperature, improve the adhesion to the lead frame and the semiconductor chip, and achieve low water absorption, as compared with the use of a conventional phenol novolak resin curing agent or the like. Therefore, it is effective in preventing a reduction in stress generated due to a thermal shock at the time of soldering and a resulting peeling failure from a semiconductor chip, a lead frame or the like. By adjusting the amount of such a phenolic resin curing agent, the solder stress resistance can be maximized. In order to bring out the effect of resistance to soldering stress, it is desirable to use the phenolic resin curing agent represented by the formula (2) in an amount of 30% by weight or more, more preferably 50% by weight or more based on the total amount of the curing agent. If the amount is less than 30% by weight, low elasticity, low water absorption, etc., and insufficient adhesion to the lead frame and semiconductor chip cannot be expected to improve solder stress resistance.

【0015】式(2)で示されるフェノール樹脂硬化剤
以外に他のものを併用する場合、用いるものとは主にフ
ェノール性水酸基を有するポリマー及びオリゴマー全般
をいう。例えばフェノールノボラック樹脂、クレゾール
ノボラック樹脂、ジシクロペンタジエン変性フェノール
樹脂、ジシクロペンタジエン変性フェノール樹脂とフェ
ノールノボラック及びクレゾールノボラック樹脂との共
重合物、パラキシレン変性フェノール樹脂、トリフェノ
ールメタン樹脂、フェノール及びクレゾールとサリチル
アルデヒドとの縮合物等を用いることができる。
When other than the phenolic resin curing agent represented by the formula (2) is used in combination, what is used mainly refers to polymers and oligomers having mainly phenolic hydroxyl groups. For example, phenol novolak resin, cresol novolak resin, dicyclopentadiene-modified phenol resin, copolymer of dicyclopentadiene-modified phenol resin with phenol novolak and cresol novolak resin, para-xylene-modified phenol resin, triphenolmethane resin, phenol and cresol A condensate with salicylaldehyde can be used.

【0016】本発明で用いる無機充填材としては、溶融
シリカ粉末、球状シリカ粉末、結晶シリカ粉末、2次凝
集シリカ粉末、多孔質シリカ粉末、2次凝集シリカ粉末
または多孔質シリカ粉末を粉砕したシリカ粉末、アルミ
ナ等が挙げられ、特に溶融シリカ粉末、球状シリカ粉末
及び溶融シリカ粉末と球状シリカ粉末との混合物が好ま
しい。また無機充填材の配合量としては耐半田ストレス
性と成形性のバランスから総組成物量に対して70〜9
0重量%が好ましい。
The inorganic filler used in the present invention includes fused silica powder, spherical silica powder, crystalline silica powder, secondary aggregated silica powder, porous silica powder, secondary aggregated silica powder or silica obtained by pulverizing porous silica powder. Examples thereof include powder, alumina, and the like, and particularly preferred are fused silica powder, spherical silica powder, and a mixture of fused silica powder and spherical silica powder. The amount of the inorganic filler is 70 to 9 with respect to the total amount of the composition in consideration of the balance between solder stress resistance and moldability.
0% by weight is preferred.

【0017】本発明に使用される硬化促進剤はエポキシ
基と水酸基との反応を促進するものであればよく、一般
に封止用材料に使用されているものを広く使用すること
ができ、例えばジアザビシクロウンデセン(DBU)、
トリフェニルホスフィン(TPP)、ジメチルベンジル
アミン(BDMA)や2メチルイミダゾール(2MZ)
等が単独もしくは2種類以上混合して用いられる。本発
明の封止用エポキシ樹脂組成物はエポキシ樹脂、硬化
剤、無機充填材及び硬化促進剤を必須成分とするが、こ
れ以外に必要に応じてシランカップリング剤、ブロム化
エポキシ樹脂、三酸化アンチモン、ヘキサブロムベンゼ
ン等の難燃剤、カーボンブラック、ベンガラ等の着色
剤、天然ワックス、合成ワックス等の離型剤及びシリコ
ーンオイル、ゴム等の低応力添加剤等の種々の添加剤を
適宜配合しても差し支えがない。
The curing accelerator used in the present invention may be any one which promotes the reaction between an epoxy group and a hydroxyl group, and those generally used for a sealing material can be widely used. Zabicycloundecene (DBU),
Triphenylphosphine (TPP), dimethylbenzylamine (BDMA) and 2-methylimidazole (2MZ)
Are used alone or in combination of two or more. The epoxy resin composition for encapsulation of the present invention contains an epoxy resin, a curing agent, an inorganic filler and a curing accelerator as essential components, but may optionally further comprise a silane coupling agent, a brominated epoxy resin, and trioxide. Various additives such as flame retardants such as antimony and hexabromobenzene, coloring agents such as carbon black and red iron oxide, release agents such as natural wax and synthetic wax, and low stress additives such as silicone oil and rubber are appropriately blended. There is no problem.

【0018】又、本発明の封止用エポキシ樹脂組成物を
成形材料として製造するには、エポキシ樹脂、硬化剤、
硬化促進剤、充填剤、その他の添加剤をミキサー等によ
って十分に均一に混合した後、さらに熱ロール又はニー
ダー等で溶融混練し、冷却後粉砕して成形材料とするこ
とができる。これらの成形材料は電子部品あるいは電気
部品の封止、被覆、絶縁等に適用することができる。
In order to produce the encapsulating epoxy resin composition of the present invention as a molding material, an epoxy resin, a curing agent,
After a curing accelerator, a filler, and other additives are sufficiently and uniformly mixed by a mixer or the like, the mixture is further melt-kneaded by a hot roll or a kneader, cooled, and ground to obtain a molding material. These molding materials can be applied to sealing, coating, insulating and the like of electronic parts or electric parts.

【0019】[0019]

【実施例】以下本発明を実施例で具体的に説明する。 実施例1 式(3)で示されるエポキシ樹脂(軟化点110℃、エポキシ当量190g/ eq) 9.3重量部The present invention will be specifically described below with reference to examples. Example 1 9.3 parts by weight of an epoxy resin represented by the formula (3) (softening point: 110 ° C., epoxy equivalent: 190 g / eq)

【0020】[0020]

【化6】 Embedded image

【0021】 オルソクレゾールノボラックエポキシ樹脂(軟化点65℃、エポキシ当量20 0g/eq) 2.3重量部 式(2)で示されるフェノール樹脂硬化剤(軟化点90℃、水酸基当量152 g/eq) 6.7重量部 フェノールノボラック樹脂硬化剤(軟化点90℃、水酸基当量105g/eq ) 1.7重量部 溶融シリカ粉末 78.8重量部 トリフェニルホスフィン 0.2重量部 カーボンブラック 0.5重量部 カルナバワックス 0.5重量部 を、ミキサーで常温で混合し、70〜100℃で2軸ロ
ールにより混練し、冷却後粉砕した成形材料とした。得
られた成形材料を、タブレット化し、低圧トランスファ
ー成形機にて175℃、70kg/cm2、120秒の
条件で半田クラック試験用として6×6mmのチップを
52pパッケージに封止し、又半田耐湿性試験用として
3×6mmのチップを16pSOPパッケージに封止し
た。封止したテスト用素子について下記の半田クラック
試験及び半田耐湿性試験を行った。 半田クラック試験:封止したテスト用素子を85℃、8
5%RHの環境下で48Hr及び72Hr処理し、その
後260℃の半田槽に10秒間浸漬後、顕微鏡で外部ク
ラックを観察した。 半田耐湿性試験:封止したテスト用素子を85℃で、8
5%RHの環境下で72Hr処理し、その後260℃の
半田槽に10秒間浸漬後、プレッシャークッカー試験
(125℃、100%RH)を行い回路のオープン不良
を測定した。試験結果を表1に示す。
Orthocresol novolak epoxy resin (softening point 65 ° C., epoxy equivalent 200 g / eq) 2.3 parts by weight Phenolic resin curing agent represented by the formula (2) (softening point 90 ° C., hydroxyl equivalent 152 g / eq) 6.7 parts by weight Phenol novolak resin curing agent (softening point 90 ° C., hydroxyl equivalent 105 g / eq) 1.7 parts by weight Fused silica powder 78.8 parts by weight Triphenylphosphine 0.2 parts by weight Carbon black 0.5 parts by weight 0.5 part by weight of carnauba wax was mixed at room temperature with a mixer, kneaded at 70 to 100 ° C. with a biaxial roll, cooled, and pulverized to obtain a molding material. The obtained molding material is tableted, and a low pressure transfer molding machine is used to seal a 6 × 6 mm chip in a 52p package for a solder crack test at 175 ° C., 70 kg / cm 2 , for 120 seconds. A 3 × 6 mm chip was sealed in a 16 pSOP package for a sex test. The sealed test element was subjected to the following solder crack test and solder moisture resistance test. Solder crack test: Sealed test element at 85 ° C, 8
48 hours and 72 hours of treatment were performed in an environment of 5% RH, and then immersed in a solder bath at 260 ° C. for 10 seconds, and external cracks were observed with a microscope. Solder moisture resistance test: Sealed test element was tested at 85 ° C for 8
After being treated for 72 hours in an environment of 5% RH, and then immersed in a solder bath at 260 ° C. for 10 seconds, a pressure cooker test (125 ° C., 100% RH) was performed to measure open circuit failure. Table 1 shows the test results.

【0022】実施例2〜5 表1の処方に従って配合し、実施例1と同様にして成形
材料を得た。この成形材料で試験用の封止した成形品を
得、この成形品を用いて実施例1と同様に半田クラック
試験及び半田耐湿性試験を行った。試験結果を表1に示
す。
Examples 2 to 5 Compounded according to the formulation shown in Table 1, and a molding material was obtained in the same manner as in Example 1. A sealed molded product for a test was obtained from this molding material, and a solder crack test and a solder moisture resistance test were performed using this molded product in the same manner as in Example 1. Table 1 shows the test results.

【0023】比較例1〜4 表1の処方に従って配合し、実施例1と同様にして成形
材料を得た。この成形材料で試験用の封止した成形品を
得、この成形品を用いて実施例1と同様に半田クラック
試験及び半田耐湿性試験を行った。試験結果を表1に示
す。
Comparative Examples 1 to 4 Compounded according to the formulation shown in Table 1, and a molding material was obtained in the same manner as in Example 1. A sealed molded product for a test was obtained from this molding material, and a solder crack test and a solder moisture resistance test were performed using this molded product in the same manner as in Example 1. Table 1 shows the test results.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明に従うと従来技術では得ることの
できなかった耐半田ストレス性を有するエポキシ樹脂組
成物を得ることができるので、半田付け工程による急激
な温度変化による熱ストレスを受けた時の耐クラック性
に非常に優れ、更に耐湿性が良好なことから電子、電気
部品の封止用、被覆用、絶縁用等に用いた場合、特に表
面実装パッケージに搭載された高集積大型チップICに
おいて信頼性が非常に必要とする製品について好適であ
る。
According to the present invention, an epoxy resin composition having solder stress resistance, which cannot be obtained by the prior art, can be obtained. When used for encapsulation, coating, insulation, etc. of electronic and electrical components, especially for highly integrated large chip ICs mounted on surface mount packages because of their excellent crack resistance and excellent moisture resistance This is suitable for products that require extremely high reliability.

フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 23/31 (56)参考文献 特開 平6−5741(JP,A) 特開 平3−195722(JP,A) 特開 平3−210322(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 59/24 C08G 59/62 C08L 63/00 H01L 23/29 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI H01L 23/31 (56) References JP-A-6-5741 (JP, A) JP-A-3-195722 (JP, A) JP-A-3 -210322 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C08G 59/24 C08G 59/62 C08L 63/00 H01L 23/29

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (A)下記式(1)で示されるエポキシ
樹脂を総エポキシ樹脂量に対して30〜100重量%含
むエポキシ樹脂、 【化1】 (B)下記式(2)で示されるフェノール樹脂硬化剤を
総フェノール樹脂硬化剤に対して30〜100重量%含
むフェノール樹脂硬化剤、 【化2】 (C)無機充填材および(D)硬化促進剤を必須成分と
する半導体封止用エポキシ樹脂組成物。
(A) an epoxy resin containing an epoxy resin represented by the following formula (1) in an amount of 30 to 100% by weight based on the total amount of the epoxy resin: (B) a phenolic resin curing agent containing a phenolic resin curing agent represented by the following formula (2) in an amount of 30 to 100% by weight based on the total phenolic resin curing agent; An epoxy resin composition for semiconductor encapsulation comprising (C) an inorganic filler and (D) a curing accelerator as essential components.
JP25094992A 1992-09-21 1992-09-21 Epoxy resin composition Expired - Fee Related JP3235799B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP25094992A JP3235799B2 (en) 1992-09-21 1992-09-21 Epoxy resin composition
TW082103448A TW272981B (en) 1992-09-21 1993-05-03
SG9502396A SG87725A1 (en) 1992-09-21 1993-05-11 Epoxy resin composition
DE69307442T DE69307442T2 (en) 1992-09-21 1993-05-11 Epoxy resin composition based on the diglycidyl ether of biphenyldiol
EP93107683A EP0589143B1 (en) 1992-09-21 1993-05-11 Epoxy resin composition based on diglycidylether of biphenyldiol
MYPI93000905A MY109105A (en) 1992-09-21 1993-05-15 Epoxy resin composition
US08/287,592 US5578660A (en) 1992-09-21 1994-08-08 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25094992A JP3235799B2 (en) 1992-09-21 1992-09-21 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH06100659A JPH06100659A (en) 1994-04-12
JP3235799B2 true JP3235799B2 (en) 2001-12-04

Family

ID=17215408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25094992A Expired - Fee Related JP3235799B2 (en) 1992-09-21 1992-09-21 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP3235799B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284856A (en) * 2001-03-26 2002-10-03 Toray Ind Inc Epoxy resin composition and semiconductor device using the same

Also Published As

Publication number Publication date
JPH06100659A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
JP3334998B2 (en) Epoxy resin composition
JP3004463B2 (en) Epoxy resin composition
JP3003887B2 (en) Resin composition for semiconductor encapsulation
JP3235798B2 (en) Epoxy resin composition
JP2991849B2 (en) Epoxy resin composition
JP3274265B2 (en) Epoxy resin composition
JP2954412B2 (en) Epoxy resin composition
JP3235799B2 (en) Epoxy resin composition
JPH07118366A (en) Epoxy resin composition
JP2843247B2 (en) Epoxy resin composition
JP3011807B2 (en) Epoxy resin composition
JP2925905B2 (en) Epoxy resin composition
JP2793449B2 (en) Epoxy resin composition
JP2823633B2 (en) Epoxy resin composition
JP2862777B2 (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition
JP3359445B2 (en) Resin composition
JP3008981B2 (en) Epoxy resin composition
JPH06184272A (en) Epoxy resin composition
JP3305097B2 (en) Epoxy resin composition
JP3310447B2 (en) Epoxy resin composition
JP3310446B2 (en) Epoxy resin composition
JP3004454B2 (en) Resin composition
JP3093050B2 (en) Epoxy resin composition
JP2744499B2 (en) Epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees