JPH09306507A - 溶融炭酸塩型燃料電池用電極及びその製造方法 - Google Patents
溶融炭酸塩型燃料電池用電極及びその製造方法Info
- Publication number
- JPH09306507A JPH09306507A JP8137718A JP13771896A JPH09306507A JP H09306507 A JPH09306507 A JP H09306507A JP 8137718 A JP8137718 A JP 8137718A JP 13771896 A JP13771896 A JP 13771896A JP H09306507 A JPH09306507 A JP H09306507A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- electrode
- fuel cell
- molten carbonate
- surface area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
- H01M4/8885—Sintering or firing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
- H01M2004/8689—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
命化を図る。 【解決手段】 Ni粉1に焼結助剤2と焼結防止剤3と
を混合し、更に、結合剤4、分散剤5、空孔形成剤6を
混合工程Iで混合し、スラリー7とする。これを成形工
程IIで板状に成形した後乾燥させてテープ8にする。次
いで、脱脂工程III で脱脂して、焼成工程IVで還元雰囲
気にて高温で焼成し、多孔質体9を作る。次に、酸化工
程Vで500℃以上で昇温する過程で酸化させてカソー
ド電極10とする。焼結助剤2と焼結防止剤3を混合さ
せているので、従来のものと同じ空隙率を確保しながら
従来より高い温度で焼成でき、この影響で酸化工程によ
り表面の荒れが生じても比表面積を0.8m2 /g以下
にできる。
Description
ネルギーを直接電気エネルギーに変換させるエネルギー
部門で用いる燃料電池、特に、溶融炭酸塩型燃料電池の
電極のうち、カソード電極とその製造方法に関するもの
である。
溶融炭酸塩を多孔質物質にしみ込ませてなる電解質板
(タイル)をカソード(酸素極)とアノード(燃料極)
の両電極で両面から挟み、カソード側に酸化ガスを供給
すると共に、アノード側に燃料ガスを供給することによ
りカソード側とアノード側で反応が行われるようにした
ものを1セルとし、各セルをセパレータを介し積層して
スタックとするようにしてある。
酸化ニッケル(NiO)を主成分とするカソード電極
は、従来、原料粉としてNi粉を粉末冶金的手法によ
り、Ni粉に対して1〜5重量%の結合剤、同じく1〜
5重量%の分散剤、同じく1〜5重量%の空孔形成剤、
水と混合してスラリーとした後、板状に成形し、乾燥後
に還元雰囲気で750℃の温度で焼成して、空隙率が7
0〜80%、比表面積が0.05〜0.4m2 /gの金
属多孔質体とし、次いで、電池外あるいは電池内で50
0℃以上に昇温する過程で酸化させて、空隙率が50〜
60%、比表面積が1〜2m2 /gの金属酸化物多孔質
体の電極として作り、使用するようにしている。
に製造された溶融炭酸塩型燃料電池のNiOを主成分と
するカソード電極は、比表面積が大きく、酸化ガス中の
炭酸ガスとの反応により溶融炭酸塩中にNiOが溶解す
る表面積が大きいので、溶融炭酸塩中に溶出して行く量
が多く、電池の寿命に係る大きな問題がある。すなわ
ち、NiOを主成分とするカソード電極は、酸化ガス中
の炭酸ガス(CO2 )との反応により NiO+CO2 →Ni+++CO3 -- の溶解反応を起し、多孔質体の表面から溶解して溶融炭
酸塩中に溶出して行く性質があるが、上記した従来のカ
ソード電極の場合は、溶解される表面積が大きいため、
溶解反応による溶出量が多い。
て来た水素により電解質板の溶融炭酸塩中で還元されて
金属Niとなって析出し、この析出した金属Niにより
カソードとアノード間の短絡が生じ、電池の電流が電池
内部で消費されることになって電池の発電効率を低下す
るという問題があり、又、上記電解質板中での還元反応
において、炭酸塩中のNi++イオンは、炭酸塩中で飽和
することはなく、継続的にカソード電極の表面から炭酸
塩中へのNiの溶出が続くので、電池運転中にカソード
電極が減肉し、多孔質構造を粗にして脆弱化し、電池運
転中の圧縮下で破壊に至り、電池性能が劣化し、電池の
寿命が短かくなる問題がある。
において、炭酸ガスと反応して溶解反応を起すカソード
電極の表面積を小さくして、電池を長時間にわたって高
い特性を維持することができる安定性に優れた溶融炭酸
塩型燃料電池用の電極とその製造方法を提供しようとす
るものである。
決するために、電解質として溶融炭酸塩を多孔質物質に
しみ込ませてなる電解質板をカソードとアノードの両電
極で両面から挟み、カソード側に酸化ガスを供給すると
共にアノード側に燃料ガスを供給するようにしたセルを
セパレータを介し多層に積層してなる溶融炭酸塩型燃料
電池の上記カソード電極を、比表面積が0.8m2 /g
以下の多孔質電極とした構成とする。
m2 /gに比して大幅に小さい0.8m2 /g以下とし
てあるので、溶融炭酸塩への反応が少なくなって、反応
によりNiの溶出量を少なくすることができる。これに
伴い電極の劣化も少なくなり、又、炭酸塩の組成変化も
少なくなって電池の劣化も少なくなり、電池の寿命を延
ばすことができる。
と焼結防止剤を混合させたものとし、焼結助剤として、
高温で拡散によりNi粉に固溶するFe、Cr、Coの
如き金属粉又は合金粉を用いるか又はFeOの如き酸化
物粉又は複合酸化物粉を用い、且つ粒径を1〜20μm
として焼結し易くしているものを用い、焼結防止剤とし
て、高温で拡散によりNi粉に固溶しないか固溶しても
僅かなMgO、CaOの如き酸化物等をNi粉と分散が
良いように1〜20μmの粒径にしたものを用いるよう
にすると、従来と同じ空隙率となるように焼成するとき
の温度を従来より高い900℃以上の高温で焼成するこ
とができるので、強く焼結させることができて従来より
粉体同士の結合が強くなり、多孔質体の表面積を低下さ
せることができる。
8m2 /g以下のカソード電極とするが、高温で焼成し
ている影響で酸化による表面の荒れが少なくなって表面
積の増加を防止できて比表面積を従来よりも小さい0.
8m2 /g以下にでき、上記のように反応面積が小さく
て溶解量を少なくできる。
粉体同士を強く結合できて粒界が少なくなり、更に粉体
の焼結位置の太さが太くなり、表面積を低下できる。
を参照して説明する。
で、溶融炭酸塩型燃料電池のカソード電極を製造するプ
ロセスフローを示すものである。
粒径に依存するが、Ni粉に対して0.1〜15重量%
の焼結助剤2と同じくNi粉に対して0.1〜15重量
%の焼結防止剤3を添加して混合すると共に、メチルセ
ルロース系の結合剤4、アニオン系の分散剤5、電気泳
動用セルロース粉(メッシュ200〜300)の空孔形
成剤6を、ともにNi粉に対して1〜5重量%混合して
スラリー7とした後、これを成形工程IIで板状(テープ
状)に成形して乾燥させ、乾燥テープ8とするる。次
に、これを脱脂工程III で脱脂処理後、焼成工程IVにて
真空又は還元雰囲気の下で従来よりも高温(900℃以
上)で焼成して、空隙率が70〜80%、比表面積が
0.05〜0.4m2 /gの多孔質体9を作るようにす
る。
化させて空隙率が50〜65%、比表面積が0.8m2
/g以下のカソード電極10を製造するようにする。
化の2通りがあり、電池内酸化の場合は、上記NiO多
孔質体9をカソードとして電解質板に重ね合わせて電池
内に組み込み、カソード側に供給される酸化ガスにより
酸化させるようにするものであり、電池外酸化の場合と
同様に500℃以上に昇温する過程で酸化させるように
する。
において、焼結助剤2としては、高温で拡散によりNi
粉1と固溶し得る金属X又は金属酸化物Yを使用するよ
うにし、金属Xとしては、Fe、Cr、Co、Pd、P
t、V、Cu、Mn、Mo、Re、Ru、W、Nb、R
h、Ti(66at%以下)、Zr(28at%以下)
のいずれか1種又は複数種の金属粉又は合金粉とする。
又、金属酸化物Yとしては、FeO、Fe2 O3 、Fe
3 O4 、Cr2 O3 、NiO、Li2 Oのいずれか1種
又は複数種の金属粉又は合金粉とする。又、粒径は1〜
20μmとする。
よりNi粉1と固溶しないか又は固溶しても僅かな酸化
物、たとえば、MgO、CaO、Al2 O3 の如き酸化
物の粉や、熱分解によりMgO、CaO、Al2 O3 と
なるMgCO3 、CaCO3、Li2 CO3 、K2 CO
3 、Na2 CO3 の如き炭酸塩の粉や、Mg(O
H)2 、Al(OH)3 の如き水酸化物の粉を用いるよ
うにする。又、粒径は1〜20μmとする。
1に、焼結助剤2としてFe、Crの如き金属又はFe
O、Fe2 O3 の如き金属酸化物の粉と、焼結防止剤と
してMgO、CaOの如き酸化物等の粉とを混合してい
るので、焼成工程IVで従来と同じ空隙率70〜80%と
なるように焼成する場合に、従来より高温(900℃以
上)で強く焼結させることができる。この高温で焼結さ
せることにより、従来より粉体同士の結合が強く、又、
粒界が少なくなり、更に、粉体の焼結位置の太さが太く
なり、表面積を低下させることができる。
合では、酸化により表面が荒れて表面積が増大するが、
本発明の場合は、焼成工程IVにて高温で焼成しているた
めに、酸化による表面の荒れが少なくなり、表面積の増
加は防止され、カソード電極10の比表面積を従来のカ
ソード電極の比表面積1〜2m2 /gより大幅に小さく
することができることになり、クリプトンガスを使用し
てガスが吸着する表面積を測定するB.E.T法による
と、比表面積は0.8m2 /g以下であった。
る表面積が小さいカソード電極とすることができたこと
から、炭酸ガスと反応して溶解反応を起す面積が小さく
て、溶融炭酸塩中への溶出量を少なくすることができ、
これにより電極表面の変化が少なくなって電極の劣化が
少なくなり、又、溶融炭酸塩中への溶出量が少なくなる
ことから炭酸塩の組成変化も少なくなって電池性能の劣
化を防止できることになり、電池寿命を延長できる。
8m2 /g以下としてあるが、これ以上の場合は、従来
のカソード電極と同様に溶融炭酸塩中への溶出量が多く
寿命が短かいことが計算によっても確認された。
の計算について説明する。
ように炭酸ガスとの反応による溶解反応により表面から
溶解するが、図2はカソード電極の比表面積の変化、す
なわち、比表面積が電池の運転時間により減少して行く
状態を、本発明のカソード電極(図中●印)と従来のカ
ソード電極(図中○印)について示すものであり、又、
図3は従来のカソードの電解質板中に溶け込んだNiの
溶出量と電池の運転時間との関係を示すものである。
のように時間Tの約−0.22乗に比例して減少する。
ば、表面積は体積Vの0.5乗である。すなわち、円筒
体の半径をr、円筒体の長さをlとすれば、体積Vは、 V=πr2 l 側面の表面積Sは、 S=2πrl 故に、S=√4πlV=(4πlV)0.5 … 溶解量変化(溶解速度)は表面積変化の2乗に比例する
ので、上記式より AT-0.22 =√4πlV=(4πlV)0.5 つまり、A2 T-0.22 ×2 =4πlV V=(A2 /4πl)×T-0.44 … となり、溶解量は時間の約−0.44乗に比例する。
できる。W=ρ×Vよって、式より W=(A2 ρ/4πl)×T-0.44 =BT-0.44 … B:定数 式を時間Tで積分すると、溶出して炭酸塩中に集積し
て行く集積速度wは、
例していることを示しており、上記集積速度wが時間の
0.56乗に比例することとほぼ一致している。このこ
とは、多孔質構造が円筒状の集合体と考え、表面積変化
は体積変化の0.5乗であることが正しく、溶解量変化
(溶解速度)が表面積の2乗に比例することを意味して
いるので、逆に、表面積を小さくすると、比表面積の2
乗に比例して溶解量変化(溶解速度)が小さくなること
になる。
れば、溶解速度は、2乗に比例するため従来の0.64
倍と約半分になる。そのため、カソードとアノード間で
短絡に至る時間を、従来のカソード電極の場合に比して
大幅に延ばすことができ、これだけ溶融炭酸塩型燃料電
池の寿命を延長させることができる。因に、本発明のカ
ソード電極の場合、図2から明らかなように、比表面積
は時間の約−0.067乗で減少している。
る。 (1) Ni粉としてNi255の粉末と、焼結助剤として
Fe粉を2重量%と焼結防止剤としてMgCO3 粉を3
重量%とを混合し、更に、メチルセルロース系の結合剤
を3重量%とアニオン系の分散剤を1重量%含む結合剤
溶液に混ぜてスラリー状にした後、板状に成形して乾燥
させた。次に、これを500℃位に加熱してメチルセル
ロースを熱分解させることにより除去後、950℃程度
で真空又は還元雰囲気で焼成して、空隙率74%の多孔
質体Ni−Fe−MgOを得た。この多孔質体の比表面
積は、0.19m2 /gであった。これをカソードとし
て溶融炭酸塩型燃料電池内に組み込み、500℃以上に
昇温させる過程で酸化ガスにより溶融炭酸塩の存在下で
酸化させ、NiO−MgO−Fe2 O3 のカソード電極
とした。このカソード電極の比表面積は、0.5m2 /
gであった。このカソード電極を用いた燃料電池の性能
は、650℃の温度の下で標準ガス条件、すなわち、6
0℃加湿飽和とH2 /CO2 =80/20のアノードガ
スと、空気/CO2 =70/30のカソードガスを、1
50mA/cm2 負荷をかけたときに燃料利用率が75
%、酸化剤利用率が50%となるような流量とした場合
において、図4に示す如くであった。図4中、△は電
圧、□は内部抵抗分除去した電圧を示す。 (2) 従来のカソード電極の製法について行った実験結果
を説明すると、Ni粉に、焼結防止剤としてMgCO3
粉のみを3重量%添加して成形、乾燥後、950℃で焼
成したところ、空隙率74%の多孔質体が得られ、その
比表面積は0.4m2 /gであった。これを酸化させて
カソード電極としたが、このカソード電極の比表面積
は、1.4m2 /gと大きかった。又、Ni粉に、焼結
防止剤としてMgCO3 粉を3重量%と、空孔形成剤を
3重量%とを添加して、1000℃で焼成したところ、
空隙率80%の多孔質体が得られ、その比表面積は0.
6m2/gであった。これを酸化させてカソード電極と
したが、このカソード電極の比表面積は1.6m2 /g
と大きかった。
剤、焼結助剤と焼結防止剤を添加して多孔質体を得る実
験を行った。その結果を次に示す。 Ni粉に、焼結助剤としてFe粉を2重量%添加して
成形、乾燥後、950℃で焼成したところ、空隙率68
%の多孔質体が得られ、Fe粉添加により上記従来の実
験結果より焼結が進むことがわかった。 同様にして、Ni粉に、焼結助剤としてFe粉を2重
量%と、焼結防止剤としてMgO粉を0.5重量%とを
添加して成形、乾燥後、950℃で焼成したところ、空
隙率70%の多孔質体が得られ、MgO粉添加により
より焼結による収縮が減り、その分粉同士の結合焼結は
進んでいることがわかった。 同様にして、Ni粉に、焼結助剤としてFe粉2重量
%と、焼結防止剤としてMgO粉を0.5重量%と、空
孔形成剤を3重量%を添加して成形、乾燥後、950℃
で焼成したところ、空隙率76%の多孔質体が得られ
た。空孔形成剤のために空隙率は大きくなり、更に高温
で焼結可能となることがわかった。 Ni粉に、焼結助剤としてFe粉を2重量%と、焼結
防止剤としてMgO粉を0.5重量%及びMgCO3 粉
を5重量%とを添加して成形、乾燥後、950℃で焼成
したところ、空隙率78%の多孔質体が得られ、その比
表面積は、0.3m2 /gであった。これを酸化させて
カソード電極としたが、このカソード電極の比表面積は
0.7m2 /gであった。焼結防止剤としてMgCO3
粉を添加することで、のように空孔形成剤を入れるよ
りも大きな空隙率のものを得ることができた。 Ni粉に、焼結助剤としてFe粉を2重量%と、焼結
防止剤としてMgO粉を0.5重量%及びLi2 CO3
粉を20重量%とを添加して成形、乾燥後、950℃で
焼成したところ、空隙率77%の多孔質体が得られ、上
記のMgCO3に代えてLi2 CO3 を上記の添加量
として入れても同様な効果があることがわかった。 (3) Ni粉に焼結助剤としてのFe粉と焼結防止剤とし
てのMgO粉を混合して成形後、焼成して得た本発明に
よる多孔質体Ni−MgO−Fe2 O3 の場合(イ)
と、Ni粉にMgO粉のみを添加して成形後、焼成して
得た多孔質体Ni−MgOの場合(ロ)を、酸化後、電
池外の酸化ガス雰囲気下で650℃の溶融炭酸塩に、1
00時間浸漬した後、溶融炭酸塩中に溶け出た金属の量
を調べて比較してみた。
低い比表面積とした(イ)の方がNiの溶出量がはるか
に少ないことがわかった。又、このときのカソード電極
の比表面積の分析値を運転時間による変化として示した
のが図6であり、●印は図5における(イ)、○印は図
5の(ロ)の場合であり、比表面積は本発明の場合には
0.8m2 /g以下で時間的にも変化が少ない結果が得
られた。
燃料電池用電極及びその製造方法によれば、次の如き優
れた効果を奏し得る。 (i) カソード電極は比表面積が0.8m2 /g以下とな
るようにしてあるので、従来のカソード電極の比表面積
より大幅に小さくて炭酸ガスとの反応による溶解反応で
表面から溶解する量を少なくでき、寿命を延ばすことが
できる。 (ii)原料粉としてのNi粉に焼結助剤と焼結防止剤を混
合して焼成して多孔質体とするので、従来のカソード電
極と同じ空隙率を確保しながら焼成するときの温度を高
くすることができて、強く焼結させることができ、この
影響で酸化させたときに酸化による表面の荒れを少なく
抑えることができて表面積を低下させ、比表面積を0.
