JP3093050B2 - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JP3093050B2
JP3093050B2 JP25600592A JP25600592A JP3093050B2 JP 3093050 B2 JP3093050 B2 JP 3093050B2 JP 25600592 A JP25600592 A JP 25600592A JP 25600592 A JP25600592 A JP 25600592A JP 3093050 B2 JP3093050 B2 JP 3093050B2
Authority
JP
Japan
Prior art keywords
epoxy resin
solder
weight
test
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25600592A
Other languages
Japanese (ja)
Other versions
JPH06112367A (en
Inventor
浩史 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP25600592A priority Critical patent/JP3093050B2/en
Priority to TW082103448A priority patent/TW272981B/zh
Priority to EP93107683A priority patent/EP0589143B1/en
Priority to SG9502396A priority patent/SG87725A1/en
Priority to DE69307442T priority patent/DE69307442T2/en
Priority to MYPI93000905A priority patent/MY109105A/en
Priority to KR1019930009377A priority patent/KR100215537B1/en
Publication of JPH06112367A publication Critical patent/JPH06112367A/en
Priority to US08/287,592 priority patent/US5578660A/en
Application granted granted Critical
Publication of JP3093050B2 publication Critical patent/JP3093050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイスの表面
実装化における耐半田ストレス性に優れた半導体封止用
エポキシ樹脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation which is excellent in soldering stress resistance in surface mounting of a semiconductor device.

【0002】[0002]

【従来の技術】従来、ダイオード、トランジスタ、集積
回路等の電子部品を熱硬化性樹脂で封止しているが、特
に集積回路では耐熱性、耐湿性に優れたオルソクレゾー
ルノボラックエポキシ樹脂をノボラック型フェノール樹
脂で硬化させたエポキシ樹脂組成物が用いられている。
ところが近年、集積回路の高集積化に伴いチップがだん
だん大型化し、かつパッケージは従来のDIPタイプか
ら、表面実装化された小型、薄型のQFP,SOP,S
OJ,PLCCに変わってきている。つまり大型チップ
を、小型で薄いパッケージに封入することになり、応力
によりクラックが発生、これらのクラックによる耐湿性
の低下等の問題が大きくクローズアップされてきてい
る。特に半田付けの工程において、急激に250℃以上
の高温にさらされることにより、前記の問題点が発生し
ており、これらの大型チップを封止するのに適した、信
頼性の高い封止用樹脂組成物の開発が望まれてきてい
る。
2. Description of the Related Art Conventionally, electronic components such as diodes, transistors, and integrated circuits are sealed with a thermosetting resin. In particular, in an integrated circuit, ortho-cresol novolak epoxy resin having excellent heat resistance and moisture resistance is made of a novolak type. An epoxy resin composition cured with a phenol resin is used.
However, in recent years, the chip has been gradually increased in size with the increase in the degree of integration of integrated circuits, and the package has been changed from the conventional DIP type to a small and thin QFP, SOP, S
OJ and PLCC are changing. That is, a large chip is sealed in a small and thin package, and cracks are generated by stress, and problems such as a decrease in moisture resistance due to the cracks have been greatly highlighted. In particular, in the soldering process, the above problem occurs due to rapid exposure to a high temperature of 250 ° C. or more, and a highly reliable sealing material suitable for sealing these large chips. Development of resin compositions has been desired.

【0003】これらの問題を解決するためにエポキシ樹
脂として下記式(1)で示されるエポキシ樹脂の使用
(特開昭64−65116号公報)が検討されてきた。
In order to solve these problems, use of an epoxy resin represented by the following formula (1) as an epoxy resin (Japanese Patent Laid-Open No. 64-65116) has been studied.

【0004】[0004]

【化3】 Embedded image

【0005】式(1)で示されるエポキシ樹脂の使用に
よりレジン系の低粘度化が図られ、従って溶融シリカ粉
末を更に多く配合することにより組成物の成形後の低熱
膨張化及び低吸水化により、耐半田ストレス性の向上が
図られた。ただし溶融シリカ粉末を多く配合することに
よる弾性率の増加も一方の弊害であり、更なる耐半田ス
トレス性の向上が必要である。
[0005] The use of the epoxy resin represented by the formula (1) lowers the viscosity of the resin system. Therefore, by blending a larger amount of fused silica powder, the composition has low thermal expansion and low water absorption after molding. In addition, improvement in solder stress resistance was achieved. However, an increase in the modulus of elasticity due to the incorporation of a large amount of fused silica powder is another adverse effect, and it is necessary to further improve the solder stress resistance.

【0006】[0006]

【発明が解決しようとする課題】本発明はこの様な問題
に対して、式(1)で示されるエポキシ樹脂を用いて、
低吸水化、低線膨張化をはかり、また式(2)で示され
る硬化剤を用いて、低吸水化、可撓性付与をはかり、そ
の相乗効果により、基板実装時における半導体パッケー
ジの耐半田ストレス性を著しく向上させた、半導体封止
用エポキシ樹脂組成物を提供するところにある。
The present invention solves such a problem by using an epoxy resin represented by the formula (1).
Low water absorption and low linear expansion are achieved, and the curing agent represented by the formula (2) is used for low water absorption and flexibility. An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation with significantly improved stress properties.

【0007】[0007]

【課題を解決するための手段】本発明のエポキシ樹脂組
成物は、(A)下記式(1)で示されるエポキシ樹脂
The epoxy resin composition of the present invention comprises (A) an epoxy resin represented by the following formula (1):

【0008】[0008]

【化4】 Embedded image

【0009】を総エポキシ樹脂量に対して30〜100
重量%含むエポキシ樹脂、(B)下記式(2)で示され
るフェノール樹脂硬化剤を総フェノール樹脂硬化剤量に
対して30〜100重量%含むフェノール樹脂硬化剤、
[0009] 30 to 100 with respect to the total epoxy resin amount
(B) a phenolic resin curing agent containing 30 to 100% by weight of a total amount of the phenolic resin curing agent represented by the following formula (2);

【0010】[0010]

【化5】 Embedded image

【0011】(C)無機質充填材及び(D)硬化促進剤
を必須成分とする半導体封止用エポキシ樹脂組成物であ
る。従来のエポキシ樹脂組成物に比べ、非常に優れた半
田耐熱性を有するものである。
An epoxy resin composition for semiconductor encapsulation comprising (C) an inorganic filler and (D) a curing accelerator as essential components. It has extremely excellent solder heat resistance as compared with conventional epoxy resin compositions.

【0012】式(1)の構造で示されるエポキシ樹脂は
1分子中に2ケのエポキシ基を有する2官能性エポキシ
樹脂で、従来の多官能性エポキシ樹脂に比べ溶融粘度が
低くトランスファー成形時の流動性に優れる。従って組
成物の溶融シリカ粉末を多く配合することができ、低熱
膨張化及び低吸水化が図られ、耐半田ストレス性に優れ
るエポキシ樹脂組成物を得ることができる。このエポキ
シ樹脂の使用量はこれを調節することにより耐半田スト
レス性を向上させることができる。耐半田ストレス性の
効果を出すためには式(1)で示されるビフェニル型エ
ポキシ樹脂を総エポキシ樹脂量の30重量%以上、好ま
しくは60重量%以上の使用が望ましい。30重量%未
満だと低熱膨張化及び低吸水性が得られず耐半田ストレ
ス性が不充分である。更に式中のR1〜R4はメチル基、
5〜R8は水素原子が好ましい。
The epoxy resin represented by the structure of the formula (1) is a bifunctional epoxy resin having two epoxy groups in one molecule, and has a lower melt viscosity than that of a conventional polyfunctional epoxy resin during transfer molding. Excellent fluidity. Therefore, a large amount of the fused silica powder of the composition can be blended, an epoxy resin composition having low thermal expansion and low water absorption, and having excellent solder stress resistance can be obtained. The amount of the epoxy resin used can be adjusted to improve the solder stress resistance. In order to obtain the effect of resistance to soldering stress, it is desirable to use the biphenyl type epoxy resin represented by the formula (1) in an amount of 30% by weight or more, preferably 60% by weight or more of the total epoxy resin amount. If it is less than 30% by weight, low thermal expansion and low water absorption cannot be obtained, and the solder stress resistance is insufficient. Further, R 1 to R 4 in the formula are a methyl group,
R 5 to R 8 are preferably a hydrogen atom.

【0013】式(1)で示されるエポキシ樹脂以外に他
のエポキシ樹脂を併用する場合、用いるエポキシ樹脂と
してはエポキシ基を有するポリマー全般をいう。例えば
ビスフェノール型エポキシ樹脂、クレゾールノボラック
型エポキシ樹脂、フェノールノボラック型エポキシ樹脂
及びトリフェノールメタン型エポキシ樹脂、アルキル変
性トリフェノールメタン型エポキシ樹脂等の3官能型エ
ポキシ樹脂、トリアジン核含有エポキシ樹脂等のことを
いう。
When another epoxy resin is used in addition to the epoxy resin represented by the formula (1), the epoxy resin used generally refers to all polymers having an epoxy group. For example, trifunctional epoxy resins such as bisphenol type epoxy resin, cresol novolak type epoxy resin, phenol novolak type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, and epoxy resin containing triazine nucleus. Say.

【0014】式(2)の分子構造で示される硬化剤を用
いることにより、従来のフェノールノボラック樹脂硬化
剤等に比べると半田処理温度近辺での弾性率の低下とリ
ードフレーム及び半導体チップとの密着力を向上せし
め、低熱膨張化及び低吸水化を得ることができる。従っ
て半田付け時の熱衝撃に対し、発生応力の低下とそれに
伴なう半導体チップ等との剥離不良の防止に有効であ
る。
By using the curing agent represented by the molecular structure of the formula (2), the elastic modulus decreases near the soldering temperature and the adhesion to the lead frame and the semiconductor chip as compared with the conventional phenol novolak resin curing agent and the like. The force can be improved, and low thermal expansion and low water absorption can be obtained. Therefore, it is effective in preventing a reduction in stress generated due to a thermal shock at the time of soldering and a peeling defect with a semiconductor chip or the like accompanying the reduction.

【0015】式(2)の分子構造で示される硬化剤の使
用量はこれを調節することにより耐半田ストレス性を向
上させることができる。耐半田ストレス性の効果を引き
出すためには式(2)で示される硬化剤を総硬化剤量に
対して30重量%以上、更に好ましくは60重量%以上
の使用が望ましい。使用量が30重量%未満だと低吸水
性、低弾性等及びリードフレーム、半導体チップとの密
着力が不充分で耐半田ストレス性の向上が望めない。更
に式中のnの値は1から6の範囲であることが望まし
く、nの値が6を越えると、トランスファー成形時での
流動性が低下し、成形性が劣化する傾向がある。
By controlling the amount of the curing agent represented by the molecular structure of the formula (2), the solder stress resistance can be improved. In order to bring out the effect of resistance to solder stress, it is desirable to use the curing agent represented by the formula (2) in an amount of 30% by weight or more, more preferably 60% by weight or more based on the total amount of the curing agent. If the amount used is less than 30% by weight, low water absorption, low elasticity, etc., and insufficient adhesion to the lead frame and semiconductor chip cannot be expected to improve solder stress resistance. Further, the value of n in the formula is desirably in the range of 1 to 6. If the value of n exceeds 6, the fluidity during transfer molding tends to decrease, and moldability tends to deteriorate.

【0016】更に式中のR1〜R8は水素もしくはメチル
基、R9はナフタレン環を有する芳香環が望ましい。式
(2)で示されるフェノール樹脂硬化剤以外に他の硬化
剤を併用する場合、用いるものとしては主にフェノール
性水酸基を有するポリマー全般をいう。例えば、フェノ
ールノボラック樹脂、クレゾールノボラック樹脂、ジシ
クロペンタジエン変性フェノール樹脂、ジシクロペンタ
ジエン変性フェノール樹脂とフェノールノボラック及び
クレゾールノボラック樹脂との共重合物、テルペン変性
フェノール樹脂、パラキシレン変性フェノール樹脂、ナ
フトール樹脂等を用いることができる。
Further, in the formula, R 1 to R 8 are preferably hydrogen or a methyl group, and R 9 is preferably an aromatic ring having a naphthalene ring. When other curing agents other than the phenolic resin curing agent represented by the formula (2) are used in combination, those used generally refer to polymers generally having a phenolic hydroxyl group. For example, phenol novolak resin, cresol novolak resin, dicyclopentadiene-modified phenol resin, copolymer of dicyclopentadiene-modified phenol resin with phenol novolak and cresol novolak resin, terpene-modified phenol resin, para-xylene-modified phenol resin, naphthol resin, etc. Can be used.

【0017】本発明で用いる無機充填材としては、溶融
シリカ粉末、球状シリカ粉末、結晶シリカ粉末、2次凝
集シリカ粉末、多孔質シリカ粉末、2次凝集シリカ粉末
または多孔質シリカ粉末を粉砕したシリカ粉末、アルミ
ナ等が挙げられ、特に溶融シリカ粉末、球状シリカ粉末
及び溶融シリカ粉末と球状シリカ粉末との混合物が好ま
しい。また無機充填材の配合量としては耐半田ストレス
性と成形性のバランスから総組成物量に対して70〜9
0重量%が好ましい。本発明に使用される硬化促進剤は
エポキシ基と水酸基との反応を促進するものであればよ
く、一般に封止用材料に使用されているものを広く使用
することができ、例えばジアザビシクロウンデセン(D
BU)、トリフェニルホスフィン(TPP)、ジメチル
ベンジルアミン(BDMA)や2−メチルイミダゾール
(2MZ)等が単独もしくは2種類以上混合して用いら
れる。
The inorganic filler used in the present invention includes fused silica powder, spherical silica powder, crystalline silica powder, secondary aggregated silica powder, porous silica powder, secondary aggregated silica powder or silica obtained by grinding porous silica powder. Examples thereof include powder, alumina, and the like, and particularly preferred are fused silica powder, spherical silica powder, and a mixture of fused silica powder and spherical silica powder. The amount of the inorganic filler is 70 to 9 with respect to the total amount of the composition in consideration of the balance between solder stress resistance and moldability.
0% by weight is preferred. The curing accelerator used in the present invention may be any one that promotes the reaction between an epoxy group and a hydroxyl group, and those generally used for a sealing material can be widely used. Desen (D
BU), triphenylphosphine (TPP), dimethylbenzylamine (BDMA), 2-methylimidazole (2MZ) or the like is used alone or in combination of two or more.

【0018】本発明の封止用エポキシ樹脂組成物はエポ
キシ樹脂、硬化剤、無機充填材及び硬化促進剤を必須成
分とするが、これ以外に必要に応じてシランカップリン
グ剤、ブロム化エポキシ樹脂、三酸化アンチモン、ヘキ
サブロムベンゼン等の難燃剤、カーボンブラック、ベン
ガラ等の着色剤、天然ワックス、合成ワックス等の離型
剤及びシリコーンオイル、ゴム等の低応力添加剤等の種
々の添加剤を適宜配合しても差し支えがない。又、本発
明の封止用エポキシ樹脂組成物を成形材料として製造す
るには、エポキシ樹脂、硬化剤、無機充填材、硬化促進
剤、その他の添加剤をミキサー等によって十分に均一に
混合した後、さらに熱ロール又はニーダー等で溶融混練
し、冷却後粉砕して成形材料とすることができる。これ
らの成形材料は電子部品あるいは電気部品の封止、被
覆、絶縁等に適用することができる。以下本発明を実施
例にて具体的に説明する。
The epoxy resin composition for encapsulation of the present invention comprises an epoxy resin, a curing agent, an inorganic filler and a curing accelerator as essential components. In addition to this, a silane coupling agent and a brominated epoxy resin may be used if necessary. Various additives such as flame retardants such as antimony trioxide and hexabromobenzene, coloring agents such as carbon black and red iron oxide, mold release agents such as natural wax and synthetic wax, and low stress additives such as silicone oil and rubber. There is no problem if it is appropriately blended. In addition, in order to manufacture the epoxy resin composition for sealing of the present invention as a molding material, an epoxy resin, a curing agent, an inorganic filler, a curing accelerator, and other additives are sufficiently and uniformly mixed by a mixer or the like. Alternatively, the mixture may be melt-kneaded with a hot roll or a kneader, cooled, and pulverized to obtain a molding material. These molding materials can be applied to sealing, coating, insulating and the like of electronic parts or electric parts. Hereinafter, the present invention will be described specifically with reference to Examples.

【0019】実施例1 下記組成物 式(3)で示されるエポキシ樹脂(軟化点110℃、エ
ポキシ当量190) 3.8重量部
Example 1 The following composition: 3.8 parts by weight of an epoxy resin represented by the formula (3) (softening point: 110 ° C., epoxy equivalent: 190)

【0020】[0020]

【化6】 Embedded image

【0021】 オルソクレゾールノボラックエポキシ樹脂(軟化点65℃、エポキシ当量20 0) 8.7重量部 式(4)で示される硬化剤(軟化点118℃、水酸基当量180) 2.3重量部Orthocresol novolak epoxy resin (softening point 65 ° C., epoxy equivalent 200) 8.7 parts by weight Curing agent represented by the formula (4) (softening point 118 ° C., hydroxyl equivalent 180) 2.3 parts by weight

【0022】[0022]

【化7】 Embedded image

【0023】(n=1が1に対しn=2が0.2、n=
3が0.1、n=4〜6が0.1である。) フェノールノボラック樹脂硬化剤(軟化点90℃、水酸基当量104) 5.2重量部 溶融シリカ粉末 78.8重量部 トリフェニルホスフィン 0.2重量部 カーボンブラック 0.5重量部 カルナバワックス 0.5重量部 を、ミキサーで常温で混合し、70〜100℃で2軸ロ
ールにより混練し、冷却後粉砕し成形材料とした。得ら
れた成形材料を、タブレット化し、低圧トランスファー
成形機にて175℃、70kg/cm2、120秒の条
件で半田クラック試験用として6×6mmのチップを5
2pパッケージに封止し、又半田耐湿性試験用として3
×6mmのチップを16pSOPパッケージに封止し
た。封止したテスト用素子について下記の半田クラック
試験及び半田耐湿性試験を行った。
(N = 1 is 1 while n = 2 is 0.2, n =
3 is 0.1, and n = 4 to 6 is 0.1. Phenol novolak resin curing agent (softening point 90 ° C., hydroxyl equivalent 104) 5.2 parts by weight Fused silica powder 78.8 parts by weight Triphenylphosphine 0.2 parts by weight Carbon black 0.5 parts by weight Carnauba wax 0.5 parts by weight The parts were mixed at room temperature with a mixer, kneaded at 70 to 100 ° C. with a biaxial roll, cooled and pulverized to obtain a molding material. The obtained molding material was tableted, and a 6 × 6 mm chip was used for a solder crack test at 175 ° C., 70 kg / cm 2 and 120 seconds by a low-pressure transfer molding machine.
Sealed in 2p package, and 3 for solder moisture resistance test
A 6 mm chip was sealed in a 16 pSOP package. The sealed test element was subjected to the following solder crack test and solder moisture resistance test.

【0024】半田クラック試験:封止したテスト用素子
を85℃、85%RHの環境下で48Hr及び72Hr
処理し、その後260℃の半田槽に10秒間浸漬後、顕
微鏡で外部クラックを観察した。 半田耐湿性試験:封止したテスト用素子を85℃で、8
5%RHの環境下で72Hr処理し、その後260℃の
半田槽に10秒間浸漬後、プレッシャークッカー試験
(125℃、100%RH)を行い回路のオープン不良
を測定した。試験結果を表1に示す。
Solder crack test: The sealed test element was subjected to 48 hours and 72 hours under an environment of 85 ° C. and 85% RH.
After the treatment, it was immersed in a solder bath at 260 ° C. for 10 seconds, and external cracks were observed with a microscope. Solder moisture resistance test: Sealed test element was tested at 85 ° C for 8
After being treated for 72 hours in an environment of 5% RH, and then immersed in a solder bath at 260 ° C. for 10 seconds, a pressure cooker test (125 ° C., 100% RH) was performed to measure open circuit failure. Table 1 shows the test results.

【0025】実施例2〜5 表1の処方に従って配合し、実施例1と同様にして成形
材料を得た。この成形材料で試験用の封止した成形品を
得、この成形品を用いて実施例1と同様に半田クラック
試験及び半田耐湿性試験を行った。試験結果を表1に示
す。 比較例1〜4 表1の処方に従って配合し、実施例1と同様にして成形
材料を得た。この成形材料で試験用の封止した成形品を
得、この成形品を用いて実施例1と同様に半田クラック
試験及び半田耐湿性試験を行った。試験結果を表1に示
す。
Examples 2 to 5 Compounded according to the formulation shown in Table 1, and a molding material was obtained in the same manner as in Example 1. A sealed molded product for a test was obtained from this molding material, and a solder crack test and a solder moisture resistance test were performed using this molded product in the same manner as in Example 1. Table 1 shows the test results. Comparative Examples 1 to 4 Compounded according to the formulation shown in Table 1, and a molding material was obtained in the same manner as in Example 1. A sealed molded product for a test was obtained from this molding material, and a solder crack test and a solder moisture resistance test were performed using this molded product in the same manner as in Example 1. Table 1 shows the test results.

【0026】実施例6 下記組成物 式(3)で示されるエポキシ樹脂(軟化点110℃、エポキシ当量190) 4.4重量部 オルソクレゾールノボラックエポキシ樹脂(軟化点65℃、エポキシ当量20 0) 8.1重量部 式(5)で示される硬化剤(軟化点110℃、水酸基当量155) 2.6重量部Example 6 The following composition: Epoxy resin represented by formula (3) (softening point: 110 ° C., epoxy equivalent: 190) 4.4 parts by weight orthocresol novolak epoxy resin (softening point: 65 ° C., epoxy equivalent: 200) 8 2.6 parts by weight Curing agent represented by formula (5) (softening point 110 ° C., hydroxyl equivalent 155)

【0027】[0027]

【化8】 Embedded image

【0028】(nの値は、1から4を示す混合物であり
その重量割合はn=1が1に対してn=2が1.5、n
=3が0.5、n=4〜6が0.1である。) フェノールノボラック樹脂硬化剤(軟化点90℃、水酸基当量104) 4.9重量部 溶融シリカ粉末 78.8重量部 トリフェニルホスフィン 0.2重量部 カーボンブラック 0.5重量部 カルナバワックス 0.5重量部 を常温混合し70〜100℃で二軸ロールにより混練
し、冷却後粉砕し成形材料とした。得られた成形材料を
実施例1と同様にテスト用サンプルを作製し、試験を行
った。試験結果を表2に示す。
(The value of n is a mixture of 1 to 4. The weight ratio of n is 1 for n = 1, 1.5 for n = 2, n
= 3 is 0.5 and n = 4 to 6 is 0.1. ) Phenol novolak resin curing agent (softening point 90 ° C., hydroxyl equivalent 104) 4.9 parts by weight Fused silica powder 78.8 parts by weight Triphenylphosphine 0.2 parts by weight Carbon black 0.5 parts by weight Carnauba wax 0.5 parts by weight The parts were mixed at room temperature, kneaded at 70 to 100 ° C. with a biaxial roll, cooled and pulverized to obtain a molding material. A test sample was prepared from the obtained molding material in the same manner as in Example 1, and a test was performed. Table 2 shows the test results.

【0029】実施例7〜10 表2の処方に従って配合し、実施例6と同様にして成形
材料を得た。この成形材料で試験用の封止した成形品を
得、この形成品を用いて実施例6と同様に半田クラック
試験及び半田耐湿試験を行った。試験結果を表2に示
す。 比較例5〜7 表2の処方に従って配合し、実施例6と同様にして成形
材料を得た。この成形材料で試験用の封止した成形品を
得、この成形品を用いて実施例6と同様に半田クラック
試験及び半田耐湿試験を行った。試験結果を表2に示
す。
Examples 7 to 10 Compounded according to the formulation shown in Table 2 and obtained molding materials in the same manner as in Example 6. A sealed molded product for a test was obtained from this molding material, and a solder crack test and a solder moisture resistance test were performed using this formed product in the same manner as in Example 6. Table 2 shows the test results. Comparative Examples 5 to 7 Compounded according to the formulation in Table 2, and a molding material was obtained in the same manner as in Example 6. A sealed molded product for a test was obtained from this molding material, and a solder crack test and a solder moisture resistance test were performed using this molded product in the same manner as in Example 6. Table 2 shows the test results.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】本発明によると従来技術では得ることの
できなかった耐半田ストレス性を有するエポキシ樹脂組
成物を得ることができるので、半田付け工程による急激
な温度変化による熱ストレスを受けた時の耐クラック性
に非常に優れ、更に耐湿性が良好なことから電子、電気
部品の封止用、被覆用、絶縁用等に用いた場合、特に表
面実装パッケージに搭載された高集積大型チップICに
おいて非常に信頼性を必要とする製品について好適であ
る。
According to the present invention, an epoxy resin composition having solder stress resistance, which cannot be obtained by the prior art, can be obtained. When used for encapsulation, coating, insulation, etc. of electronic and electrical components, especially for highly integrated large chip ICs mounted on surface mount packages because of their excellent crack resistance and excellent moisture resistance It is suitable for products that require extremely high reliability.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (A)下記式(1)で示されるエポキシ
樹脂 【化1】 を総エポキシ樹脂量に対して30〜100重量%含むエ
ポキシ樹脂、 (B)下記式(2)で示されるフェノール樹脂硬化剤を
総フェノール樹脂硬化剤量に対して30〜100重量%
含むフェノール樹脂硬化剤、 【化2】 (C)無機質充填剤及び (D)硬化促進剤 を必須成分とする半導体封止用エポキシ樹脂組成物。
(A) an epoxy resin represented by the following formula (1): (B) a phenolic resin curing agent represented by the following formula (2) in an amount of 30 to 100% by weight based on the total epoxy resin amount;
A phenolic resin curing agent, including An epoxy resin composition for semiconductor encapsulation, comprising (C) an inorganic filler and (D) a curing accelerator as essential components.
JP25600592A 1992-09-21 1992-09-25 Epoxy resin composition Expired - Fee Related JP3093050B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP25600592A JP3093050B2 (en) 1992-09-25 1992-09-25 Epoxy resin composition
TW082103448A TW272981B (en) 1992-09-21 1993-05-03
SG9502396A SG87725A1 (en) 1992-09-21 1993-05-11 Epoxy resin composition
DE69307442T DE69307442T2 (en) 1992-09-21 1993-05-11 Epoxy resin composition based on the diglycidyl ether of biphenyldiol
EP93107683A EP0589143B1 (en) 1992-09-21 1993-05-11 Epoxy resin composition based on diglycidylether of biphenyldiol
MYPI93000905A MY109105A (en) 1992-09-21 1993-05-15 Epoxy resin composition
KR1019930009377A KR100215537B1 (en) 1992-09-21 1993-05-27 Epoxy resin composition
US08/287,592 US5578660A (en) 1992-09-21 1994-08-08 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25600592A JP3093050B2 (en) 1992-09-25 1992-09-25 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH06112367A JPH06112367A (en) 1994-04-22
JP3093050B2 true JP3093050B2 (en) 2000-10-03

Family

ID=17286586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25600592A Expired - Fee Related JP3093050B2 (en) 1992-09-21 1992-09-25 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP3093050B2 (en)

Also Published As

Publication number Publication date
JPH06112367A (en) 1994-04-22

Similar Documents

Publication Publication Date Title
JP3334998B2 (en) Epoxy resin composition
JP3004463B2 (en) Epoxy resin composition
JP3003887B2 (en) Resin composition for semiconductor encapsulation
JP2991849B2 (en) Epoxy resin composition
JPH07118366A (en) Epoxy resin composition
JP2843247B2 (en) Epoxy resin composition
JP3011807B2 (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition
JP3093050B2 (en) Epoxy resin composition
JPH09143345A (en) Epoxy resin composition
JP3235798B2 (en) Epoxy resin composition
JP2823633B2 (en) Epoxy resin composition
JP2862777B2 (en) Epoxy resin composition
JP3235799B2 (en) Epoxy resin composition
JP3359445B2 (en) Resin composition
JP3008981B2 (en) Epoxy resin composition
JPH06184272A (en) Epoxy resin composition
JP3366456B2 (en) Epoxy resin composition
JP3305097B2 (en) Epoxy resin composition
JP2985706B2 (en) Epoxy resin composition for sealing and semiconductor device using the same
JP3305098B2 (en) Epoxy resin composition
JP2793449B2 (en) Epoxy resin composition
JP3004454B2 (en) Resin composition
JPH03195722A (en) Epoxy resin composition
JP3568654B2 (en) Epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees