JPH0875941A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPH0875941A
JPH0875941A JP6211469A JP21146994A JPH0875941A JP H0875941 A JPH0875941 A JP H0875941A JP 6211469 A JP6211469 A JP 6211469A JP 21146994 A JP21146994 A JP 21146994A JP H0875941 A JPH0875941 A JP H0875941A
Authority
JP
Japan
Prior art keywords
substrate
waveguide
optical waveguide
metal
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6211469A
Other languages
Japanese (ja)
Inventor
Keiichi Higuchi
恵一 樋口
Naoyuki Mekata
直之 女鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Suntech Co
Original Assignee
Hitachi Cable Ltd
Suntech Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Suntech Co filed Critical Hitachi Cable Ltd
Priority to JP6211469A priority Critical patent/JPH0875941A/en
Publication of JPH0875941A publication Critical patent/JPH0875941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE: To provide a production method of an optical waveguide so that the intraplane difference of waveguide loss can be largely decreased and the production conditions can be stabilized. CONSTITUTION: The core waveguide 5 of an optical waveguide is produced by the following method. A metal is vapor deposited on a ferroelectric crystal substrate 1 and the metal is patterned by photolithography and etching to obtain the same pattern as the core-waveguide pattern. Then, the substrate is heated in a furnace 4 to diffuse the metal into the substrate 1. In this production method, when the substrate 1 is placed in the furnace, the substrate 1 is mounted on a ground quartz glass plate 10, which is covered with a lid 11 of ground quartz glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光導波路の製造方法に
関し、特にTiの熱拡散を利用した光導波路の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical waveguide, and more particularly to a method for manufacturing an optical waveguide utilizing thermal diffusion of Ti.

【0002】[0002]

【従来の技術】図3は従来の光導波路の製造方法の概念
図である。
2. Description of the Related Art FIG. 3 is a conceptual diagram of a conventional method for manufacturing an optical waveguide.

【0003】同図において、強誘電体結晶の基板1(直
径約76mm)の上に、金属2を蒸着し、この金属2を
フォトリソグラフィおよびエッチングによりコア導波路
パターンと一致するようパターン化した後、その基板を
石英製の皿3に載せ、酸素雰囲気で満たされる電気炉4
内に入れる。電気炉4内では金属2が基板1中に熱拡散
することにより、図4に示すようなコア導波路(長さ5
0mm)5が基板1上に20素子分形成される。尚、図
中Hはヒータを示している。
In the figure, metal 2 is deposited on a ferroelectric crystal substrate 1 (diameter: about 76 mm), and the metal 2 is patterned by photolithography and etching so as to match the core waveguide pattern. , The electric furnace 4 which puts the substrate on a quartz dish 3 and is filled with an oxygen atmosphere
Put it in. In the electric furnace 4, the metal 2 is thermally diffused into the substrate 1, so that the core waveguide (length 5
0 mm) 5 is formed on the substrate 1 for 20 elements. In the figure, H indicates a heater.

【0004】ここで、炉4内を酸素雰囲気にするのは、
金属2を堆積した部分以外の基板1の表面近傍に、光の
導波する層が寄生的に形成されるのを防止するためであ
る。
Here, the oxygen atmosphere in the furnace 4 is
This is to prevent a layer for guiding light from being parasitically formed in the vicinity of the surface of the substrate 1 other than the portion where the metal 2 is deposited.

【0005】[0005]

【発明が解決しようとする課題】ところで上述した電気
炉内で、基板表面が酸素雰囲気にさらされるため、基板
上において酸素気流の上流部と下流部との間で温度差が
生じる。この温度差は、金属の基板中への熱拡散の速度
に影響し、基板上の形成される素子の損失が面内で大き
く異なる原因となる。また、基板の面内温度分布が不均
一であるため、光導波路の製造条件が不安定になる。さ
らに基板を積み重ねることができないため、大量生産に
は不適当である。
In the electric furnace described above, the surface of the substrate is exposed to the oxygen atmosphere, so that a temperature difference occurs between the upstream portion and the downstream portion of the oxygen flow on the substrate. This temperature difference affects the rate of heat diffusion of the metal into the substrate, and causes the loss of elements formed on the substrate to be greatly different in the plane. Moreover, since the in-plane temperature distribution of the substrate is non-uniform, the manufacturing conditions of the optical waveguide become unstable. Furthermore, it is not suitable for mass production because the substrates cannot be stacked.

【0006】他方、石英製の皿および石英製の蓋に透明
状のものを使用した場合、皿と蓋との密着度が高いため
基板周囲の雰囲気が酸素雰囲気になりにくい。酸素雰囲
気中でなければ、所望の領域以外に光の導波する層が形
成されてしまう。この導波層も損失の面内差異を大きく
する要因の一つとなっている。
On the other hand, when a transparent quartz plate and a quartz lid are used, the atmosphere around the substrate is unlikely to be an oxygen atmosphere because the degree of adhesion between the dish and the lid is high. Unless in an oxygen atmosphere, a layer for guiding light is formed in a region other than a desired region. This waveguide layer is also one of the factors that increase the in-plane difference in loss.

【0007】そこで、本発明の目的は、上記課題を解決
し、導波路損失の面内差異を大幅に小さくし、かつ製造
条件を安定にすることができる光導波路の製造方法を提
供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, to provide a method for manufacturing an optical waveguide in which the in-plane difference of the waveguide loss can be significantly reduced and the manufacturing conditions can be stabilized. is there.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、表面にパターン化された金属膜を形成した
強誘電体結晶の基板を炉内で加熱し、金属を基板内に拡
散させることによりコア導波路を形成する光導波路の製
造方法において、基板を炉内に設置する際、基板を石英
製すりガラスからなる皿の上に載せ、皿に石英製すりガ
ラスからなる蓋をするものである。
In order to achieve the above object, the present invention heats a substrate of a ferroelectric crystal having a patterned metal film formed on its surface in a furnace to diffuse the metal into the substrate. In the method of manufacturing the optical waveguide in which the core waveguide is formed by placing the substrate in the furnace, the substrate is placed on a plate made of quartz frosted glass, and the dish is covered with a quartz frosted glass. is there.

【0009】[0009]

【作用】上記構成によれば、金属の熱拡散をすべく基板
を収める容器として、石英製すりガラスからなる皿の上
に載せ、その皿に石英製すりガラスからなる蓋をするこ
とにより、皿と蓋との間に隙間が生じるので、その隙間
から容器内に酸素が流入して容器内が酸素雰囲気で満た
される。炉内に供給される酸素気流の上流部と下流部と
の間で温度差が生じていても、酸素は容器内に徐々に流
入するので熱拡散速度への影響はない。また、基板が容
器内に収容されているため、面内温度分布が均一とな
り、導波路損失の面内差異を大幅に低減させることがで
き、光導波路の製造条件が安定する。さらに、容器を複
数個積み重ねることができるので、大量生産することが
できる。
According to the above construction, the container and the lid are placed on a plate made of quartz frosted glass, and a lid made of quartz frosted glass is placed on the plate as a container for containing the substrate for heat diffusion of metal. Since a gap is created between the container and the container, oxygen flows into the container through the gap and the container is filled with an oxygen atmosphere. Even if there is a temperature difference between the upstream part and the downstream part of the oxygen flow supplied to the furnace, oxygen gradually flows into the container, so that there is no effect on the thermal diffusion rate. Further, since the substrate is housed in the container, the in-plane temperature distribution becomes uniform, the in-plane difference in the waveguide loss can be greatly reduced, and the manufacturing conditions of the optical waveguide are stabilized. Further, since a plurality of containers can be stacked, mass production can be performed.

【0010】[0010]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0011】図1は本発明の光導波路の製造方法の一実
施例の概念図である。
FIG. 1 is a conceptual diagram of one embodiment of the method for manufacturing an optical waveguide of the present invention.

【0012】同図において強誘電体結晶としてのLiN
bO3 からなる基板に金属2としてTiを蒸着し、フォ
トリソグラフィおよびエッチングにより幅約5μmのコ
ア導波路パターンを形成する場合について説明する。
尚、図3に示した従来例と同様の部材には共通の符号を
用いた。
In the figure, LiN as a ferroelectric crystal
A case will be described where Ti is vapor-deposited as a metal 2 on a substrate made of bO 3 and a core waveguide pattern having a width of about 5 μm is formed by photolithography and etching.
The same reference numerals are used for the same members as in the conventional example shown in FIG.

【0013】この基板1を石英製すりガラスからなる皿
10に入れ、その上に石英製すりガラスからなる蓋11
を載せた後、電気炉4に入れて酸素雰囲気中で加熱し、
Tiを基板1内に拡散させることにより図4に示したよ
うにコア導波路5が形成される。
The substrate 1 is placed in a dish 10 made of frosted glass made of quartz, and a lid 11 made of frosted glass made of quartz is placed thereon.
, Put it in an electric furnace 4 and heat it in an oxygen atmosphere,
By diffusing Ti into the substrate 1, the core waveguide 5 is formed as shown in FIG.

【0014】炉4内に供給する酸素の流量は約0.6リ
ットル/分である。基板1の大きさは直径約76mmで
あり、この基板1上に長さ約50mmの素子を20素子
形成する。皿10は図2に示すように基板1を載せる部
分に基板1の厚さt分だけ掘り込み部12があり、この
掘り込み部12に基板1を入れることができるようにな
っている。蓋は皿と同様の形状となっている。このよう
な掘り込み部12があることにより、基板1の表面と蓋
11とが接触することが防止される。
The flow rate of oxygen supplied to the furnace 4 is about 0.6 liter / minute. The substrate 1 has a diameter of about 76 mm, and 20 elements having a length of about 50 mm are formed on the substrate 1. As shown in FIG. 2, the dish 10 has a digging portion 12 in the portion on which the substrate 1 is placed by the thickness t of the substrate 1, and the substrate 1 can be inserted into the digging portion 12. The lid has the same shape as the dish. The presence of the dug portion 12 prevents the surface of the substrate 1 and the lid 11 from coming into contact with each other.

【0015】石英製すりガラスからなる蓋11を用いな
かった場合、コア導波路5の損失は面内差異が大きく、
±0.1dB/cmである。損失の測定は酸素気流の上
流部から下流部に向かって順に素子の番号を1から20
まで与えたとき、素子1、2、3、9、10、11、1
8、19、20の計9素子について行った。
When the lid 11 made of frosted glass made of quartz is not used, the loss of the core waveguide 5 has a large in-plane difference.
± 0.1 dB / cm. The loss was measured from the element number from 1 to 20 in order from the upstream part to the downstream part of the oxygen flow.
Element 1, 2, 3, 9, 10, 11, 1
A total of 9 elements of 8, 19, and 20 were performed.

【0016】一方、石英製すりガラスからなる蓋11を
用いた場合、導波路損失の面内差異は小さく、±0.0
1dB/cmである。損失の測定は蓋11を用いなかっ
た場合と同様に行った。
On the other hand, when the lid 11 made of frosted glass made of quartz is used, the in-plane difference of the waveguide loss is small and is ± 0.0.
It is 1 dB / cm. The loss was measured in the same manner as when the lid 11 was not used.

【0017】また、石英製すりガラスからなる皿10お
よび蓋11として透明状のものを使用した場合、基板1
の表面近傍において、コア導波路パターンを形成した所
以外に光の導波する層が形成される。この導波層が形成
された時、導波路損失の面内差異は±0.2dB/cm
である。石英製すりガラスからなる皿10および蓋11
を用いた場合と比較して損失の面内差異が大きい。
When transparent plates are used as the plate 10 and the lid 11 made of frosted glass made of quartz, the substrate 1
A layer for guiding light is formed in the vicinity of the surface, except where the core waveguide pattern is formed. When this waveguide layer is formed, the in-plane difference of the waveguide loss is ± 0.2 dB / cm.
Is. Dish 10 and lid 11 made of frosted glass made of quartz
There is a large in-plane difference in the loss as compared with the case using.

【0018】以上において本実施例によれば、金属の熱
拡散をすべく基板を収める容器として、石英製すりガラ
スからなる皿の上に載せ、その皿に石英製すりガラスか
らなる蓋をすることにより、皿と蓋との間に隙間が生じ
るので、その隙間から容器内に酸素が流入して容器内が
酸素雰囲気で満たされる。炉内に供給される酸素気流の
上流部と下流部との間で温度差が生じていても、酸素は
容器内に徐々に流入するので熱拡散速度への影響はな
い。また、基板が容器内に収容されているため、面内温
度分布が均一となり、導波路損失の面内差異を大幅に低
減させることができ、光導波路の製造条件が安定する。
さらに、容器を複数個積み重ねることができるので、大
量生産することができる。
As described above, according to the present embodiment, as a container for housing the substrate for heat diffusion of the metal, the container is placed on a plate made of quartz frosted glass, and the plate is covered with a lid made of quartz frosted glass. Since a gap is created between the plate and the lid, oxygen flows into the container through the gap and the container is filled with the oxygen atmosphere. Even if there is a temperature difference between the upstream part and the downstream part of the oxygen flow supplied to the furnace, oxygen gradually flows into the container, so that there is no effect on the thermal diffusion rate. Further, since the substrate is housed in the container, the in-plane temperature distribution becomes uniform, the in-plane difference in the waveguide loss can be greatly reduced, and the manufacturing conditions of the optical waveguide are stabilized.
Further, since a plurality of containers can be stacked, mass production can be performed.

【0019】[0019]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0020】拡散時の基板内における温度差が小さくな
り、導波路損失の面内差異が大幅に低減される。従って
量産における歩留まりが向上する。基板の面内温度分布
が大幅に均一化されるため、製造条件の安定化を図るこ
とができる。さらに容器を積み重ねることが可能なため
量産が可能である。
The temperature difference in the substrate during diffusion becomes small, and the in-plane difference in the waveguide loss is greatly reduced. Therefore, the yield in mass production is improved. Since the in-plane temperature distribution of the substrate is largely uniformed, the manufacturing conditions can be stabilized. Furthermore, since containers can be stacked, mass production is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光導波路の製造方法の一実施例の概念
図である。
FIG. 1 is a conceptual diagram of an embodiment of a method for manufacturing an optical waveguide of the present invention.

【図2】図1に示した皿の外観斜視図である。FIG. 2 is an external perspective view of the plate shown in FIG.

【図3】従来の光導波路の製造方法の概念図である。FIG. 3 is a conceptual diagram of a conventional method of manufacturing an optical waveguide.

【図4】光導波路の外観斜視図である。FIG. 4 is an external perspective view of an optical waveguide.

【符号の説明】[Explanation of symbols]

1 基板 2 金属 4 (電気)炉 5 コア導波路 10 (石英製すりガラスからなる)皿 11 (石英製すりガラスからなる)蓋 1 substrate 2 metal 4 (electric) furnace 5 core waveguide 10 (made of frosted glass made of quartz) 11 (made of frosted glass made of quartz) lid

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面にパターン化された金属膜を形成し
た強誘電体結晶の基板を炉内で加熱し、上記金属を基板
内に拡散させることによりコア導波路を形成する光導波
路の製造方法において、上記基板を上記炉内に設置する
際、上記基板を石英製すりガラスからなる皿の上に載
せ、上記皿に石英製すりガラスからなる蓋をすることを
特徴とする光導波路の製造方法。
1. A method of manufacturing an optical waveguide in which a core waveguide is formed by heating a ferroelectric crystal substrate having a patterned metal film formed on its surface in a furnace and diffusing the metal into the substrate. In the method for manufacturing an optical waveguide, the substrate is placed on a plate made of quartz frosted glass, and the plate is covered with a lid made of quartz frosted glass when the substrate is placed in the furnace.
【請求項2】 上記強誘電体結晶にLiNbO3 を用い
ると共に上記金属膜にTiを用いる請求項1記載の光導
波路の製造方法。
2. The method of manufacturing an optical waveguide according to claim 1, wherein LiNbO 3 is used for the ferroelectric crystal and Ti is used for the metal film.
JP6211469A 1994-09-05 1994-09-05 Production of optical waveguide Pending JPH0875941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6211469A JPH0875941A (en) 1994-09-05 1994-09-05 Production of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6211469A JPH0875941A (en) 1994-09-05 1994-09-05 Production of optical waveguide

Publications (1)

Publication Number Publication Date
JPH0875941A true JPH0875941A (en) 1996-03-22

Family

ID=16606461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6211469A Pending JPH0875941A (en) 1994-09-05 1994-09-05 Production of optical waveguide

Country Status (1)

Country Link
JP (1) JPH0875941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002891A1 (en) * 2002-06-28 2004-01-08 Silicon Light Machines Corporation Method and apparatus for increasing bulk conductivity of a ferroelectric material
EP1641558A2 (en) * 2003-06-20 2006-04-05 Silicon Light Machines Corporation Method and apparatus for increasing bulk conductivity of a ferroelectric material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002891A1 (en) * 2002-06-28 2004-01-08 Silicon Light Machines Corporation Method and apparatus for increasing bulk conductivity of a ferroelectric material
US6932957B2 (en) 2002-06-28 2005-08-23 Silicon Light Machines Corporation Method and apparatus for increasing bulk conductivity of a ferroelectric material
CN100354205C (en) * 2002-06-28 2007-12-12 硅光机器公司 Method and apparatus for increasing bulk conductivity of a ferroelectric material
EP1641558A2 (en) * 2003-06-20 2006-04-05 Silicon Light Machines Corporation Method and apparatus for increasing bulk conductivity of a ferroelectric material
EP1641558A4 (en) * 2003-06-20 2009-07-08 Silicon Light Machines Corp Method and apparatus for increasing bulk conductivity of a ferroelectric material

Similar Documents

Publication Publication Date Title
US4425146A (en) Method of making glass waveguide for optical circuit
JPH04234005A (en) Manufacture of lightguide tube by ion exchange method
JPH0875941A (en) Production of optical waveguide
JP3094546B2 (en) Method for manufacturing a diffuse reflection plate for a liquid crystal display, and method for manufacturing a liquid crystal display
JPS61204604A (en) Manufacture of lightwave guide construction
JPH05181031A (en) Optical waveguide and its production
JPH0659147A (en) Optical waveguide and its production
JPH08304653A (en) Production of optical waveguide
CN103074599A (en) Reaction chamber
JPS61180204A (en) Diffusing method for metal by heating
JPS62212605A (en) Production of optical waveguide
JPS63184707A (en) Manufacture of planar light waveguide
JP2000266952A (en) Manufacture of optical wave-guide element, and optical wave-guide element
JPS6365619B2 (en)
JP2953173B2 (en) Optical waveguide
JPH11209131A (en) Formation of glass thin film
JPH1078523A (en) Production of optical waveguide
JPH07104139A (en) Production of glass waveguide and its apparatus for production
JP3554178B2 (en) Manufacturing method of optical waveguide device
JPS6172206A (en) Substrate type waveguide and its production
JP2005154827A (en) Glass film manufacturing method and waveguide manufacturing method
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element
JP2004046044A (en) Quartz-based optical waveguide
JP2603652B2 (en) Optical waveguide manufacturing method
JPH04289804A (en) Manufacture of optical waveguide device