8m2 /g以下という非常に小さくできる。 (iii) カソード電極の比表面積を小さくできることか
ら、溶解反応により溶融炭酸塩中に溶出する量を少なく
することができて、電極表面の変化を少なくでき、電極
の劣化も少なくなる。 (iv)溶解反応によって溶け出る量が少ないため、電池内
の溶融炭酸塩中に溶け込む量が少なくなり、炭酸塩の組
成変化が少なくなって電池の劣化も少なくなる。 (v) 溶融炭酸塩中への溶け込み量が少なくなるため、炭
酸塩中で再度金属等に還元析出する量が減少し、析出し
た金属によるカソードとアノード間の短絡による特性の
低下に至るまでの時間を飛躍的に延ばすことができる。 (vi)上記により電池を長時間にわたって高い特性を維持
することができる安定性に優れたカソード電極とするこ
とができる。
ある。
する状態を示す図である。
性能を示す図である。
す図である。
る変化として示した図である。
Claims (7)
- 【請求項1】 電解質として溶融炭酸塩を多孔質物質に
しみ込ませてなる電解質板をカソードとアノードの両電
極で両面から挟み、カソード側に酸化ガスを供給すると
共にアノード側に燃料ガスを供給するようにしたセルを
セパレータを介し多層に積層してなる溶融炭酸塩型燃料
電池の上記カソード電極を、比表面積が0.8m2 /g
以下の多孔質電極としたことを特徴とする溶融炭酸塩型
燃料電池用電極。 - 【請求項2】 カソード電極の多孔質体に、焼結助剤と
焼結防止剤が混入されている請求項1記載の溶融炭酸塩
型燃料電池用電極。 - 【請求項3】 カソード電極の多孔質体に、0.1〜1
5重量%の焼結助剤と0.1〜15重量%の焼結防止剤
が混入され、それらの元素が残留している請求項1記載
の溶融炭酸塩型燃料電池用電極。 - 【請求項4】 Ni粉に焼結助剤と焼結防止剤を混合し
て成形した後、高温で還元雰囲気にて焼成し、空隙率が
70〜80%、比表面積が0.4m2 /g以下の多孔質
体を作り、次に、該多孔質体を、酸化させて比表面積が
0.8m2 /g以下のカソード電極を製造することを特
徴とする溶融炭酸塩型燃料電池用電極の製造方法。 - 【請求項5】 焼結助剤を、高温で拡散によりNi粉に
固溶し得る金属であるFe、Cr、Co、Pd、Pt、
V、Cu、Mn、Mo、Re、Ru、W、Nb、Rh、
Ti(66at%以下)、Zr(28at%以下)のい
ずれか1種又は複数種の金属粉又は合金粉とし、焼結防
止剤を、高温で拡散によりNi粉に固溶しないか又は固
溶しても僅かなMgO、CaO、Al2 O3 の如き酸化
物粉か、熱分解によりMgO、CaO、Al2 O3 とな
るMgCO3 、CaCO3 、Li2 CO3 、K2 C
O3 、Na2 CO3 の如き炭酸塩粉かあるいはMg(O
H)2 、Al(OH)3 の如き水酸化物粉とした請求項
4記載の溶融炭酸塩型燃料電池用電極の製造方法。 - 【請求項6】 焼結助剤を、金属に代えて金属酸化物で
あるFeO、Fe2O3 、Fe3 O4 、NiO、Li2
Oのいずれか1種又は複数種の酸化物粉又は複合酸化物
粉とした請求項5記載の溶融炭酸塩型燃料電池用電極の
製造方法。 - 【請求項7】 焼成時の温度を900℃以上とする請求
項4記載の溶融炭酸塩型燃料電池用電極の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13771896A JP3208528B2 (ja) | 1996-05-09 | 1996-05-09 | 溶融炭酸塩型燃料電池用電極及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13771896A JP3208528B2 (ja) | 1996-05-09 | 1996-05-09 | 溶融炭酸塩型燃料電池用電極及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09306507A true JPH09306507A (ja) | 1997-11-28 |
JP3208528B2 JP3208528B2 (ja) | 2001-09-17 |
Family
ID=15205209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13771896A Expired - Fee Related JP3208528B2 (ja) | 1996-05-09 | 1996-05-09 | 溶融炭酸塩型燃料電池用電極及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3208528B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009063598A1 (ja) * | 2007-11-12 | 2009-05-22 | Kyusyu University, National University Corporation | 燃料電池用電極材料及びその製造方法、並びに該燃料電池電極材料を含有してなる燃料電池用電極及び燃料電池 |
JP2020519768A (ja) * | 2017-05-16 | 2020-07-02 | エルジー・ケム・リミテッド | 金属フォームの製造方法 |
-
1996
- 1996-05-09 JP JP13771896A patent/JP3208528B2/ja not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009063598A1 (ja) * | 2007-11-12 | 2009-05-22 | Kyusyu University, National University Corporation | 燃料電池用電極材料及びその製造方法、並びに該燃料電池電極材料を含有してなる燃料電池用電極及び燃料電池 |
JP2020519768A (ja) * | 2017-05-16 | 2020-07-02 | エルジー・ケム・リミテッド | 金属フォームの製造方法 |
US12097562B2 (en) | 2017-05-16 | 2024-09-24 | Lg Chem, Ltd. | Preparation method for metal foam |
Also Published As
Publication number | Publication date |
---|---|
JP3208528B2 (ja) | 2001-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2464392C (en) | Spiral geometry for fuel cells and related devices | |
JP5430009B2 (ja) | 電気化学デバイスからの不純物相の除去 | |
JP4006020B2 (ja) | 薄いセラミック層を含むデイバイスの作成法 | |
JP3976181B2 (ja) | 固体酸化物燃料電池単セル及びこれを用いた固体酸化物燃料電池 | |
JP6398647B2 (ja) | 固体酸化物型燃料電池用アノードの製造方法および燃料電池用電解質層−電極接合体の製造方法 | |
JP3003163B2 (ja) | 溶融炭酸塩型燃料電池用電極の製造方法 | |
JP2008519404A (ja) | 電気化学的電池構造体および制御粉末法によるその製造方法 | |
AU2002334198A1 (en) | Improvements in fuel cells and related devices | |
JPS6322023B2 (ja) | ||
JP3565696B2 (ja) | 固体電解質型燃料電池の電極の製造方法 | |
JPH09274921A (ja) | 固体電解質型燃料電池の燃料電極 | |
JPH10172590A (ja) | 固体電解質型燃料電池 | |
JPH09306507A (ja) | 溶融炭酸塩型燃料電池用電極及びその製造方法 | |
JP2009230929A (ja) | 固体酸化物形燃料電池の集電体材料、空気極集電体及び固体酸化物形燃料電池 | |
JP3730774B2 (ja) | 固体電解質型燃料電池セル | |
JP4508592B2 (ja) | 燃料電池セルの製法 | |
JP3208935B2 (ja) | 溶融炭酸塩型燃料電池用電極の製造方法 | |
JPH10144337A (ja) | 固体電解質型燃料電池の燃料電極およびその製造方法 | |
JP3216150B2 (ja) | 溶融炭酸塩型燃料電池用カソード電極の製造方法 | |
CN114583226B (zh) | 一种金属支撑质子导体固体氧化物电池及其制备方法 | |
JP2024139407A (ja) | 固体酸化物形燃料電池セル | |
JP2023006322A (ja) | プロトン伝導セラミックセル用電極、その製造方法、及びそれを用いたプロトン伝導セラミックセル | |
JPH10321239A (ja) | 燃料電池の電極 | |
JPH07326364A (ja) | 固体電解質燃料電池用燃料極 | |
JPH11135134A (ja) | 溶融炭酸塩型燃料電池用電極及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080713 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090713 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |