JPH04289804A - Manufacture of optical waveguide device - Google Patents

Manufacture of optical waveguide device

Info

Publication number
JPH04289804A
JPH04289804A JP3077132A JP7713291A JPH04289804A JP H04289804 A JPH04289804 A JP H04289804A JP 3077132 A JP3077132 A JP 3077132A JP 7713291 A JP7713291 A JP 7713291A JP H04289804 A JPH04289804 A JP H04289804A
Authority
JP
Japan
Prior art keywords
substrate
ionized gas
optical waveguide
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3077132A
Other languages
Japanese (ja)
Inventor
Hironao Hakogi
箱木 浩尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3077132A priority Critical patent/JPH04289804A/en
Publication of JPH04289804A publication Critical patent/JPH04289804A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To make damages and defects due to discharge during manufacturing process less likely to occur and shorten heating and cooling time of a substrate when the temperature of the substrate changes by supplying ionized gas around the substrate. CONSTITUTION:An inert gas is used as the ionized gas to be supplied into a vacuum deposition chamber 4 from an ionized gas supplying unit 8. Prior to the vacuum deposition, the deposition chamber 4 is evacuated. When a substrate 2 is heated, ionized gas is supplied in the vicinity of the substrate 2. The supply of the ionized gas is stopped when the temperature of the substrate 2 becomes constant. A film is deposited on the surface of the substrate 2 by evaporating a deposition material 12 by means of an electron gun 14. Ionized gas is supplied later around the substrate 2 when the substrate 2 is cooled down to the room temperature. This prevents electric discharge which otherwise occurs on the surface of the substrate 2 when it is heated and cooled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光導波路デバイスの製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an optical waveguide device.

【0002】光変調器等の光デバイスの一形態として、
導波路基板上に光導波路を形成しこの光導波路内に光ビ
ームを閉じ込めた状態で制御するように構成された光導
波路デバイスがある。光導波路デバイスは、構造上小型
化が容易でプレーナ技術等を用いて量産することができ
るという利点の他、電界や磁界を効果的に印加すること
ができ消費電力の低減が可能であるという利点を有して
いる。この種の光導波路デバイスにおいて、導波路基板
が強誘電体結晶からなる場合には、熱拡散工程等におけ
る導波路基板の加熱又は冷却に際して焦電効果により電
荷が誘起され、その電荷量が多い場合に放電が生じ、導
波路基板等に損傷が与えられる恐れがあるので、このよ
うな損傷を未然に防止することができる光導波路デバイ
スの製造方法が要望されている。
[0002] As a form of optical devices such as optical modulators,
There is an optical waveguide device that is configured to form an optical waveguide on a waveguide substrate and control a light beam while confining it within the optical waveguide. Optical waveguide devices have the advantage of being easy to miniaturize due to their structure and can be mass-produced using planar technology, etc., as well as being able to effectively apply electric and magnetic fields and reducing power consumption. have. In this type of optical waveguide device, when the waveguide substrate is made of a ferroelectric crystal, charges are induced by the pyroelectric effect when the waveguide substrate is heated or cooled in a thermal diffusion process, etc., and if the amount of the charges is large. There is a need for a method for manufacturing an optical waveguide device that can prevent such damage from occurring due to discharge occurring in the waveguide substrate.

【0003】0003

【従来の技術】従来、例えば光変調機能を有する光導波
路デバイスの製造方法として、LiNbO3 からなる
基板にTiを熱拡散させることによって光導波路を形成
し、この光導波路に電極を装荷するようにした方法が知
られている。この場合、光ファイバとの低損失での結合
が可能な形状の光導波路が得やすいZカットLiNbO
3 が多く使用されている。
[Prior Art] Conventionally, as a manufacturing method for an optical waveguide device having an optical modulation function, for example, an optical waveguide is formed by thermally diffusing Ti onto a substrate made of LiNbO3, and electrodes are loaded onto the optical waveguide. method is known. In this case, Z-cut LiNbO is used, which makes it easy to obtain an optical waveguide with a shape that allows low-loss coupling with an optical fiber.
3 is often used.

【0004】0004

【発明が解決しようとする課題】ところで、上述したよ
うな光導波路デバイスの製造方法においては、導波路基
板上に光導波路や電極を形成するために、蒸着工程、フ
ォトリソグラフィ工程、熱拡散工程等において基板を加
熱することが必要になる。一般に、強誘電体結晶は電気
光学効果をもつとともに加熱により表面に分極電荷が現
れる焦電効果をももっており、Zカット基板に温度変化
を与えると基板の表面及び裏面にそれぞれ極性の異なる
電荷が蓄積され、その電荷量が急激に多くなると火花を
発して基板や基板上に形成された膜等に損傷を与えたり
、基板結晶内部に光の散乱体となるような欠陥が生じる
恐れがある。このような損傷や欠陥が生じると、光導波
路デバイスの所要の特性を得ることができず、問題であ
る。
[Problems to be Solved by the Invention] However, in the method for manufacturing an optical waveguide device as described above, in order to form an optical waveguide and electrodes on a waveguide substrate, a vapor deposition process, a photolithography process, a thermal diffusion process, etc. are used. It becomes necessary to heat the substrate in the process. In general, ferroelectric crystals have an electro-optical effect and also a pyroelectric effect in which polarized charges appear on the surface when heated. When a temperature change is applied to a Z-cut substrate, charges with different polarities are generated on the front and back surfaces of the substrate. If the amount of charge accumulates and increases rapidly, sparks may be generated, damaging the substrate or the film formed on the substrate, or creating defects that become light scatterers inside the substrate crystal. If such damage or defects occur, it becomes impossible to obtain the desired characteristics of the optical waveguide device, which is a problem.

【0005】この現象を図3により模式的に説明する。 強誘電体結晶からなる基板2は、常温下においても(A
)に示すように分極しており、その表面及び裏面の電荷
は大気中の電荷とつりあっている。この基板2を急速に
加熱すると、(B)に示すように、焦電効果によって基
板2の表面及び裏面の電荷が著しく増加し、大気中から
の電荷の供給が間に合わなくなり、放電が生じることと
なる。
This phenomenon will be schematically explained with reference to FIG. The substrate 2 made of ferroelectric crystal has (A
), and the charges on its front and back surfaces are balanced with the charges in the atmosphere. If this substrate 2 is heated rapidly, as shown in (B), the charge on the front and back surfaces of the substrate 2 will increase significantly due to the pyroelectric effect, and the supply of charge from the atmosphere will not be in time, causing discharge. Become.

【0006】従来、このような放電を防止するためには
、基板の加熱及び冷却に際しての単位時間当りの温度変
化を小さくして、焦電効果により生じた電荷と大気中か
ら供給される電荷のアンバランスを防止するようにした
方法が提案されている。しかし、この方法によると、基
板の加熱及び冷却に長時間を要し、生産性が悪いという
問題があった。
Conventionally, in order to prevent such discharge, the temperature change per unit time during heating and cooling of the substrate is reduced to reduce the charge generated by the pyroelectric effect and the charge supplied from the atmosphere. A method has been proposed to prevent imbalance. However, this method has the problem that it takes a long time to heat and cool the substrate, resulting in poor productivity.

【0007】本発明はこのような事情に鑑みて創作され
たもので、強誘電体結晶からなる基板を備えた光導波路
デバイスの製造方法において、放電による損傷や欠陥が
生じにくく且つ基板の加熱及び冷却に長時間を要しない
方法を提供することを目的としている。
The present invention was created in view of the above circumstances, and provides a method for manufacturing an optical waveguide device having a substrate made of ferroelectric crystal, which is less likely to cause damage or defects due to discharge, and which is less likely to cause damage or defects due to the heating and heating of the substrate. The purpose is to provide a method that does not require a long time for cooling.

【0008】[0008]

【課題を解決するための手段】本発明方法は、強誘電体
結晶からなる基板に温度変化を与える工程を含む光導波
路デバイスの製造方法において、少なくとも上記基板の
温度が変化するときに上記基板の周囲にイオン化した気
体を供給するようにしたものである。
[Means for Solving the Problems] The method of the present invention provides a method for manufacturing an optical waveguide device including a step of applying a temperature change to a substrate made of a ferroelectric crystal. It is designed to supply ionized gas to the surrounding area.

【0009】[0009]

【作用】基板の温度が変化するときに基板の周囲にイオ
ン化した気体を供給しておくと、基板の温度変化が急激
であったとしても、焦電効果により基板の表面及び裏面
に生じた電荷とイオン化した気体により大気中に供給さ
れた電荷とをつりあわせることができ、放電が生じにく
くなる。このように本発明によると、基板の加熱及び冷
却に長時間を要することなく放電による損傷や欠陥を生
じにくくさせることができる。
[Effect] If ionized gas is supplied around the substrate when the temperature of the substrate changes, even if the temperature of the substrate changes rapidly, charges will be generated on the front and back surfaces of the substrate due to the pyroelectric effect. It is possible to balance the charge supplied to the atmosphere by the ionized gas, making it difficult for discharge to occur. As described above, according to the present invention, it is possible to prevent damage and defects caused by discharge without requiring a long time to heat and cool the substrate.

【0010】0010

【実施例】以下本発明の実施例を図面に基づいて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の第1実施例として、本発明
方法を光導波路デバイスにおける膜蒸着プロセスに適用
した場合を説明するための図である。図において、4は
蒸着チャンバ、6は蒸着チャンバ4内の上方に設けられ
た被蒸着材載置用のテーブル、2はテーブル6上に載置
されたLiNbO3 等の強誘電体結晶からなる光導波
路用の基板、8は蒸着チャンバ4内の基板2の近傍にイ
オン化した気体を供給するイオン化ガス供給装置、10
は蒸着チャンバ4内を真空に排気するための真空ポンプ
、12は蒸着チャンバ4内のテーブル6の下方に設けら
れた蒸着用材料、14は蒸着材料12に電子ビームを与
えて蒸着材料を蒸発させる電子銃、16は基板2を適当
な温度に加熱するための加熱手段をそれぞれ示している
FIG. 1 is a diagram for explaining a first embodiment of the present invention in which the method of the present invention is applied to a film deposition process in an optical waveguide device. In the figure, 4 is a vapor deposition chamber, 6 is a table provided above the vapor deposition chamber 4 for placing the material to be vaporized, and 2 is an optical waveguide made of ferroelectric crystal such as LiNbO3 placed on the table 6. 8 is an ionized gas supply device 10 that supplies ionized gas to the vicinity of the substrate 2 in the deposition chamber 4;
is a vacuum pump for evacuating the inside of the deposition chamber 4; 12 is a deposition material provided below the table 6 in the deposition chamber 4; and 14 is an electron beam applied to the deposition material 12 to evaporate the deposition material. An electron gun 16 indicates a heating means for heating the substrate 2 to an appropriate temperature.

【0012】基板2の加熱温度は蒸着用材料の種類等に
より異なるが、導波路型光変調器の拡散源金属の蒸着工
程や電極形成工程においては、例えば百から数百℃の加
熱温度が採用される。電極等の金属材を基板上に蒸着す
る場合、蒸着チャンバ4内が酸化雰囲気にあると、蒸着
金属が酸化して良好な拡散源や電極下地を形成すること
ができないので、この実施例では、イオン化ガス供給装
置8から蒸着チャンバ4内に供給するイオン化ガスとし
ては、イオン化したN2 やAr等の不活性ガスが採用
される。ガスのイオン化は、放電やマイクロ波を用いた
通常の方法により行うことができる。
[0012] The heating temperature of the substrate 2 varies depending on the type of vapor deposition material, etc., but in the vapor deposition process of the diffusion source metal of the waveguide type optical modulator and the electrode formation process, a heating temperature of, for example, 100 to several hundred degrees Celsius is adopted. be done. When depositing a metal material such as an electrode on a substrate, if the inside of the deposition chamber 4 is in an oxidizing atmosphere, the deposited metal will oxidize and it will not be possible to form a good diffusion source or electrode base. As the ionized gas supplied from the ionized gas supply device 8 into the deposition chamber 4, ionized inert gas such as N2 or Ar is employed. Ionization of the gas can be performed by a conventional method using electric discharge or microwaves.

【0013】まず、蒸着に先立って、蒸着チャンバ4内
を真空に排気するとともに、基板2を所定温度まで加熱
する。この基板の加熱に際しては、焦電効果により基板
の表面及び裏面間等に放電が生じる恐れがあるので、イ
オン化ガス供給装置8から基板2の近傍に上述のイオン
化ガスを供給する。これにより、基板2の加熱が急激で
あったとしても、放電による損傷や欠陥が生じる恐れは
ない。
First, prior to vapor deposition, the inside of the vapor deposition chamber 4 is evacuated and the substrate 2 is heated to a predetermined temperature. When heating the substrate, the ionized gas described above is supplied from the ionized gas supply device 8 to the vicinity of the substrate 2, since there is a possibility that discharge may occur between the front and back surfaces of the substrate due to the pyroelectric effect. Thereby, even if the substrate 2 is heated rapidly, there is no risk of damage or defects caused by discharge.

【0014】基板2が加熱されてその温度が一定になっ
たならば、蒸着チャンバ4内へのイオン化ガスの供給を
停止し、電子銃14により蒸着用材料12を蒸発させて
、基板2表面に所要の膜蒸着を行う。
Once the substrate 2 has been heated and its temperature has become constant, the supply of ionized gas into the deposition chamber 4 is stopped, and the deposition material 12 is evaporated by the electron gun 14 to be deposited on the surface of the substrate 2. Perform the required film deposition.

【0015】そして、基板2表面への膜蒸着が終了した
ならば、加熱手段16を停止して基板2を常温にまで冷
却する。この際、基板2を加熱したときと同じように、
基板2の周囲にイオン化ガスを供給する。これにより、
基板冷却時における放電を未然に防止することができる
When the film deposition on the surface of the substrate 2 is completed, the heating means 16 is stopped and the substrate 2 is cooled to room temperature. At this time, in the same way as when heating the substrate 2,
Ionized gas is supplied around the substrate 2. This results in
Discharge during cooling of the substrate can be prevented.

【0016】イオン化ガスの供給量によっては、基板2
の加熱が終了した時点で焦電効果により生じた電荷と基
板周囲の雰囲気中の電荷とのつりあいが充分でないこと
がある。この場合には、基板2が一定温度に達してから
もしばらくの間イオン化ガスを供給しておくと良い。
Depending on the amount of ionized gas supplied, the substrate 2
When heating is completed, the charge generated by the pyroelectric effect and the charge in the atmosphere around the substrate may not be sufficiently balanced. In this case, it is preferable to continue supplying the ionized gas for a while even after the substrate 2 reaches a certain temperature.

【0017】図2は本発明の第2実施例として、本発明
方法を導波路基板の熱拡散工程に適用した場合を説明す
るための図である。図において、18は横置きの加熱炉
、20は加熱炉18内に設けられた基板載置用のテーブ
ル、2はテーブル20上に載置されたLiNbO3 等
の強誘電体結晶からなる基板、22は基板2が拡散温度
になるように加熱炉18内を加熱する加熱手段、24は
加熱炉18内が当該加熱温度において適当な酸化雰囲気
になるように加熱炉18内に所定の混合比で混合された
酸素及び水からなる雰囲気調整用のガスを供給する雰囲
気調整装置、26は加熱炉18内の基板2の周囲にイオ
ン化ガスを供給するイオン化ガス供給装置、28は加熱
炉18の排気口をそれぞれ表している。
FIG. 2 is a diagram for explaining a second embodiment of the present invention in which the method of the present invention is applied to a thermal diffusion process of a waveguide substrate. In the figure, 18 is a horizontal heating furnace, 20 is a table for mounting a substrate provided in the heating furnace 18, 2 is a substrate made of ferroelectric crystal such as LiNbO3 placed on the table 20, and 22 24 is a heating means for heating the inside of the heating furnace 18 so that the substrate 2 reaches the diffusion temperature, and 24 is a heating means for heating the inside of the heating furnace 18 at a predetermined mixing ratio so that the inside of the heating furnace 18 becomes an appropriate oxidizing atmosphere at the heating temperature. 26 is an ionized gas supply device that supplies ionized gas around the substrate 2 in the heating furnace 18; 28 is an ionized gas supply device that supplies an atmosphere adjustment gas consisting of oxygen and water; each represents.

【0018】雰囲気調整用のガスを加熱炉18内に供給
しているのは、拡散工程においては基板2は高温に加熱
され、適当な酸化雰囲気にしておかないと、LiNbO
3 からなる基板2からLi2 Oが雰囲気中に拡散し
て、基板全面の表層が高屈折率となってしまう恐れがあ
るからである。LiNbO3 にTiを熱拡散させると
きの加熱温度は例えば約1050℃である。
The reason why gas for atmosphere adjustment is supplied into the heating furnace 18 is because the substrate 2 is heated to a high temperature during the diffusion process, and if an appropriate oxidizing atmosphere is not maintained, LiNbO
This is because there is a risk that Li2O will diffuse into the atmosphere from the substrate 2 made of 3.3 and the surface layer of the entire surface of the substrate will have a high refractive index. The heating temperature for thermally diffusing Ti into LiNbO3 is, for example, about 1050°C.

【0019】このように本実施例では加熱炉18内の雰
囲気調整に酸素及び水の混合ガスを用いているので、イ
オン化ガス供給装置8から加熱炉18内に供給するイオ
ン化ガスとしては、イオン化された酸素が適している。
As described above, in this embodiment, since the mixed gas of oxygen and water is used to adjust the atmosphere inside the heating furnace 18, the ionized gas supplied from the ionized gas supply device 8 to the inside of the heating furnace 18 is an ionized gas. Oxygen is suitable.

【0020】光導波路デバイスの製造工程において、熱
拡散工程は基板の加熱温度が最も高い工程の一つである
ので、この工程に本発明を適用することは、焦電効果に
起因する基板等の損傷や結果の発生を防止する上で極め
て有効である。
In the manufacturing process of optical waveguide devices, the thermal diffusion process is one of the processes in which the heating temperature of the substrate is the highest. Therefore, applying the present invention to this process will prevent the heating of the substrate etc. caused by the pyroelectric effect. Extremely effective in preventing damage and consequences from occurring.

【0021】ところで、導波路型光デバイスの製造工程
においては、強誘電体結晶からなる基板表面にフォトレ
ジストを塗布して、露光前におけるフォトレジストの密
着性を向上させるためにプリベークを行い或いは露光後
のフォトレジストの密着性を向上させるためにポストベ
ークを行うことがある。プリベーク或いはポストベーク
に際しては、基板を100℃程度に加熱する必要がある
ので、このような場合にも本発明を適用可能である。こ
の場合には、レジストを変質させないようなイオン化ガ
ス、例えばイオン化された不活性ガスが選択される。
By the way, in the manufacturing process of a waveguide type optical device, a photoresist is applied to the surface of a substrate made of ferroelectric crystal, and prebaking or exposure is performed to improve the adhesion of the photoresist before exposure. Post-baking may be performed to improve the adhesion of the subsequent photoresist. During pre-baking or post-baking, it is necessary to heat the substrate to about 100° C., so the present invention can be applied to such cases as well. In this case, an ionized gas that does not alter the quality of the resist, such as an ionized inert gas, is selected.

【0022】[0022]

【発明の効果】以上説明したように、本発明によると、
強誘電体結晶からなる基板を備えた光導波路デバイスの
製造方法において、基板の加熱及び冷却に長時間を要す
ることなしに、放電による基板等の損傷や欠陥が発生す
ることを未然に防止することができるようになるという
効果を奏する。
[Effects of the Invention] As explained above, according to the present invention,
In a method for manufacturing an optical waveguide device equipped with a substrate made of ferroelectric crystal, it is possible to prevent damage or defects to the substrate etc. due to electric discharge without requiring a long time for heating and cooling the substrate. This has the effect of making it possible to

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例として、本発明方法を膜蒸
着工程に適用した場合を説明するための図である。
FIG. 1 is a diagram for explaining a case where the method of the present invention is applied to a film deposition process as a first embodiment of the present invention.

【図2】本発明の第2実施例として、本発明方法を基板
の熱拡散工程に適用した場合を説明するための図である
FIG. 2 is a diagram for explaining a case where the method of the present invention is applied to a thermal diffusion process of a substrate as a second embodiment of the present invention.

【図3】従来技術の問題点の説明図である。FIG. 3 is an explanatory diagram of problems in the prior art.

【符号の説明】[Explanation of symbols]

2  基板 8,26  イオン化ガス供給装置 2 Board 8,26 Ionized gas supply device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  強誘電体結晶からなる基板(2) に
温度変化を与える工程を含む光導波路デバイスの製造方
法において、少なくとも上記基板(2)の温度が変化す
るときに上記基板(2) の周囲にイオン化した気体を
供給することを特徴とする光導波路デバイスの製造方法
1. A method for manufacturing an optical waveguide device including the step of applying a temperature change to a substrate (2) made of a ferroelectric crystal, wherein at least when the temperature of the substrate (2) changes, the temperature of the substrate (2) changes. A method for manufacturing an optical waveguide device characterized by supplying ionized gas to the surrounding area.
【請求項2】  上記基板(2) に温度変化を与える
工程は上記基板(2) についての膜蒸着工程における
加熱及び冷却工程であり、上記気体は不活性ガスである
ことを特徴とする請求項1に記載の光導波路デバイスの
製造方法。
2. The step of applying a temperature change to the substrate (2) is a heating and cooling step in a film deposition step for the substrate (2), and the gas is an inert gas. 1. A method for manufacturing an optical waveguide device according to 1.
【請求項3】  上記基板(2) に温度変化を与える
工程は上記基板(2) についての熱拡散工程における
加熱及び冷却工程であり、上記気体は酸素であることを
特徴とする請求項1に記載の光導波路デバイスの製造方
法。
3. The method according to claim 1, wherein the step of applying a temperature change to the substrate (2) is a heating and cooling step in a thermal diffusion step for the substrate (2), and the gas is oxygen. A method of manufacturing the optical waveguide device described above.
JP3077132A 1991-03-18 1991-03-18 Manufacture of optical waveguide device Withdrawn JPH04289804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3077132A JPH04289804A (en) 1991-03-18 1991-03-18 Manufacture of optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3077132A JPH04289804A (en) 1991-03-18 1991-03-18 Manufacture of optical waveguide device

Publications (1)

Publication Number Publication Date
JPH04289804A true JPH04289804A (en) 1992-10-14

Family

ID=13625278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3077132A Withdrawn JPH04289804A (en) 1991-03-18 1991-03-18 Manufacture of optical waveguide device

Country Status (1)

Country Link
JP (1) JPH04289804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281748B2 (en) 2016-11-09 2019-05-07 Fujitsu Optical Components Limited Optical modulator and optical module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281748B2 (en) 2016-11-09 2019-05-07 Fujitsu Optical Components Limited Optical modulator and optical module

Similar Documents

Publication Publication Date Title
KR100368349B1 (en) Method of homeotropic alignment or tilted homeotropic alignment of liquid crystals by single oblique evaporation of oxides and structure formed thereby
KR100449432B1 (en) Flexible lcd panel fabrication method and flexible lcd panel fabrication system used for the same
JPH08107078A (en) Apparatus and method for heating semiconductor device
JPH04289804A (en) Manufacture of optical waveguide device
JPS61235814A (en) Manufacture of liquid crystal element
US7184116B2 (en) LCD having an alignment film comprising sintered carbon
JPH0475025A (en) Lcd panel
JP3213619B2 (en) Method for manufacturing optical waveguide device and optical waveguide device
KR100599618B1 (en) manufacturing method of liquid crystal device
KR0151949B1 (en) Liquid crystal display device
JP3207876B2 (en) Manufacturing method of optical waveguide device
KR0141909B1 (en) Liquid crystal display device with homeotropic alignment layer undercoat formed by ion beam assisted vapor deposition
US6927017B2 (en) Method for fabricating reflective-type LCD
JP2001188357A (en) Method and device for forming resin film to substrate for display element as well as method for manufacturing liquid crystal display device using the method
JPH04296721A (en) Color filter and its manufacture, and liquid crystal display device using the same
JPH1039303A (en) Production of liquid crystal display device
JPH0875941A (en) Production of optical waveguide
JPH05323368A (en) Production of liquid crystal display device
KR100687332B1 (en) Method of fabricating LCD
JP2800390B2 (en) Liquid crystal device manufacturing method
JP3331842B2 (en) Manufacturing method of liquid crystal display device
JPH02122069A (en) Formation of thin film of multi-elemental compound
JP2003172936A (en) Manufacturing method for liquid crystal device and manufacturing device for deposition substrate
JP3513177B2 (en) Manufacturing method of liquid crystal device
JPH1180935A (en) Vapor depositing material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514