JPH09322775A - 高分子マイクロ遺伝子重合体の作成方法 - Google Patents

高分子マイクロ遺伝子重合体の作成方法

Info

Publication number
JPH09322775A
JPH09322775A JP8147184A JP14718496A JPH09322775A JP H09322775 A JPH09322775 A JP H09322775A JP 8147184 A JP8147184 A JP 8147184A JP 14718496 A JP14718496 A JP 14718496A JP H09322775 A JPH09322775 A JP H09322775A
Authority
JP
Japan
Prior art keywords
seq
sequence
nucleic acid
oligonucleotide
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8147184A
Other languages
English (en)
Other versions
JP3415995B2 (ja
Inventor
Kiyotaka Shiba
清隆 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP14718496A priority Critical patent/JP3415995B2/ja
Priority to US08/871,809 priority patent/US6063595A/en
Priority to DE69730558T priority patent/DE69730558T2/de
Priority to CA002205082A priority patent/CA2205082C/en
Priority to EP97109308A priority patent/EP0812911B1/en
Publication of JPH09322775A publication Critical patent/JPH09322775A/ja
Application granted granted Critical
Publication of JP3415995B2 publication Critical patent/JP3415995B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Saccharide Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

(57)【要約】 【解決手段】 少なくとも一部の配列が互いに相補して
いるオリゴヌクレオチドA及びオリゴヌクレオチドB
に、DNAポリメラーゼを作用させてポリメラーゼ連鎖
反応を行うことを特徴とする高分子マイクロ遺伝子重合
体の作成方法。 【効果】 本発明により、効率的かつ単純に作成された
マイクロ遺伝子の繰り返し重合体が得られる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、DNAポリメラー
ゼを用いた高分子マイクロ遺伝子重合体の作成方法に関
する。
【0002】
【従来の技術】進化分子工学の誕生により、生命反応の
根幹を形成する酵素(タンパク質)、あるいはそれらを
コードする遺伝子DNAを、実験室の中で創り出すこと
が可能となった。この技術により、自然には存在しない
新たな活性を持った酵素・タンパク質を産み出すことが
可能となり、医療領域や工学領域への様々な応用が期待
されている。
【0003】酵素(タンパク質)又はそれをコードする
遺伝子は、それぞれアミノ酸又はヌクレオチドをブロッ
ク単位としたそれらの重合体により構成されている。進
化分子工学では、これらのアミノ酸、ヌクレオチドのブ
ロック単位のランダムな重合体プールの中から、目的と
する活性を持つ分子を選び出す操作を行う。
【0004】しかしながら、全ての組み合せの重合体を
作ろうとしても、合成できる化合物の物理的量に限度が
あるため、連結できるブロックの数に制限があり、その
結果その結果あまり大きなタンパク質や遺伝子を創成す
ることができない。さらに、核酸の重合体からタンパク
質を翻訳させるような試験管内進化系を考えるときに
は、翻訳を停止させる「停止コドン」の出現が大きな問
題となってくる。従って、大きなタンパク質をコードす
る遺伝子を作成する方法として、ある程度の大きさを持
ったマイクロ遺伝子をブロック単位として用いるのが望
ましい。
【0005】ところで、大きな遺伝子は小さな遺伝子
(マイクロ遺伝子)が繰り返し重合して誕生したのでは
ないかという仮説がある(S.Ohno & J.T.Epplen, Proc.
Natl.Acad.Sci.U.S.A.80:3391-3395) 。単純な繰り返し
構造に富むポリペプチドは安定な二次構造を取りやすい
と考えられるので、大きなタンパク質や遺伝子を対象と
する進化分子工学では、短い構造単位を繰り返し重合さ
せ巨大分子を合成する技術が要求されている(Nature 3
67:323-324,1994)。現在、短いDNA単位の繰り返し重
合体を得る方法として、ローリング・サークル合成法が
報告されている(PNAS 92:4641-4645,1995) 。
【0006】しかし、この方法は、リン酸化反応、連結
反応、重合反応、二本鎖形成反応などのステップを何段
階も経なければならないため、反応系が複雑であるとい
う問題点がある。そこで、遺伝子の重合体をより単純に
作成する反応系の開発が求められていた。
【0007】
【発明が解決しようとする課題】本発明は、効率的かつ
単純にマイクロ遺伝子の繰り返し重合体を作成する方法
を提供することを目的とする。
【0008】
【課題を解決するための手段】本発明者は、上記課題に
基づいて鋭意研究を行った結果、少なくとも一部の配列
が互いに相補しているオリゴヌクレオチドにDNAポリ
メラーゼを作用させることにより、効率的かつ単純に高
分子マイクロ遺伝子重合体を作成することに成功し、本
発明を完成するに至った。
【0009】すなわち、本発明は、少なくとも一部の配
列が互いに相補しているオリゴヌクレオチドA及びオリ
ゴヌクレオチドBに、DNAポリメラーゼを作用させて
ポリメラーゼ連鎖反応を行うことを特徴とする高分子マ
イクロ遺伝子重合体の作成方法である。DNAポリメラ
ーゼとしては、エクソヌクレアーゼ、特に3’末端から
5’末端方向に作用するエクソヌクレアーゼを含むもの
が挙げられる。また、DNAポリメラーゼは耐熱性のも
のが好ましい。
【0010】さらに、本発明の高分子マイクロ遺伝子重
合体の作成方法において、オリゴヌクレオチドA及び/
又はオリゴヌクレオチドBの3’末端に、相手のオリゴ
ヌクレオチドとは塩基対を形成できない塩基を少なくと
も1ヌクレオチド含めることができる。以下、本発明を
詳細に説明する。
【0011】
【発明の実施の形態】図1aに示す通り、本発明のポリ
メラーゼ連鎖反応を行うにあたり、まず、互いに少なく
とも一部が相補的な領域をもつ2種類のオリゴヌクレオ
チド(オリゴヌクレオチドA及びオリゴヌクレオチド
B)を合成する。本発明では、特にオリゴヌクレオチド
の3’側配列が互いに相補的であるように合成する。互
いに相補鎖を形成するオリゴヌクレオチド数自体に特に
制限はないが、相補的な塩基は、少なくとも6塩基以
上、特に8塩基以上が好ましい。
【0012】但し、オリゴヌクレオチドAとオリゴヌク
レオチドBのいずれか一方、又は両方の3’末端には、
相手のオリゴヌクレオチドとは塩基対を形成できない塩
基が1ヌクレオチド以上(好ましくは1〜3塩基)存在
するように合成することもできる。この操作により、反
応の効率を上昇させることができる。
【0013】また、本発明は、自然には存在しないよう
な全く新しい遺伝子の重合体を創作することを目的の一
つとしているため、2種類のオリゴヌクレオチドは、そ
の少なくとも一部の配列が互いに相補的であれば特に限
定されず、任意に設定することができる。合成されたオ
リゴヌクレオチドは、上記相補的な領域間で相補してそ
の部分のみ二本鎖が形成される。
【0014】ここで、「相補的」とは、ヌクレオチドA
とヌクレオチドBとが相補鎖を形成する限り、アデニン
とチミンとの関係、グアニンとシトシンとの関係に限ら
ず、グアニンとチミンのような場合も許容されてもよい
ことを意味する。
【0015】これら2つのオリゴヌクレオチドAとオリ
ゴヌクレオチドBは、相補した領域がPCRを行うため
のプライマーとして機能する(図1aの二本鎖の部
分)。そして、オリゴヌクレオチドAの一本鎖の部分
(オリゴヌクレオチドBと二本鎖を形成していない部
分)がオリゴヌクレオチドBを合成するための鋳型とな
り、オリゴヌクレオチドBの一本鎖の部分(オリゴヌク
レオチドBと二本鎖を形成していない部分)がオリゴヌ
クレオチドAを合成するための鋳型となる(図1a)。
このような2種類のオリゴヌクレオチドに、例えば3’
→5’エクソヌクレアーゼ活性を含む耐熱性DNAポリ
メラーゼを作用させてPCR反応を行うと、繰り返し単
位である二本鎖DNAが合成される(図1b)。PCR
をさらに続けることにより、繰り返し単位が連続した大
きなDNAが合成される(図1c)。
【0016】PCRの条件は、ポリメラーゼ(例えばTa
q ポリメラーゼ) を用いて、例えば94℃で10秒〜120
秒、及び69℃で10秒〜120 秒を1サイクルとしてこれを
30〜65サイクル、並びに69℃で3分〜7分行う。P
CRを効率的に行うため、上記サイクルを行う前に、更
に94℃で10分及び69℃で10分の反応を行うのが好まし
い。
【0017】このようにして、2つのオリゴヌクレオチ
ドの相補する部分が自分自身を合成するための自己プラ
イマーとなり、そして相手のオリゴヌクレオチドが鋳型
となり合成された結果、二本鎖DNAを1つの繰り返し
単位として(図1b)、同じ方向に、非常に多くのコピ
ー数でDNAが重合される(図1c)。なお、本発明で
は、上記繰り返し単位が相補鎖を形成する限り、繰り返
し単位の間においていくつかの塩基の置換、挿入、欠失
が存在してもよい。
【0018】
【実施例】以下、実施例により本発明をさらに具体的に
説明する。但し、本発明はこれら実施例に限定されな
い。 〔実施例1〕重合の基礎となるオリゴヌクレオチドAと
してKY-794(配列番号1)、オリゴヌクレオチドBとし
てKY-795(配列番号2)をそれぞれ合成した。オリゴヌ
クレオチドAは22ヌクレオチド、オリゴヌクレオチドB
は23ヌクレオチドからなり、それぞれのオリゴヌクレオ
チドの3’側の8塩基分の領域が互いに相補的であるよ
うに合成した(KY-794の配列のうち第15〜22番目の配列
と、KY-795の配列のうち第15〜22番目の配列とが相補的
である)。KY-795の3’末端にはKY-794と塩基対を形成
できないようにアデニン(A)を付加させた。
【0019】上記オリゴヌクレオチドを用いたPCRの
条件は、50μLの反応容量では以下の通りである。 KY-794(配列番号1) 20 pmol KY-795(配列番号2) 20 pmol dNTP 350 μM MgCl2 1.75 mM Tris-HCl, pH9.2 50 mM (NH4)2SO4 14 mMTaqPol (*1) 2.6 units/50μL *1: Taq ポリメラーゼ Taq ポリメラーゼとしては、ベーリンガー社から販売さ
れているTaq polymeraseとPwo polymeraseのミックスか
らなるExpandTM Long Template PCR system に含まれる
ポリメラーゼを用いた。
【0020】サイクル反応には、パーキン・エルマー社
の9600、又は2400PCRシステムを用い、以下のサイク
ル条件でPCRを行った。 94℃ 10分 69℃ 10分 (94℃を10秒、69℃を60秒)×45サイクル 69℃ 7分 酵素は、システムが最初に94℃に上がった時点で加え
た。この条件で得られたPCR産物について、1.2 %の
アガロースゲル電気泳動を行った。
【0021】結果を図2に示す。図2より、数キロ塩基
対以上にもおよぶDNAがこの方法により重合されたこ
とがわかる。このようにして得られた重合体を、プラス
ミドベクターpTZ19R(Mead et al.,Protein Eng.1:67-7
4(1986))にクローニングし、4つのクローン(pSA32 、
pSA33 、pYT5、pYT8)についてその挿入断片の塩基配列
をシークエンサー(パーキンエルマー社)を用いて決定
した。
【0022】結果を図3に示す。また、各クローンにつ
いて決定された塩基配列を、pSA32については配列番号
3、pSA33 については配列番号4、pYT5については配列
番号5、pYT8については配列番号5に示す。配列番号3
の配列のうち、第1〜36番目の配列、40〜75番目の配
列、77〜112番目の配列はともに同じ配列であることか
ら、KY-794とKY-795から由来する37塩基対の二本鎖を単
位として、これが同じ方向にいくつも連結した重合体が
合成されているのが分かる。配列番号4〜6の配列につ
いても同様である。
【0023】なお、図3中「Δ」はオリゴヌクレオチド
由来の配列が繰り返し単位の連結部分で欠失していたこ
とを、また、下線部は由来不明の塩基が繰り返し単位の
連結部分で挿入されていたことを示す。
【0024】〔実施例2〕実施例1(図2)で示した反
応において、KY-795の3’末端には、KY-794と塩基対を
形成できないような塩基が1つ存在していた。このよう
なミスマッチを形成しないオリゴヌクレオチドKY-783
(配列番号7)とKY-794との組み合わせによる重合反応
を行った。PCR条件は実施例1と同じである。この条
件で得られたPCR産物について、1.2%のアガロース
ゲル電気泳動を行った。
【0025】その結果を結果を図4に示す。図4より、
用いるオリゴヌクレオチドの3’末端に、相手のオリゴ
ヌクレオチドと塩基対を形成できないような塩基が少な
くとも1つ存在することが重合反応の効率を上げること
が分かる(図4,レーン2)。
【0026】〔実施例3〕図5に示すように、KY-794と
KY-795は8塩基の相補領域を有する。本実施例では、こ
の相補領域をさらに2塩基分短くした(相補領域は6塩
基である)オリゴヌクレオチド KY-845(配列番号8)
とKY-846(配列番号9)とを用いて重合反応を行った。
反応液の組成は実施例2と同じであるが、PCRは、 条件1: 94℃ 10分 63℃ 10分 (94℃を10秒、63℃を60秒)×45サイクル 63℃ 7分 又は条件2: 94℃ 10分 66℃ 10分 (94℃を10秒、66℃を60秒)×45サイクル 66℃ 7分 のいずれかのサイクル条件で行った。
【0027】この条件で得られたPCR産物について、
1.2%のアガロースゲル電気泳動を行った。その結果を
図5に示す。図5において、レーン2及び3は条件1
で、レーン4及び5は条件2でPCRを行った結果であ
る。図5のレーン1及び2より、相補領域が6塩基と短
いオリゴヌクレオチドの組み合わせでもPCRサイクル
のアニーリング温度を63℃へと下げることにより重合反
応が進んでいることが分かる。
【0028】〔実施例4〕本実施例では、PCR用の酵
素として、3’→5’エクソヌクレアーゼ活性を含む耐
熱性DNAポリメラーゼを用いた。3’→5’エクソヌ
クレアーゼ活性は重合効率を高める点で重要である。そ
こで、この3’→5’エクソヌクレアーゼ活性の重要性
について、3’→5’エクソヌクレアーゼ活性を欠く耐
熱性DNAポリメラーゼを用いて調べた。
【0029】オリゴヌクレオチドは、 KY-794(配列番
号1)と KY-785(配列番号2)を用いた。PCR反応
液は実施例1と同じ組成で、酵素のみをストラタジーン
社から販売されている耐熱性ポリメラーゼPfu DNA Poly
merase、あるいは、3’→5’エクソヌクレアーゼ活性
を持たないとされているExo- Pfu DNA Polymeraseを1.9
units/50μLの濃度で用いた。PCRは、実施例1と同
様のサイクル条件で行った。この条件で得られたPCR
産物について、2%のアガロースゲル電気泳動を行っ
た。
【0030】結果を図6に示す。図6より、3’→5’
エクソヌクレアーゼ活性を持たないとされているExo- P
fu DNA Polymerase を用いた場合は(レーン3)、3’
→5’エクソヌクレアーゼ活性を持つPfu DNA Polymera
se を用いた場合(レーン2)に比べ、重合効率が落ち
ていることが分かる。
【0031】〔実施例5〕本実施例では、種々の配列を
もつオリゴヌクレオチドを用いて重合を行った。図7に
示すとおり、 KY-808(配列番号10)と KY-809(配列番
号11)とは、8塩基分の互いに相補的な領域の配列を有
し、 KY-794(配列番号1)と KY-795(配列番号2)と
が相補鎖を形成する配列の数と同一であるが、ヌクレオ
チドの組成については、KY-794 と KY-795との間で形成
される相補的な領域の配列と比較して大きく異なってい
る。
【0032】また、 KY-827(配列番号12)、 KY-828
(配列番号13)、 KY-829(配列番号14)及び KY-830
(配列番号15)は、 KY-794(配列番号1)の配列を一
部変換したものであり、KY-831(配列番号16)、KY-832
(配列番号17)、KY-833(配列番号18)、KY-834(配列
番号19)及びKY-835(配列番号20)は、KY-795 (配列
番号2)の配列を一部変換したものである。
【0033】KY-794(配列番号1): KY-795(配列番
号2)、KY-808(配列番号10): KY-809(配列番号1
1)、KY-827(配列番号12): KY-795(配列番号2)、
KY-828(配列番号13): KY-795(配列番号2)、KY-82
9(配列番号14): KY-795(配列番号2)、 KY-830
(配列番号15): KY-795(配列番号2)、 KY-794(配
列番号1): KY-831(配列番号16)、KY-794(配列番
号1):KY-832(配列番号17)、KY-794(配列番号
1):KY-833(配列番号18)、KY-794(配列番号1):
KY-834(配列番号19)、KY-794(配列番号1):KY-835
(配列番号20)の各オリゴヌクレオチドの組み合わせに
より、実施例1と同じ条件でPCR反応を行った。この
条件で得られたPCR産物について、2%のアガロース
ゲル電気泳動を行った。
【0034】結果を図7、図8に示す。図7、図8よ
り、用いたオリゴヌクレオチドの配列の範囲では、効率
の差はあるものの、重合反応はいずれの組み合わせにお
いても進んでいることが分かる。
【0035】〔実施例6〕得られる重合体の配列に多様
性を持たせるために、部分的にランダマイズさせたオリ
ゴヌクレオチドを用いた重合反応を行った。プライマー
としては、KY-812(配列番号21)と、KY-795(配列番号
2)を用いた。KY-812(配列番号21)は、第3、第11
塩基の2箇所の部分にA、T、G又はCのいずれかが配
置されるように合成されたオリゴヌクレオチドである。
PCRの反応は、実施例1と同様に行った。反応後、得
られた重合体をプラスミドベクターpTZ19Rにクローニン
グし、4つのクローン(pYT15, pYT16, pYT20, pYT21)
についてその挿入断片の塩基配列を決定した。
【0036】その結果を、図9に示す。また、各クロー
ンについて決定された塩基配列を、pYT15 については配
列番号22、 pYT16については配列番号23、pYT20 につい
ては配列番号24、 pYT22については配列番号25に示す。
図9より、第3塩基は、Cを好むものの、第11塩基に
はA、T、G又はCがいずれも出現しており、重合体の
配列に多様性を与えていることが分かる。
【0037】〔実施例7〕得られた重合体がコードする
タンパク質を大腸菌の中で発現させることができる。 K
Y-794(配列番号1)と KY-795(配列番号2)との組み
合わせから得られた重合体、及びKY-812(配列番号21)
と、KY-795(配列番号2)との組み合わせから得られた
重合体を、それぞれ発現ベクターpET23bにクローニング
し、組み換え体pYT32 、pYT33 を得た。 pYT32及びpYT3
3がコードする重合体由来のタンパク質を大腸菌BL21(DE
3)株内で発現後、細胞抽出液を15-25%グラジュエント
ゲルを用いたSDSポリアクリルアミドゲル電気泳動で
解析した。
【0038】結果を図10に示す。分子量マーカーは、大
きいものより97,400、66,267、42,400、30,000、20,10
0、14,400である。図10から、重合体に由来した分子量
約16Kのタンパク質が発現しているのが分かる。
【0039】
【発明の効果】本発明により、効率的かつ単純に作成さ
れたマイクロ遺伝子の繰り返し重合体が得られる。
【0040】
【配列表】
配列番号:1 配列の長さ:22 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACGGTCACC TGCACAAAGG CG 22
【0041】配列番号:2 配列の長さ:23 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: CGGGATCCAC TGCACGCCTT TGA 23
【0042】配列番号:3 配列の長さ:185 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCGG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCCCC GACGGTCACCTGCACAAAGGCGTGCAGTGGATCC GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG 185
【0043】配列番号:4 配列の長さ:162 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGGCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGT GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCCA GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCGCCA GACGGTCAC 162
【0044】配列番号:5 配列の長さ:280 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCCGG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGT GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCCGG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCCGG GACGGTCACCTGCACAA 280
【0045】配列番号:6 配列の長さ:246 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACGGTCACCTGCACAAAGGCGTGCAGTAGATCCCGCCCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGC GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCCGG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCG 646
【0046】配列番号:7 配列の長さ:22 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: CGGGATCCAC TGCACGCCTT TG 22
【0047】配列番号:8 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACGGTCACC TGCACAGGCG 20
【0048】配列番号:9 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: CGGGATCCAC TGCACGCCTG A 21
【0049】配列番号:10 配列の長さ:22 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACGGACACC TGCAAACGGA GC 22
【0050】配列番号:11 配列の長さ:23 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: CGGGATCCAC TGCAGCTCCG TTA 23
【0051】配列番号:12 配列の長さ:22 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: CTGGGTCACC TGCACAAAGG CG 22
【0052】配列番号:13 配列の長さ:22 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACCCACACC TGCACAAAGG CG 22
【0053】配列番号:14 配列の長さ:22 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACGGTGTGC TGCACAAAGG CG 22
【0054】配列番号:15 配列の長さ:22 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACGGTCACG ACCACAAAGG CG 22
【0055】配列番号:16 配列の長さ:23 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: CGGGATCCAC TCGTCGCCTT TGA 23
【0056】配列番号:17 配列の長さ:23 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: CGGGATCCTG AGCACGCCTT TGA 23
【0057】配列番号:18 配列の長さ:23 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: CGGGAAGGAC TGCACGCCTT TGA 23
【0058】配列番号:19 配列の長さ:23 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: CGCCTTCCAC TGCACGCCTT TGA 23
【0059】配列番号:20 配列の長さ:23 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GCGGATCCAC TGCACGCCTT TGA 23
【0060】配列番号:21 配列の長さ:22 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GANGGTCACC NGCACAAAGG CG 22
【0061】配列番号:22 配列の長さ:314 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACGGTCGCCGGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCCGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCGGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GATGGTCACCAGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCCGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCAGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCGTGCAGG 314
【0062】配列番号:23 配列の長さ:408 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCAGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCCGCACAAAGGCGTGCAGTGGATCCCG GATGGTCACCGGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCGT GAGGGTCACCTGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCCGG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCGGCACAAAGGCGTGCAGTGGATCCCG GACGGTCAC 408
【0063】配列番号:24 配列の長さ:674 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GGTCACCGGCACAAAGGCGTGCAGTGGATCCCGCCGG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCCGG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCCGG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCAGCACAAAGGCGTGCAGTGGATCCC GAAGGTCACCCGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCGGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCGGCACAAAGGCGTGCAGTGGATCCCGCCGG GAAGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCGGCACAAAGGCGTGCAGTGGATCCCG GAAGGTCACCGGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCAGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCGGCACAAAGGCGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCCGCACAAAGGCGTGCAGTGGATCCCGCCGG GATGGTCACCGGCAC 674
【0064】配列番号:25 配列の長さ:373 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GAGGGTCACCCGCACAAAGGCGTGCACTGGATCCCGCCGG GACGGTCACCTGCACAAAGGCGTGCATTGGATCCCGCCGG GACGGTCACCGGCACAAAGGGGTGCAGTGGATCCCG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCGCCGG GACGGTCACCGGCACAAAGGCGTGCAGTGGATCCC GATGGTCACCCGCACAAAGGCGTGCAGTGGATCCC GATGGTCACCCGCACAAAGGCGTGCAGTGGATCCCGCCGG GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCC GACGGTCACCTGCACAAAGGCGTGCAGTGGATCCCG GAAGGTCACCGGCACAAAGGCGTGCAGTGGATCCCG 373
【図面の簡単な説明】
【図1】本発明の方法を示す模式図である。
【図2】アガロースゲル電気泳動の結果を示す写真であ
る。
【図3】本発明の方法により合成された遺伝子を示す図
である。
【図4】アガロースゲル電気泳動の結果を示す写真であ
る。
【図5】アガロースゲル電気泳動の結果を示す写真であ
る。
【図6】アガロースゲル電気泳動の結果を示す写真であ
る。
【図7】アガロースゲル電気泳動の結果を示す写真であ
る。
【図8】アガロースゲル電気泳動の結果を示す写真であ
る。
【図9】本発明の方法により合成された遺伝子を示す図
である。
【図10】SDSポリアクリルアミドゲル電気泳動の結
果を示す写真である。

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 少なくとも一部の配列が互いに相補して
    いるオリゴヌクレオチドA及びオリゴヌクレオチドB
    に、DNAポリメラーゼを作用させてポリメラーゼ連鎖
    反応を行うことを特徴とする高分子マイクロ遺伝子重合
    体の作成方法。
  2. 【請求項2】 DNAポリメラーゼが、3’末端から
    5’末端方向に作用するエクソヌクレアーゼを含むもの
    である請求項1記載の高分子マイクロ遺伝子重合体の作
    成方法。
  3. 【請求項3】 DNAポリメラーゼが耐熱性のものであ
    る請求項1記載の高分子マイクロ遺伝子重合体の作成方
    法。
  4. 【請求項4】 オリゴヌクレオチドA及び/又はオリゴ
    ヌクレオチドBの3’末端が、相手のオリゴヌクレオチ
    ドとは塩基対を形成できない塩基を少なくとも1ヌクレ
    オチド含むものである請求項1記載の高分子マイクロ遺
    伝子重合体の作成方法。
JP14718496A 1996-06-10 1996-06-10 高分子マイクロ遺伝子重合体の作成方法 Expired - Fee Related JP3415995B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14718496A JP3415995B2 (ja) 1996-06-10 1996-06-10 高分子マイクロ遺伝子重合体の作成方法
US08/871,809 US6063595A (en) 1996-06-10 1997-06-09 Method of forming a macromolecular microgene polymer
DE69730558T DE69730558T2 (de) 1996-06-10 1997-06-09 Methode zur Bildung makromolekularer Mikrogenpolymeren
CA002205082A CA2205082C (en) 1996-06-10 1997-06-09 Method of forming double stranded dna polymer having repeating subunits in tandem
EP97109308A EP0812911B1 (en) 1996-06-10 1997-06-09 A method of forming a macromolecular microgene polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14718496A JP3415995B2 (ja) 1996-06-10 1996-06-10 高分子マイクロ遺伝子重合体の作成方法

Publications (2)

Publication Number Publication Date
JPH09322775A true JPH09322775A (ja) 1997-12-16
JP3415995B2 JP3415995B2 (ja) 2003-06-09

Family

ID=15424475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14718496A Expired - Fee Related JP3415995B2 (ja) 1996-06-10 1996-06-10 高分子マイクロ遺伝子重合体の作成方法

Country Status (5)

Country Link
US (1) US6063595A (ja)
EP (1) EP0812911B1 (ja)
JP (1) JP3415995B2 (ja)
CA (1) CA2205082C (ja)
DE (1) DE69730558T2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065575A (ja) * 2003-08-22 2005-03-17 Japan Science & Technology Agency フレームシャッフリングによるタンパク質分子多様性集団の作製
WO2006011589A1 (ja) * 2004-07-30 2006-02-02 Japan Science And Technology Agency 多数種モチーフ配列のランダム重合による人工遺伝子及び人工タンパク質集団の作製法
US7243031B2 (en) 2001-12-27 2007-07-10 Fujitsu Limited Method of designing multifunctional base sequence

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001281464A1 (en) * 2000-03-13 2001-09-24 Monsanto Technology Llc Recombinant proteins containing repeating units
JP2001352990A (ja) * 2000-06-16 2001-12-25 Japan Science & Technology Corp 多機能塩基配列及びそれを含む人工遺伝子
GB0025144D0 (en) * 2000-10-13 2000-11-29 Medical Res Council Concatenated nucleic acid sequences
IL141392A0 (en) 2001-02-12 2002-03-10 Gene Bio Applic Ltd Orientation-directed construction of plasmids
WO2003002761A1 (en) * 2001-06-29 2003-01-09 Novozymes A/S Method of multimerization and site-directed mutagenesis
US20030224480A1 (en) * 2001-12-27 2003-12-04 Fujitsu Limited Method of designing multifunctional base sequence

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001813A1 (en) * 1990-07-25 1992-02-06 Syngene, Inc. Circular extension for generating multiple nucleic acid complements
JPH07500734A (ja) * 1991-10-31 1995-01-26 ユニヴァーシティ オブ ピッツバーグ オリゴヌクレオチドプローブのポリマーを用いる核酸配列の検出方法
US5338671A (en) * 1992-10-07 1994-08-16 Eastman Kodak Company DNA amplification with thermostable DNA polymerase and polymerase inhibiting antibody
US5834252A (en) * 1995-04-18 1998-11-10 Glaxo Group Limited End-complementary polymerase reaction
US5512462A (en) * 1994-02-25 1996-04-30 Hoffmann-La Roche Inc. Methods and reagents for the polymerase chain reaction amplification of long DNA sequences
DE4428651C1 (de) * 1994-08-12 1996-02-29 Inst Molekulare Biotechnologie Verfahren zur Herstellung und Amplifikation von Nukleinsäuren
EP0736609A3 (de) * 1995-04-08 1998-07-29 Roche Diagnostics GmbH Verfahren zur spezifischen Vervielfältigung und zum Nachweis von DNA bzw. RNA
US5756316A (en) * 1995-11-02 1998-05-26 Genencor International, Inc. Molecular cloning by multimerization of plasmids

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7243031B2 (en) 2001-12-27 2007-07-10 Fujitsu Limited Method of designing multifunctional base sequence
JP2005065575A (ja) * 2003-08-22 2005-03-17 Japan Science & Technology Agency フレームシャッフリングによるタンパク質分子多様性集団の作製
WO2006011589A1 (ja) * 2004-07-30 2006-02-02 Japan Science And Technology Agency 多数種モチーフ配列のランダム重合による人工遺伝子及び人工タンパク質集団の作製法
JPWO2006011589A1 (ja) * 2004-07-30 2008-05-01 独立行政法人科学技術振興機構 多数種モチーフ配列のランダム重合による人工遺伝子及び人工タンパク質集団の作製法
JP4568723B2 (ja) * 2004-07-30 2010-10-27 独立行政法人科学技術振興機構 多数種モチーフ配列のランダム重合による人工遺伝子及び人工タンパク質集団の作製法

Also Published As

Publication number Publication date
EP0812911A3 (en) 2001-04-18
DE69730558T2 (de) 2005-11-24
US6063595A (en) 2000-05-16
CA2205082C (en) 2008-04-08
DE69730558D1 (de) 2004-10-14
CA2205082A1 (en) 1997-12-10
EP0812911A2 (en) 1997-12-17
EP0812911B1 (en) 2004-09-08
JP3415995B2 (ja) 2003-06-09

Similar Documents

Publication Publication Date Title
JP3010738B2 (ja) 核酸の交雑、増幅方法
CN105283558B (zh) 使用热稳定的TthPrimPol扩增和测序的方法
CA2945628A1 (en) Long nuceic acid sequences containing variable regions
JPH11507211A (ja) 熱耐性dnaポリメラーゼ
JPH02142472A (ja) 二本鎖dna配列の調製方法
JPH04293485A (ja) 突然変異の導入方法
JP2003513652A (ja) 改変特性を有するバイオポリマーの作製方法
JP2003535587A (ja) 低温感受性変異体dnaポリメラーゼ
JP3415995B2 (ja) 高分子マイクロ遺伝子重合体の作成方法
JP2004535831A (ja) 原料核酸の確率論的に組み合わせられた部分よりなる核酸の製造方法
Ciccarelli et al. Construction of synthetic genes using PCR after automated DNA synthesis of their entire top and bottom strands
WO2003033718A1 (en) Synthesis of oligonucleotides on solid support and assembly into doublestranded polynucleotides
JP2005514003A (ja) 高いプライミング特異性を有するdnaの低温サイクル伸長
WO2001016366A2 (en) Template-dependent nucleic acid polymerization using oligonucleotide triphosphates building blocks
US6627416B1 (en) 5′-modified nucleotides and the application thereof in molecular biology and medicine
AU2002254773B2 (en) Novel methods of directed evolution
KR20030045124A (ko) 핵산 염기서열의 결정방법
JP2019520839A (ja) 単分子配列決定のための一本鎖環状dnaライブラリーを生成するための方法
Kankia Quadruplex world
WO2002004630A2 (en) Methods for recombinatorial nucleic acid synthesis
DK175230B1 (da) Fremgangsmåde til fremstilling af dobbeltstrenget DNA samt oligonucleotid
US20040219570A1 (en) Methods of directed evolution
CN107460177A (zh) 可利用化学修饰核苷酸的rna聚合酶突变体
US11773380B1 (en) Polymerase mutants and use with 3′-OH unblocked reversible terminators
JPH09154585A (ja) マイクロ遺伝子のランダム重合体作成方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees