JPH062799B2 - Epoxy resin composition for semiconductor encapsulation - Google Patents

Epoxy resin composition for semiconductor encapsulation

Info

Publication number
JPH062799B2
JPH062799B2 JP63095464A JP9546488A JPH062799B2 JP H062799 B2 JPH062799 B2 JP H062799B2 JP 63095464 A JP63095464 A JP 63095464A JP 9546488 A JP9546488 A JP 9546488A JP H062799 B2 JPH062799 B2 JP H062799B2
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
solder
resin composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63095464A
Other languages
Japanese (ja)
Other versions
JPH01268711A (en
Inventor
恒治 森
孝一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP63095464A priority Critical patent/JPH062799B2/en
Publication of JPH01268711A publication Critical patent/JPH01268711A/en
Publication of JPH062799B2 publication Critical patent/JPH062799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐半田ストレス性に優れた、半導体封止用エ
ポキシ樹脂組成物に関するものである。
The present invention relates to an epoxy resin composition for semiconductor encapsulation, which is excellent in solder stress resistance.

〔従来技術〕[Prior art]

従来、ダイオード、トランジスタ、集積回路等の電子部
品を熱硬化性樹脂で封止しているが、特に集積回路では
耐熱性、耐湿性に優れたo−クレゾールノボラックエポ
キシ樹脂をノボラック型フェノール樹脂系で硬化させ充
填剤として溶融シリカを用いたエポキシ樹脂組成物が用
いられている。
Conventionally, electronic parts such as diodes, transistors, and integrated circuits have been sealed with thermosetting resin. Especially in integrated circuits, o-cresol novolac epoxy resin, which has excellent heat resistance and moisture resistance, is a novolac-type phenol resin system. An epoxy resin composition that is cured and uses fused silica as a filler is used.

ところが近年、集積回路の高集積化に伴いチップがだん
だん大型化し、かつパッケージは従来のDIPタイプか
ら表面実装化された小型、薄型のフラットパッケージS
OP、SOJ、PLCCに変わってきている。
However, in recent years, as the integration of integrated circuits has become higher, the size of the chip has gradually increased, and the package is a small and thin flat package S that is surface mounted from the conventional DIP type
It has changed to OP, SOJ, and PLCC.

即ち大型化チップを小型で薄いパッケージに封入するこ
とになり、応力によるパッケージクラック発生、これら
のクラックによる耐湿性の低下等の問題が大きくクロー
ズアップされてきている。
That is, a large-sized chip is to be enclosed in a small and thin package, and problems such as package cracking due to stress and deterioration of moisture resistance due to these cracks have been greatly highlighted.

特に半田づけの工程において急激に200〜300℃位
の高温にさらされることによりパッケージの割れや樹脂
とチップの剥離により耐湿性が劣化してしまうといった
問題点がでてきている。
In particular, in the soldering process, when exposed to a high temperature of about 200 to 300 ° C., moisture resistance is deteriorated due to cracking of the package and peeling of the resin and the chip.

これらの大型チップを封止するのに適した、信頼性の高
い封止用樹脂組成物の開発が望まれてきている。
It has been desired to develop a highly reliable encapsulating resin composition suitable for encapsulating these large chips.

従来、耐半田ストレス性に優れた低応力エポキシ樹脂組
成物を得る為に樹脂系としては多官能エポキシ樹脂の使
用(特開昭61−168620号公報等)、骨格にビフ
ェニルを有するエポキシ樹脂の使用等が検討されてきた
が、このようなエポキシ樹脂の使用では特に200℃〜
300℃のような高温にさらされた場合においては耐半
田ストレス性が不十分であった。
Conventionally, in order to obtain a low stress epoxy resin composition having excellent resistance to soldering stress, a polyfunctional epoxy resin has been used as a resin system (JP-A 61-168620, etc.), and an epoxy resin having biphenyl in the skeleton has been used. Etc. have been studied, but especially when such an epoxy resin is used
When exposed to a high temperature such as 300 ° C., the solder stress resistance was insufficient.

〔発明の目的〕[Object of the Invention]

本発明の目的とするところは、半田熱ストレスによるク
ラック発生をおさえ、耐湿性に優れた信頼性の高い封止
用樹脂組成物を提供するにある。
An object of the present invention is to provide a highly reliable sealing resin composition that suppresses cracking due to solder heat stress and has excellent moisture resistance.

〔発明の構成〕[Structure of Invention]

本発明は、式Iで示される テトラメチルジヒドロキシビフェニル・ジグリシジルエ
ーテルを全エポキシ樹脂中に50〜100%含み、硬化
剤、硬化促進剤及び充填剤からなるエポキシ樹脂組成物
において、全組成物中に充填剤を50〜90重量%含
み、全充填剤中に平均粒径が5〜40μm、見掛け密度
0.1〜0.6g/ccであり、且つ比表面積が5〜20
m2/gである多孔質シリカ粉末を10〜100重量%含
むことを特徴とする半導体封止用エポキシ樹脂組成物に
関するものである。
The present invention is of formula I In an epoxy resin composition containing tetramethyldihydroxybiphenyl diglycidyl ether in an amount of 50 to 100% in the total epoxy resin and comprising a curing agent, a curing accelerator, and a filler, the filler in the total composition is 50 to 90% by weight. The average particle size is 5 to 40 μm, the apparent density is 0.1 to 0.6 g / cc, and the specific surface area is 5 to 20 in all the fillers.
The present invention relates to an epoxy resin composition for semiconductor encapsulation, which comprises 10 to 100% by weight of porous silica powder of m 2 / g.

本発明のエポキシ樹脂組成物は従来の封止用樹脂組成物
に比べて非常に優れた耐半田熱ストレス性を有したもの
である。
The epoxy resin composition of the present invention has very excellent solder heat stress resistance as compared with the conventional encapsulating resin composition.

上記式Iで表わされるエポキシ樹脂は、骨格にビフェニ
ルを有する低応力エポキシ樹脂であり、この低応力エポ
キシ樹脂と上記多孔質シリカ粉末を併用することにより
低応力エポキシ樹脂の使用だけでは得られなかった耐半
田ストレス性に非常に優れたエポキシ樹脂硬化物を与え
るエポキシ樹脂組成物を得ることができる。
The epoxy resin represented by the above formula I is a low stress epoxy resin having biphenyl in the skeleton, and by using the low stress epoxy resin in combination with the porous silica powder, it was not possible to obtain the low stress epoxy resin alone. It is possible to obtain an epoxy resin composition that gives an epoxy resin cured product having excellent solder stress resistance.

このようなエポキシ樹脂の使用量は、これを調節するこ
とにより耐半田ストレス性を最大限に引き出すことがで
きる。耐半田ストレス性の効果を出す為には好ましくは
エポキシ樹脂の50重量%以上、更に好ましくは70重
量%以上の使用が望ましい。50重量%以下だと低応力
の効果が得られず耐半田ストレス性が不十分である。
By adjusting the amount of such an epoxy resin used, solder stress resistance can be maximized. In order to obtain the effect of resistance to soldering stress, it is preferable to use 50% by weight or more, and more preferably 70% by weight or more of the epoxy resin. If it is 50% by weight or less, the effect of low stress cannot be obtained, and the solder stress resistance is insufficient.

又骨格にビフェニルを有しないエポキシ樹脂では、ビフ
ェニルによる分子鎖が剛直になることによる応力低下が
得られず耐半田ストレス性の効果が得られない。
Further, in the epoxy resin having no biphenyl in the skeleton, the stress reduction due to the rigid molecular chain of biphenyl cannot be obtained, and the effect of resistance to solder stress cannot be obtained.

ここでいうエポキシ樹脂とは、エポキシ基を有するもの
全般をいう。たとえばビスフェノール型エポキシ樹脂、
ノボラック型エポキシ樹脂・トリアジン核含有エポキシ
樹脂等のことをいう。
The epoxy resin here refers to all resins having an epoxy group. For example, bisphenol type epoxy resin,
Refers to novolac type epoxy resin, epoxy resin containing triazine nucleus, etc.

又硬化剤としてはノボラック型フェノール樹脂系および
これらの変性樹脂であり、例えばフェノールノボラッ
ク、o−クレゾールノボラックの他アルキル変性したフ
ェノールノボラック樹脂等があげられ、これらは単独も
しくは2種以上混合して使用しても差し支えがない。
Examples of the curing agent include novolac-type phenol resin-based resins and modified resins thereof. Examples thereof include phenol novolac, o-cresol novolac, and alkyl-modified phenol novolac resins. These are used alone or in combination of two or more. But it doesn't matter.

エポキシ樹脂と硬化剤の配合比はエポキシ樹脂のエポキ
シ基と硬化剤の水酸基との当量比が0.5〜5の範囲内
に有ることが望ましい。
The compounding ratio of the epoxy resin and the curing agent is preferably such that the equivalent ratio of the epoxy group of the epoxy resin and the hydroxyl group of the curing agent is in the range of 0.5 to 5.

当量比が0.5未満又は5を越えたものは耐湿性、成形
作業性及び硬化物の電気特性が悪くなるので好ましくな
い。
If the equivalent ratio is less than 0.5 or exceeds 5, moisture resistance, molding workability and electrical properties of the cured product deteriorate, which is not preferable.

本発明に使用される硬化促進剤はエポキシ基とフェノー
ル性水酸基との反応を促進するものであればよく、一般
に封止用材料に使用されているものを広く使用すること
ができ、例えばジアザビシクロウンデセン(DBU)、
トリフェニルホスフィン(TPP)、ジメチルベンジル
アミン(BDMA)や2メチルイミダゾール(2MZ)
等が単独もしくは2種以上混合して用いられる。
The curing accelerator used in the present invention may be any one as long as it accelerates the reaction between the epoxy group and the phenolic hydroxyl group, and those generally used for the encapsulating material can be widely used. Bicycloundecene (DBU),
Triphenylphosphine (TPP), dimethylbenzylamine (BDMA) and 2-methylimidazole (2MZ)
Etc. are used alone or in combination of two or more.

本発明に用いられる充填剤としては、平均粒径が5〜4
0μmであり、見掛け密度が0.1〜0.6g/ccであり、か
つ比表面積が5〜20m2/gである多孔質シリカ粉末
を、使用する充填剤量の10〜100重量%の範囲で使
用する。
The filler used in the present invention has an average particle size of 5 to 4
0 μm, an apparent density of 0.1 to 0.6 g / cc, and a specific surface area of 5 to 20 m 2 / g of porous silica powder are used in the range of 10 to 100% by weight of the amount of the filler used. .

多孔質シリカ粉末は、その平均粒径が5μm未満、又は
40μmを越えると流動性が低下し、いずれの場合も好
ましくない。
If the average particle size of the porous silica powder is less than 5 μm or more than 40 μm, the fluidity decreases, and in either case, it is not preferable.

又見掛け密度が0.6g/ccを越えると半田熱ストレスに
よるクラックが発生し易くなり、耐湿性が低下してしま
い好ましくない。
On the other hand, if the apparent density exceeds 0.6 g / cc, cracks are likely to occur due to solder heat stress, and the moisture resistance deteriorates, which is not preferable.

さらに比表面積が5m2/g未満であると半田づけ工程で
クラックが発生し易く、耐湿性が低下してしまう。又2
0m2/g以上となれば流動性がいちぢるしく低下してし
まい好ましくない。
Further, if the specific surface area is less than 5 m 2 / g, cracks are likely to occur in the soldering process, and the moisture resistance will decrease. Again 2
When it is more than 0 m 2 / g, the fluidity is drastically reduced, which is not preferable.

さらに多孔質シリカ粉末が、使用充填剤の量の10重量
%以下であれば半田づけ工程でクラックが発生しやすく
なり、耐湿性が低下し、その目的とする特性が得られな
い。
Furthermore, if the content of the porous silica powder is 10% by weight or less of the amount of the filler used, cracks are likely to occur in the soldering process, the moisture resistance is lowered, and the intended characteristics cannot be obtained.

これらの充填剤は全体として樹脂組成物の50〜90重
量%配合する事が望ましい。その配合量が50%未満で
あれば耐熱性、機械的特性および耐湿性が劣り、90%
以上であれば流動性が低下し、成形性が悪くなり実用に
は適さない。
It is desirable that these fillers are blended in an amount of 50 to 90% by weight of the resin composition as a whole. If the blending amount is less than 50%, heat resistance, mechanical properties and moisture resistance are poor, and 90%
If it is above the range, the fluidity is lowered and the moldability is deteriorated, which is not suitable for practical use.

又、多孔質シリカ粉末以外の充填剤としては通常のシリ
カ粉末やアルミナ等があげられ、とくに熔融シリカ粉末
が好ましい。
Examples of the filler other than the porous silica powder include ordinary silica powder and alumina, and fused silica powder is particularly preferable.

本発明の封止用エポキシ樹脂組成物はエポキシ樹脂、硬
化剤、硬化促進剤及び多孔質シリカ粉末充填剤を必須成
分とするが、これ以外に必要に応じてシランカップリン
グ剤、ブロム化エポキシ樹脂、三酸化アンチモン、ヘキ
サブロムベンゼン等の難燃剤、カーボンブラック、ベン
ガラ等の着色剤、天然ワックス、合成ワックス等の離型
剤及びシリコンオイル、ゴム等の低応力添加剤等の種々
の添加剤を適宜配合しても差し支えがない。
The encapsulating epoxy resin composition of the present invention contains an epoxy resin, a curing agent, a curing accelerator, and a porous silica powder filler as essential components, but in addition to this, a silane coupling agent, a brominated epoxy resin may be added if necessary. , Flame retardants such as antimony trioxide and hexabromobenzene, colorants such as carbon black and red iron oxide, mold release agents such as natural wax and synthetic wax, and various additives such as low-stress additives such as silicone oil and rubber. There is no problem in properly mixing.

又、本発明の封止用エポキシ樹脂組成物を成形材料とし
て製造するには、エポキシ樹脂、硬化剤、硬化促進剤、
充填剤、その他の添加剤をミキサー等によって十分に均
一に混合した後、さらに熱ロールまたはニーダー等で熔
融混練し、冷却後粉砕して成形材料とすることができ
る。これらの成形材料は電子部品あるいは電気部品の封
止、被覆、絶縁等に適用することができる。
Further, in order to produce the encapsulating epoxy resin composition of the present invention as a molding material, an epoxy resin, a curing agent, a curing accelerator,
After the filler and other additives are sufficiently and uniformly mixed with a mixer or the like, the mixture can be melt-kneaded with a hot roll or a kneader, cooled, and then pulverized to obtain a molding material. These molding materials can be applied to sealing, coating, insulating, etc. of electronic parts or electric parts.

〔発明の効果〕〔The invention's effect〕

本発明のエポキシ樹脂組成物は半田づけ工程による急激
な温度変化による熱ストレスを受けたときの耐クラック
性に非常に優れ、耐湿性の良い組成物であり、電子、電
気部品の封止用、被覆用、絶縁用等に用いた場合、特に
表面実装パッケージに搭載された高集積大型チップIC
において信頼性が非常に高い製品を得ることができる。
Epoxy resin composition of the present invention is very excellent in crack resistance when subjected to thermal stress due to abrupt temperature change in the soldering step, a composition with good moisture resistance, for electronic, electrical component sealing, When used for coating, insulation, etc., especially highly integrated large chip IC mounted in a surface mount package
It is possible to obtain highly reliable products in.

〔実施例〕〔Example〕

〔実施例1〕 下記組成物 式Iで示されるテトラメチルジヒドロキシビフェニルジ
グリシジルエーテル 14重量部 オルトクレゾールノボラックエポキシ樹脂 6重量部 フェノールノボラック樹脂 10重量部 トリフェニルホスフィン/2−メチル イミダゾール:9/1 0.2重量部 カーボンブラック 0.5重量部 モンタン酸エステル/モンタン酸;1/1 0.5重量部 充填剤 70.4重量部 (多孔質シリカ粉末(平均粒径15μm、見掛け密度0.
3g/cc、比表面積7m2/g)35重量部と溶融シリカ
35重量部を脂環式エポキシシラン0.4重量部で処理し
たもの) を混合した後コニーダーで混練しエポキシ樹脂成形材料
を得た。
[Example 1] The following composition 14 parts by weight of tetramethyldihydroxybiphenyl diglycidyl ether represented by the formula I Orthocresol novolac epoxy resin 6 parts by weight Phenol novolac resin 10 parts by weight Triphenylphosphine / 2-methylimidazole: 9/1 0.2 parts by weight Carbon black 0.5 parts by weight Montanate ester / montanic acid; 1/1 0.5 parts by weight Filler 70.4 Parts by weight (porous silica powder (average particle size: 15 μm, apparent density: 0.
35 g by weight of 3 g / cc, specific surface area of 7 m 2 / g) and 35 parts by weight of fused silica treated with 0.4 part by weight of alicyclic epoxysilane) were mixed and kneaded with a cokneader to obtain an epoxy resin molding material.

得られた成形材料をタブレット化し、低圧トランスファ
ー成形機にて175℃、70Kg/cm2、120秒の条件
で半田クラック試験用として6×6mmのチップを52p
パッケージに封止し、又半田耐湿性試験用として3×6
mmのチップを16pSOPパッケージに封止した。
The obtained molding material is made into a tablet, and a 6 × 6 mm chip for solder cracking is tested with a low pressure transfer molding machine under the conditions of 175 ° C., 70 kg / cm 2 , and 120 seconds for 52 p.
3 × 6 for sealing in package and for solder moisture resistance test
The mm chip was encapsulated in a 16p SOP package.

封止したテスト用素子について下記の半田クラック試験
及び半田耐湿性試験をおこなった。
The sealed test element was subjected to the following solder crack test and solder moisture resistance test.

半田クラック試験:封止したテスト用素子を85℃、8
5%RHの環境下で48Hrおよび72Hr処理し、その後2
60℃の半田槽に10秒間浸漬後顕微鏡で外部クラック
を観察した。
Solder crack test: sealed test element at 85 ° C, 8
48Hr and 72Hr treatment in 5% RH environment, then 2
After dipping in a solder bath at 60 ° C. for 10 seconds, external cracks were observed with a microscope.

半田耐湿性試験:封止したテスト用素子を85℃、85
%RHの環境下で72Hr処理し、その後260℃の半田槽
に10秒間浸漬後プレッシャークッカー試験(125
℃、100%RH)を行い回路のオープン不良を測定し
た。
Solder moisture resistance test: sealed test element at 85 ° C, 85
Treated for 72 hours in an environment of% RH, then immersed in a solder bath at 260 ° C for 10 seconds and then pressure cooker test (125
C., 100% RH) was performed to measure circuit open defects.

試験結果を第1表に示す。The test results are shown in Table 1.

〔実施例2〕 テトラメチルヒドロキシビフェニル・ジグリシジルエー
テルを10重量部及びオルソクレゾールノボラックエポ
キシ樹脂を10重量部とし、更に充填剤として多孔質シ
リカ粉末(実施例1で用いたもの)7重量部と溶融シリ
カ63重量部を脂環式エポキシシラン0.4重量部で処理
したものを70.4重量部として用いた他は実施例1と同様
にし半田クラック性及び半田耐湿性試験を行い回路のオ
ープン不良を測定した。
[Example 2] 10 parts by weight of tetramethylhydroxybiphenyl diglycidyl ether and 10 parts by weight of orthocresol novolac epoxy resin, and further 7 parts by weight of porous silica powder (used in Example 1) as a filler. Solder crack resistance and solder moisture resistance tests were conducted in the same manner as in Example 1 except that 63 parts by weight of fused silica was treated with 0.4 parts by weight of cycloaliphatic epoxysilane as 70.4 parts by weight, and open circuit failure was measured. .

試験結果を第1表に示す。The test results are shown in Table 1.

〔実施例3〕 充填剤として多孔質シリカ粉末(平均粒径15μm、見
掛密度0.3g/cc、比表面積7m2/g)70重量部を脂
環式エポキシシラン0.4重量部で処理したものを用いた
他は、実施例2と同様にし、半田クラック性及び半田耐
湿性試験を行い回路のオープン不良を測定した。
Example 3 70 parts by weight of porous silica powder (average particle size 15 μm, apparent density 0.3 g / cc, specific surface area 7 m 2 / g) as a filler was treated with 0.4 part by weight of alicyclic epoxysilane. In the same manner as in Example 2 except that it was used, a solder cracking property and a solder moisture resistance test were performed to measure the open defect of the circuit.

試験結果を第1表に示す。The test results are shown in Table 1.

〔実施例4〕 テトラメチルジヒドロキシビフェニル・ジグリシジルエ
ーテルを20重量部とし、オルソクレゾールノボラック
エポキシ樹脂を用いなかった他は実施例2と同様にし、
半田クラック性及び半田耐湿性試験を行い回路のオープ
ン不良を測定した。
[Example 4] The same procedure as in Example 2 was repeated except that 20 parts by weight of tetramethyldihydroxybiphenyl diglycidyl ether was used and no orthocresol novolac epoxy resin was used.
A solder cracking property and a solder moisture resistance test were conducted to measure open circuit defects.

試験結果を第1表に示す。The test results are shown in Table 1.

〔実施例5〕 テトラメチルジヒドロキシビフェニル・ジグリシジルエ
ーテルを20重量部とし、オルソクレゾールノボラック
エポキシ樹脂を用いなかった他は実施例3と同様にし、
半田クラック性及び半田耐湿性試験を行い回路のオープ
ン不良を測定した。
[Example 5] The same procedure as in Example 3 was repeated except that 20 parts by weight of tetramethyldihydroxybiphenyl diglycidyl ether was used and no orthocresol novolac epoxy resin was used.
A solder cracking property and a solder moisture resistance test were conducted to measure open circuit defects.

試験結果を第1表に示す。The test results are shown in Table 1.

〔実施例6〕 テトラメチルジヒドロキシビフェニル・ジグリシジルエ
ーテルを14重量部及びオルソクレゾールノボラックエ
ポキシ樹脂を6重量部とした以外は、実施例2と同様に
し、半田クラック性及び半田耐湿性試験を行い回路のオ
ープン不良を測定した。
[Example 6] A solder cracking property and a solder moisture resistance test were conducted in the same manner as in Example 2 except that 14 parts by weight of tetramethyldihydroxybiphenyl diglycidyl ether and 6 parts by weight of an orthocresol novolac epoxy resin were used, and a circuit was performed. Was measured for open defects.

試験結果を第1表に示す。The test results are shown in Table 1.

〔比較例1〕 エポキシ樹脂をすべてオルトクレゾールノボラックエポ
キシ樹脂とした以外は、実施例3と同様にし、半田クラ
ック性及び半田耐湿性試験を行い回路のオープン不良を
測定した。
[Comparative Example 1] A solder cracking property and a solder moisture resistance test were conducted in the same manner as in Example 3 except that all epoxy resins were ortho-cresol novolac epoxy resins, and open circuit defects were measured.

試験結果を第1表に示す。The test results are shown in Table 1.

〔比較例2〕 エポキシ樹脂をすべてオルトクレゾールノボラックエポ
キシ樹脂とし、更に充填剤として溶融シリカ70重量部
を脂環式エポキシシラン0.4重量部で処理したものを用
いた以外は、実施例1と同様にし、半田クラック性及び
半田耐湿性試験を行い回路のオープン不良を測定した。
[Comparative Example 2] The same as in Example 1 except that all ortho-cresol novolac epoxy resins were used as the epoxy resin, and 70 parts by weight of fused silica was treated with 0.4 part by weight of alicyclic epoxysilane as a filler. The solder cracking resistance and the solder moisture resistance test were performed to measure the open circuit failure.

試験結果を第1表に示す。The test results are shown in Table 1.

〔比較例3〕 充填剤として多孔質シリカ(実施例1で用いたもの)3.
5重量部と溶融シリカ66.5重量部とを脂環式エポキシシ
ラン0.4重量部で処理したものを70.4重量部を用いた以
外は、実施例1と同様にし、半田クラック性及び半田耐
湿性試験を行い回路のオープン不良を測定した。
[Comparative Example 3] Porous silica (used in Example 1) as a filler 3.
A solder cracking resistance and a solder moisture resistance test were conducted in the same manner as in Example 1 except that 70.4 parts by weight of 5 parts by weight and 66.5 parts by weight of fused silica treated with 0.4 part by weight of an alicyclic epoxysilane were used. The open circuit failure was measured.

試験結果を第1表に示す。The test results are shown in Table 1.

〔比較例4〕 テトラメチルジヒドロキシビフェニル・ジグリシジルエ
ーテルを8重量部及びオルソクレゾールノボラックエポ
キシ樹脂を12重量部とした以外は実施例2と同様にし
半田クラック性及び半田耐湿性試験を行い回路のオープ
ン不良を測定した。
[Comparative Example 4] A solder cracking property and a solder moisture resistance test were conducted in the same manner as in Example 2 except that 8 parts by weight of tetramethyldihydroxybiphenyl diglycidyl ether and 12 parts by weight of orthocresol novolac epoxy resin were used, and a circuit was opened. The defect was measured.

試験結果を第1表に示す。The test results are shown in Table 1.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/29 23/31 Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 23/29 23/31

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】式Iで示される テトラメチルジヒドロキシビフェニル・ジグリシジルエ
ーテルを全エポキシ樹脂中に50〜100%含み、硬化
剤、硬化促進剤及び充填剤からなるエポキシ樹脂組成物
において、全組成物中に充填剤を50〜90重量%含
み、全充填剤中に平均粒径が5〜40μm、見掛け密度
0.1〜0.6g/ccであり、且つ比表面積が5〜20
m2/gである多孔質シリカ粉末を10〜100重量%含
むことを特徴とする半導体封止用エポキシ樹脂組成物。
1. A compound of formula I In an epoxy resin composition containing tetramethyldihydroxybiphenyl diglycidyl ether in an amount of 50 to 100% in the total epoxy resin and comprising a curing agent, a curing accelerator, and a filler, the filler in the total composition is 50 to 90% by weight. The average particle size is 5 to 40 μm, the apparent density is 0.1 to 0.6 g / cc, and the specific surface area is 5 to 20 in all the fillers.
An epoxy resin composition for semiconductor encapsulation, comprising 10 to 100% by weight of porous silica powder of m 2 / g.
JP63095464A 1988-04-20 1988-04-20 Epoxy resin composition for semiconductor encapsulation Expired - Fee Related JPH062799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095464A JPH062799B2 (en) 1988-04-20 1988-04-20 Epoxy resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095464A JPH062799B2 (en) 1988-04-20 1988-04-20 Epoxy resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH01268711A JPH01268711A (en) 1989-10-26
JPH062799B2 true JPH062799B2 (en) 1994-01-12

Family

ID=14138380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095464A Expired - Fee Related JPH062799B2 (en) 1988-04-20 1988-04-20 Epoxy resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JPH062799B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03154368A (en) * 1989-11-10 1991-07-02 Nitto Denko Corp Semiconductor device
JPH0689112B2 (en) * 1989-11-25 1994-11-09 松下電工株式会社 Epoxy resin composition for semiconductor encapsulation
JPH03195722A (en) * 1989-12-25 1991-08-27 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH03232258A (en) * 1989-12-28 1991-10-16 Nitto Denko Corp Semiconductor device
JPH03278450A (en) * 1990-03-27 1991-12-10 Matsushita Electric Works Ltd Resin-sealed semiconductor device
JPH06107911A (en) * 1992-09-24 1994-04-19 Sumitomo Bakelite Co Ltd Resin composition for semiconductor sealing use
JPH07273252A (en) * 1994-11-24 1995-10-20 Nitto Denko Corp Semicondcutor device
JP2824026B2 (en) * 1995-02-20 1998-11-11 日東電工株式会社 Semiconductor device
KR100240121B1 (en) * 1997-08-30 2000-01-15 성재갑 Epoxy molding compound for package of plastic charge coupled device
JP4614214B2 (en) * 1999-12-02 2011-01-19 信越化学工業株式会社 Hollow package for semiconductor device elements

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839677A (en) * 1981-09-02 1983-03-08 Mitsubishi Petrochem Co Ltd Novel polyepoxy compound
JPS58170774A (en) * 1982-03-31 1983-10-07 Kanegafuchi Chem Ind Co Ltd Novel epoxy resin and its preparation
JPS60248725A (en) * 1984-05-24 1985-12-09 Nitto Electric Ind Co Ltd Epoxy resin powder composition
JPS62161851A (en) * 1986-01-09 1987-07-17 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor
JPH01152151A (en) * 1987-12-09 1989-06-14 Sumitomo Bakelite Co Ltd Epoxy resin composition

Also Published As

Publication number Publication date
JPH01268711A (en) 1989-10-26

Similar Documents

Publication Publication Date Title
JPH062799B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0733429B2 (en) Epoxy resin composition
JP2991849B2 (en) Epoxy resin composition
JPH0588904B2 (en)
JPH05206331A (en) Resin composition for sealing semiconductor
JPH09143345A (en) Epoxy resin composition
JPH06107911A (en) Resin composition for semiconductor sealing use
JPH1135797A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP3008981B2 (en) Epoxy resin composition
JPH06184272A (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition
JPH05206330A (en) Epoxy resin composition
JPH07107123B2 (en) Epoxy resin composition
JP3235799B2 (en) Epoxy resin composition
JP3093050B2 (en) Epoxy resin composition
JP2690992B2 (en) Epoxy resin composition
JPH07107122B2 (en) Epoxy resin composition
JPH062801B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH07173255A (en) Epoxy resin composition
JPH06100658A (en) Epoxy resin composition
JPH062800B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH07238139A (en) Epoxy resin composition
JPH0563114A (en) Resin composition for sealing semiconductor
JPH05343570A (en) Epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees