JP2005154827A - Glass film manufacturing method and waveguide manufacturing method - Google Patents

Glass film manufacturing method and waveguide manufacturing method Download PDF

Info

Publication number
JP2005154827A
JP2005154827A JP2003394344A JP2003394344A JP2005154827A JP 2005154827 A JP2005154827 A JP 2005154827A JP 2003394344 A JP2003394344 A JP 2003394344A JP 2003394344 A JP2003394344 A JP 2003394344A JP 2005154827 A JP2005154827 A JP 2005154827A
Authority
JP
Japan
Prior art keywords
substrate
glass film
gas
glass
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003394344A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003394344A priority Critical patent/JP2005154827A/en
Publication of JP2005154827A publication Critical patent/JP2005154827A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass film manufacturing method for forming a glass film having the same composition and the same thickness on upper and lower sides of a substrate. <P>SOLUTION: In the glass film manufacturing method in which an upper electrode 18 and a lower electrode 16 are arranged in a reaction vessel 11 facing each other, high voltage is applied to the electrodes 16 and 18, the electrodes 16 and 18 are heated, gas to form raw glass is introduced into the vessel 11, and a glass thin film is formed on a substrate 25 in the plasma atmosphere, the substrate is arranged on the lower electrode 16 via a gap, an open space 26 is formed on a lower side of the substrate 25 and a glass film is deposited on both sides of the substrate 25. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板上にガラス膜を形成するガラス膜の製造方法と、そのガラス膜を加工して形成する導波路の製造方法に関するものである。   The present invention relates to a glass film manufacturing method for forming a glass film on a substrate, and a waveguide manufacturing method for processing and forming the glass film.

図4に示す従来のCVD法によるガラス膜の製造装置60は、反応容器61内にヒータのついた上部電極63と下部電極64が対向配置され、電極間63、64に高周波電源66が接続されており、下部電極64上に基板68が配置される。さらに、反応容器61内を真空状態に保つ排気装置62と、原料ガス等を供給する供給管67が接続されている。   In the conventional glass film manufacturing apparatus 60 shown in FIG. 4, an upper electrode 63 with a heater and a lower electrode 64 are disposed oppositely in a reaction vessel 61, and a high frequency power supply 66 is connected between the electrodes 63, 64. The substrate 68 is disposed on the lower electrode 64. Further, an exhaust device 62 that keeps the inside of the reaction vessel 61 in a vacuum state and a supply pipe 67 that supplies a raw material gas and the like are connected.

ガラス膜の成膜方法は、上部電極63と下部電極64が加熱され、高周波電力が印加されると共に、恒温槽72内で加熱されたアルコレート系の液体ソース([Si(OC254 ]69、[Ge(OCH34]70、[P(OCH33]71等)が気化したガス及びO2 管73を通って供給されるO2 ガスが、供給管67を通り、ガスシャワー65から基板68に吹き付けられて、プラズマ雰囲気下で熱分解反応し、基板68上にガラス膜が成膜される。 The glass film is formed by heating an upper electrode 63 and a lower electrode 64, applying high-frequency power, and heating an alcoholate-based liquid source ([Si (OC 2 H 5 )) in a thermostat 72. 4] 69 passes through the [Ge (OCH 3) 4] 70, [P (OCH 3) 3] O 2 gas 71, etc.) is supplied through the gas and O 2 tube 73 was vaporized, the supply pipe 67 Then, it is sprayed from the gas shower 65 onto the substrate 68 and undergoes a thermal decomposition reaction in a plasma atmosphere, and a glass film is formed on the substrate 68.

なお、74は基板68上への均一なガラス膜を形成するための側面保護板である。   Reference numeral 74 denotes a side surface protection plate for forming a uniform glass film on the substrate 68.

特開平11−288928号公報JP-A-11-288289 特開2001−348236号公報JP 2001-348236 A 特開2002−141342号公報JP 2002-141342 A

しかしながら、上述のガラス製造方法には以下の問題点がある。   However, the above glass manufacturing method has the following problems.

(1)上述の製造方法では、基板片面にしか成膜することができない。そこで、基板の両面にガラス膜を成膜する場合には、基板片面(表面)にガラス膜を成膜した後、反応容器内を一度大気圧にブレークしてから基板を裏返しに置き、再度高真空にして裏面にガラス膜を成膜しなければならなかった。   (1) In the above manufacturing method, the film can be formed only on one side of the substrate. Therefore, when forming glass films on both sides of the substrate, after forming the glass film on one side (surface) of the substrate, break the inside of the reaction vessel once to atmospheric pressure, place the substrate upside down, A glass film had to be formed on the back surface under vacuum.

しかし、この方法では、ガラス膜を形成する時間が掛かってしまうという問題がある。   However, this method has a problem that it takes time to form a glass film.

さらに、基板表面と基板裏面でそれぞれ別々に成膜するので、表面と裏面のガラス膜間での特性(光学的、熱的、機械的特性等)が異なるおそれがある。   Furthermore, since the film is separately formed on the front surface and the back surface of the substrate, the characteristics (optical, thermal, mechanical characteristics, etc.) between the front and back glass films may be different.

また、基板を下部電極上に裏返して置く際に、基板表面のガラス膜が傷付いたり、汚染されたりする。   In addition, when the substrate is turned over on the lower electrode, the glass film on the substrate surface is damaged or contaminated.

(2)基板表面にガラス膜を形成すると、ガラス膜と基板との熱膨張係数の違いにより、基板に反りが生じる。その反りの生じた基板を高温熱処理すると、その基板の反りが大きくなる。   (2) When a glass film is formed on the substrate surface, the substrate is warped due to the difference in thermal expansion coefficient between the glass film and the substrate. When the warped substrate is heat-treated at a high temperature, the warpage of the substrate increases.

反りの生じたガラス膜を加工して導波路を形成すると、TEモード、TMモード間の損失差が大きい、いわゆる偏波依存性の大きい導波路になる。   When a warped glass film is processed to form a waveguide, a waveguide having a large loss difference between the TE mode and the TM mode and having a large so-called polarization dependency is obtained.

また、基板の反りは、フォトリソグラフィ工程において、基板面内での露光パターンの寸法に分布を生じさせ、その後のドライエッチング工程において、加工寸法精度をさらに劣化させる問題がある。   Further, the warpage of the substrate causes a distribution in the dimension of the exposure pattern within the substrate surface in the photolithography process, and there is a problem that the processing dimensional accuracy is further deteriorated in the subsequent dry etching process.

基板とガラス膜の熱膨張係数、軟化温度が大きく異なった場合には、上記問題が著しく発生するため、最初に基板表面にガラス膜を成膜した段階で基板が反ってしまう。また、反った基板の裏面にガラス膜を形成しても、生じた反りは戻らない。   When the thermal expansion coefficient and the softening temperature of the substrate and the glass film are greatly different, the above problem occurs remarkably, so that the substrate is warped when the glass film is first formed on the substrate surface. Further, even if a glass film is formed on the back surface of the warped substrate, the generated warp does not return.

また、導波路のコア層とクラッド層との比屈折率差が大きい場合にも上記問題が著しく発生する。   The above problem also occurs remarkably when the relative refractive index difference between the core layer and the clad layer of the waveguide is large.

そこで、本発明の目的は、上記課題を解決し、基板の上下両面に同一組成、同一膜厚のガラスを成膜するガラス膜の製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above problems and provide a glass film manufacturing method in which glass with the same composition and the same film thickness is formed on both upper and lower surfaces of a substrate.

上記目的を達成するために、請求項1の発明は、反応容器内で上部電極と下部電極とを対向するように配置させ、その電極に高電圧を印加すると共に、電極を加熱し、ガラス原料となるガスを容器内に導入してプラズマ雰囲気下で基板にガラス薄膜を形成するガラス膜の製造方法において、下部電極上にギャップを介して基板を配置すると共にその基板の下面に開空間を形成し、その基板の上下面にガラス膜を成膜するガラス膜の製造方法である。   In order to achieve the above object, the invention according to claim 1 is arranged such that an upper electrode and a lower electrode are arranged to face each other in a reaction vessel, a high voltage is applied to the electrode, the electrode is heated, In a glass film manufacturing method in which a gas is introduced into a container and a glass thin film is formed on the substrate in a plasma atmosphere, the substrate is disposed through a gap on the lower electrode and an open space is formed on the lower surface of the substrate And it is the manufacturing method of the glass film which forms a glass film in the upper and lower surfaces of the board | substrate.

請求項2の発明は、ギャップの高さは、2mmから15mmの範囲内である請求項1記載のガラス膜の製造方法である。   The invention according to claim 2 is the method for producing a glass film according to claim 1, wherein the height of the gap is in the range of 2 mm to 15 mm.

請求項3の発明は、下部電極上に基板固定部材を、その上部に配置される基板の外周に位置するよう設けた請求項1または2記載のガラス膜の製造方法である。   A third aspect of the present invention is the glass film manufacturing method according to the first or second aspect, wherein the substrate fixing member is provided on the lower electrode so as to be positioned on the outer periphery of the substrate disposed thereon.

請求項4の発明は、基板固定部材は柱状に形成され、基板の外周に位置して少なくとも3本設けられ、その柱状の基板固定部材上に基板が載置されて成膜される請求項1から3いずれかに記載のガラス膜の製造方法である。   According to the invention of claim 4, the substrate fixing member is formed in a columnar shape, and at least three substrate fixing members are provided on the outer periphery of the substrate, and the substrate is placed on the columnar substrate fixing member to form a film. To 3. The method for producing a glass film according to any one of 3 to 4.

請求項5の発明は、原料ガスは、アルコレート系の液体ソースを気化させたガス、またはSiH4 系のガスを用いた請求項1から4いずれかに記載のガラス膜の製造方法である。 A fifth aspect of the present invention is the glass film manufacturing method according to any one of the first to fourth aspects, wherein the source gas is a gas obtained by vaporizing an alcoholate liquid source or a SiH 4 gas.

請求項6の発明は、基板の両面にガラス組成の異なるガラス膜を複数層積層する請求項1から5いずれかに記載のガラス膜の製造方法である。   The invention of claim 6 is the method for producing a glass film according to any one of claims 1 to 5, wherein a plurality of glass films having different glass compositions are laminated on both surfaces of the substrate.

請求項7の発明は、基板には、ガラス、半導体、セラミックス及び高分子材料で形成された基板を用いた請求項1から6いずれかに記載のガラス膜の製造方法である。   The invention according to claim 7 is the method for producing a glass film according to any one of claims 1 to 6, wherein a substrate made of glass, a semiconductor, ceramics and a polymer material is used as the substrate.

請求項8の発明は、基板の両面の少なくとも一方が、鏡面状態に研磨された基板を用いた請求項1から7いずれかに記載のガラス膜の製造方法である。   The invention of claim 8 is the method for producing a glass film according to any one of claims 1 to 7, wherein the substrate is used in which at least one of both surfaces of the substrate is polished in a mirror state.

請求項9の発明は、電極及び下部電極を300〜600℃の範囲内で同じ温度に加熱した請求項1から8いずれかに記載のガラス膜の製造方法である。   The invention of claim 9 is the method for producing a glass film according to any one of claims 1 to 8, wherein the electrode and the lower electrode are heated to the same temperature within a range of 300 to 600 ° C.

請求項10の発明は、原料ガスにSi(OC254 を気化させたガスとO2 ガス及びC26ガスを混合したガスを所定の混合比で導入し、フッ素を添加させたガラス膜を成膜する請求項1から9いずれか記載のガラス膜の製造方法である。 The invention of claim 10 introduces a gas obtained by vaporizing Si (OC 2 H 5 ) 4 into a source gas, a gas obtained by mixing O 2 gas and C 2 F 6 gas at a predetermined mixing ratio, and adds fluorine. The glass film manufacturing method according to claim 1, wherein a glass film is formed.

請求項11の発明は、請求項10記載の製造方法で製造したガラス膜の上層にそのガラス膜よりも屈折率の高いガラス層を積層するガラス膜の製造方法である。   Invention of Claim 11 is a manufacturing method of the glass film which laminates | stacks the glass layer whose refractive index is higher than the glass film on the upper layer of the glass film manufactured by the manufacturing method of Claim 10.

請求項12の発明は、請求項1から11いずれかのガラス膜の製造方法で形成したガラス膜を800℃から1350℃の範囲内の温度で高温熱処理する工程と、
フォトリソグラフィとドライエッチングにより導波路パターンを形成する工程と
からなる導波路の製造方法である。
The invention of claim 12 is a step of high-temperature heat-treating the glass film formed by the glass film manufacturing method of any one of claims 1 to 11 at a temperature in the range of 800 ° C to 1350 ° C;
This is a method for manufacturing a waveguide comprising a step of forming a waveguide pattern by photolithography and dry etching.

請求項13の発明は、請求項12記載の導波路の製造方法で形成した基板上面の導波路パターン上及び基板下面のガラス膜上にSi(OC254 を気化させたガスとO2 ガス及びC26ガスを混合したガスを所定の混合比で導入し、フッ素を添加させたガラス膜を形成する導波路の製造方法である。 According to a thirteenth aspect of the present invention, a gas obtained by vaporizing Si (OC 2 H 5 ) 4 on the waveguide pattern on the upper surface of the substrate and the glass film on the lower surface of the substrate formed by the waveguide manufacturing method according to the twelfth aspect and O This is a waveguide manufacturing method in which a mixed gas of 2 gas and C 2 F 6 gas is introduced at a predetermined mixing ratio to form a glass film to which fluorine is added.

請求項14の発明は、請求項13記載の導波路の製造方法で形成した導波路が形成された基板を800℃から1350℃の温度範囲内で高温熱処理をした導波路の製造方法である。   A fourteenth aspect of the present invention is a waveguide manufacturing method in which a substrate on which a waveguide formed by the waveguide manufacturing method according to the thirteenth aspect is formed is subjected to high-temperature heat treatment within a temperature range of 800 ° C. to 1350 ° C.

本発明によれば基板の上下面に同一組成、同一膜厚のガラス膜が成膜できるといった優れた効果を発揮する。   According to the present invention, an excellent effect that glass films having the same composition and the same film thickness can be formed on the upper and lower surfaces of the substrate is exhibited.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に本実施の形態のガラス膜の製造方法に用いる製造装置1の概略図を示す。   FIG. 1 shows a schematic view of a manufacturing apparatus 1 used in the glass film manufacturing method of the present embodiment.

製造装置1はクリーンユニット40によりクラス100に維持されたクリーンブース10内に設けられる。   The manufacturing apparatus 1 is provided in a clean booth 10 maintained in a class 100 by a clean unit 40.

反応容器11の内部には、上部電極18及び下部電極16が所定間隔で対向配置されている。下部電極16には最大温度500℃まで加熱できるヒータが設けられ(図示せず)、上部電極18には最大温度400℃まで加熱できるヒータ(図示せず)が設けられている。   Inside the reaction vessel 11, an upper electrode 18 and a lower electrode 16 are arranged to face each other at a predetermined interval. The lower electrode 16 is provided with a heater capable of heating up to a maximum temperature of 500 ° C. (not shown), and the upper electrode 18 is provided with a heater capable of heating up to a maximum temperature of 400 ° C. (not shown).

反応容器11の底部には、2つの排気口12、12を介してそれぞれ大容量排気装置13、13が設けられている。大容量排気装置13はメカニカルブースターポンプ14とドライポンプ15とで構成される。   Large-capacity exhaust devices 13 and 13 are provided at the bottom of the reaction vessel 11 via two exhaust ports 12 and 12, respectively. The large capacity exhaust device 13 includes a mechanical booster pump 14 and a dry pump 15.

メカニカルブースターポンプ14の排気量は8200l/min以上、ドライポンプ15の排気量は1200l/min以上である。   The displacement of the mechanical booster pump 14 is 8200 l / min or more, and the displacement of the dry pump 15 is 1200 l / min or more.

下部電極16及び上部電極18にはリード線21、21により高周波電力を印加する高周波電源22が接続されている。下部電極16上には、基板固定部材24によって形成されるギャップ17を介して少なくとも1枚の基板25が配置され(図では3枚)、下部電極16と基板25の間は開空間26となっている。   The lower electrode 16 and the upper electrode 18 are connected to a high frequency power source 22 for applying high frequency power via lead wires 21 and 21. On the lower electrode 16, at least one substrate 25 (three in the figure) is disposed via a gap 17 formed by the substrate fixing member 24, and an open space 26 is formed between the lower electrode 16 and the substrate 25. ing.

ここで、基板25の下面に形成された開空間26について説明する。   Here, the open space 26 formed on the lower surface of the substrate 25 will be described.

図2に示すように、基板固定部材24は、柱状に形成され、基板25の外周に位置するように設けられて、基板25を平行に固定している。各基板固定部材24は、1つの基板25において外周を略等分割する3箇所に設けることによって、基板25を固定するようにした。   As shown in FIG. 2, the substrate fixing member 24 is formed in a columnar shape and is provided on the outer periphery of the substrate 25 to fix the substrate 25 in parallel. Each substrate fixing member 24 is provided at three locations where the outer periphery of one substrate 25 is substantially equally divided, thereby fixing the substrate 25.

これにより、下部電極16上にギャップ17を介して基板25が配置され、基板25の下面には開空間26が形成される。基板25と下部電極16とのギャップ17は、2mmから15mmが好ましい。   As a result, the substrate 25 is disposed on the lower electrode 16 via the gap 17, and an open space 26 is formed on the lower surface of the substrate 25. The gap 17 between the substrate 25 and the lower electrode 16 is preferably 2 mm to 15 mm.

ギャップ17が2mmよりも小さいと、ガラス膜成膜中にプラズマが基板25の下面に回りこみにくくなる。さらに、反応容器11内に導入されるガスも基板25の下面に回りこみ難くなり、基板25の上面と下面に成膜されたガラス膜の組成、膜厚が異なる。逆に、ギャップが15mmより大きいと、基板25の上面と基板25下面との面内のガラス膜の組成や光学特性の差が大きくなり、基板上面と基板下面に成膜されたガラス膜の組成、膜厚の分布に不均一が生じる。   When the gap 17 is smaller than 2 mm, it is difficult for plasma to wrap around the lower surface of the substrate 25 during the glass film formation. Furthermore, the gas introduced into the reaction vessel 11 also hardly flows around the lower surface of the substrate 25, and the composition and film thickness of the glass films formed on the upper surface and the lower surface of the substrate 25 are different. On the other hand, if the gap is larger than 15 mm, the difference in the composition and optical characteristics of the glass film in the plane between the upper surface of the substrate 25 and the lower surface of the substrate 25 increases, and the composition of the glass film formed on the upper surface and lower surface of the substrate. The film thickness distribution is non-uniform.

よって、ギャップの幅は、2〜15mmの範囲内であるのが好ましい。   Therefore, the width of the gap is preferably in the range of 2 to 15 mm.

本実施の形態では、一枚の基板25において、柱状の基板固定部材24を基板25の下側に3本設けたが、4本以上でもよい。また、基板固定部材24は、基板25を挟む機構を備え、反応容器11の上側(上部電極18、上壁等)または側壁に固定されて、基板25を保持してもよい。その際、基板固定部材24は、柱状に限らず、2つ以上あればよい。   In the present embodiment, three columnar substrate fixing members 24 are provided on the lower side of the substrate 25 in one substrate 25, but four or more may be used. The substrate fixing member 24 may include a mechanism for sandwiching the substrate 25 and may be fixed to the upper side (the upper electrode 18, the upper wall, etc.) or the side wall of the reaction vessel 11 to hold the substrate 25. At that time, the substrate fixing member 24 is not limited to the columnar shape, but may be two or more.

一方、上部電極18の下部電極16側には、反応容器11内にガスを噴射するシャワー円板19が設けられる。シャワー円板19には多数の噴射口20が形成され、その噴射するガスを供給するガス供給管23が接続されている。また、ガス供給管23には、ガス供給管23内を通るガスを同一温度にするためのテープヒータ45が設けられている。   On the other hand, a shower disk 19 for injecting gas into the reaction vessel 11 is provided on the lower electrode 16 side of the upper electrode 18. A large number of injection ports 20 are formed in the shower disc 19, and a gas supply pipe 23 for supplying the gas to be injected is connected. The gas supply pipe 23 is provided with a tape heater 45 for setting the gas passing through the gas supply pipe 23 to the same temperature.

反応容器11には、基板25の出し入れをする反応容器前室42が基板出入り口41を介して隣接される。反応容器前室42には、基板表面にN2 ガスを吹き付けるガスシャワー44が設けられ、ガスシャワー44にはN2 ガスを導入するN2 ガス管43が接続されている。 The reaction container 11 is adjacent to a reaction container front chamber 42 through which a substrate 25 is taken in and out through a substrate entrance 41. The reaction vessel front chamber 42, the gas shower 44 blowing N 2 gas is provided on the substrate surface, N 2 gas pipe 43 for introducing the N 2 gas is connected to the gas shower 44.

反応容器11内に導入するガスは、ガラス膜の原料となるアルコレート系の液体ソースを気化させたガスと、そのガスに反応させるO2 、N2、NH3、C26等のガスが用いられる。 The gas introduced into the reaction vessel 11 is a gas obtained by vaporizing an alcoholate liquid source that is a raw material for the glass film, and a gas such as O 2 , N 2 , NH 3 , C 2 F 6, etc. that reacts with the gas. Is used.

アルコレート系の液体ソースとしては、[Si(OC254 ]等のSi系液体ソース28が用いられ、恒温槽29にて加熱、気化される。恒温槽29の温度は、液体ソース28の融点よりも高く、沸点よりも低い75℃とした。Si系液体ソース28を気化させたガスを供給するSi系ガス供給管27は、ガス供給管23に接続されている。 As the alcoholate-based liquid source, a Si-based liquid source 28 such as [Si (OC 2 H 5 ) 4 ] is used and heated and vaporized in a thermostatic chamber 29. The temperature of the thermostatic chamber 29 was 75 ° C. higher than the melting point of the liquid source 28 and lower than the boiling point. A Si-based gas supply pipe 27 that supplies gas obtained by vaporizing the Si-based liquid source 28 is connected to the gas supply pipe 23.

Si系液体ソース28の他に、[Ge(OCH34]等のGe系液体ソース31、[P(OCH34]等のP系液体ソース34を用いてもよく、それぞれ恒温槽32、35で加熱、気化される。Ge系液体ソース31を気化させたガスを供給するGe系ガス供給管30、及びP系液体ソース34を気化させたガスを供給するP系ガス供給管33もガス供給管23に接続されている。 In addition to the Si-based liquid source 28, a Ge-based liquid source 31 such as [Ge (OCH 3 ) 4 ] and a P-based liquid source 34 such as [P (OCH 3 ) 4 ] may be used. , 35 to heat and vaporize. A Ge-based gas supply pipe 30 that supplies gas vaporized from the Ge-based liquid source 31 and a P-based gas supply pipe 33 that supplies gas vaporized from the P-based liquid source 34 are also connected to the gas supply pipe 23. .

また、O2、N2、NH3 、C26をそれぞれ反応容器11に供給するO2 ガス供給管36、N2 ガス供給管37、NH3 ガス供給管38、C26ガス供給管39がガス供給管23に接続されている。 Also, O 2, N 2, NH 3, C 2 F 6 and O 2 gas supply pipe 36 for supplying to the reaction vessel 11, respectively, N 2 gas supply pipe 37, NH 3 gas supply pipe 38, C 2 F 6 gas supply A pipe 39 is connected to the gas supply pipe 23.

次に、ガラス膜の成膜方法(製造方法)について説明する。   Next, a film forming method (manufacturing method) of the glass film will be described.

基板25が配置された反応容器11内を大容量排気装置13、13により高真空に排気し、高周波電源22で下部電極16と上部電極18に高周波電力を印加すると共に、上部電極18及び下部電極16を加熱する。   The reaction vessel 11 in which the substrate 25 is disposed is evacuated to a high vacuum by the large capacity exhaust devices 13, 13, high frequency power is applied to the lower electrode 16 and the upper electrode 18 by the high frequency power source 22, and the upper electrode 18 and the lower electrode 16 is heated.

印加する高周波電力は13.56MHz、1kWとし、上部電極18及び下部電極16の加熱温度は300〜600℃とする。   The applied high frequency power is 13.56 MHz and 1 kW, and the heating temperature of the upper electrode 18 and the lower electrode 16 is 300 to 600 ° C.

反応容器11内の真空度は、数Paから数十Paが好ましい。真空度が低いと基板25下面へのガラス膜の成膜量が低下すると共に、不均一なガラス膜になりやすく、真空度が高すぎると、成膜速度の低下や酸素欠陥のガラス膜になりやすいためである。   The degree of vacuum in the reaction vessel 11 is preferably several Pa to several tens Pa. If the degree of vacuum is low, the amount of the glass film formed on the lower surface of the substrate 25 is reduced, and a non-uniform glass film tends to be formed. If the degree of vacuum is too high, the film forming rate is reduced and the glass film is oxygen-defected. This is because it is easy.

次に、Si系液体ソース28を恒温槽29で75℃に加熱して気化させた蒸気、O2 ガス及びC26ガスを、テープヒータ45で加熱されたガス供給管23で混合して重畳させ、反応容器11内に導入する。導入されるガスは、反応容器11内で、シャワー円板19の噴出口20から基板25に吹き付けるようにするため、均一に拡散される。 Next, steam, O 2 gas, and C 2 F 6 gas, which are vaporized by heating the Si-based liquid source 28 to 75 ° C. in the thermostat 29, are mixed in the gas supply pipe 23 heated by the tape heater 45. Superposed and introduced into the reaction vessel 11. The introduced gas is uniformly diffused in the reaction vessel 11 so as to be sprayed from the outlet 20 of the shower disk 19 to the substrate 25.

2 ガスは、プラズマ雰囲気下でSi系液体ソース28を気化させたガスの熱分解反応を十分に行わせるために流し、C26ガスは、SiO2 のガラス膜内にF(フッ素)を添加させるために用いる。 The O 2 gas is flowed in order to cause a sufficient thermal decomposition reaction of the gas obtained by vaporizing the Si-based liquid source 28 in a plasma atmosphere, and the C 2 F 6 gas is F (fluorine) in the SiO 2 glass film. Used to add.

ガス供給管23内の温度は、80℃〜120℃の範囲内であるのがよい。管内温度が120℃より高いと、管内で加水分解反応が起こり、管内にガラス微粒子が付着してしまい、80℃より低いと、Si系液体ソース28の液化による付着や、C26ガスとの液体反応が起こるためである。 The temperature in the gas supply pipe 23 is preferably in the range of 80 ° C to 120 ° C. When the temperature in the tube is higher than 120 ° C., hydrolysis reaction occurs in the tube, and glass fine particles adhere to the tube. When the temperature is lower than 80 ° C., adhesion due to liquefaction of the Si-based liquid source 28, C 2 F 6 gas, This is because the liquid reaction occurs.

反応容器11内は、高周波電力により上部電極18下部電極16間にプラズマが発生し、高真空に保たれているので、プラズマ雰囲気下での熱分解反応により、基板25の上面及び下面にFの添加されたSiO2 の低屈折率のガラス膜が形成される。 In the reaction vessel 11, plasma is generated between the upper electrode 18 and the lower electrode 16 by high-frequency power and kept at a high vacuum, so that F is formed on the upper surface and the lower surface of the substrate 25 by a thermal decomposition reaction in a plasma atmosphere. A glass film having a low refractive index of added SiO 2 is formed.

ガラス膜が成膜された基板25を、反応容器11から取り出す際は、反応容器11内を大気圧にブレークしてから、基板出入口41から取り出す。このとき、反応容器前室42のガスシャワー44からN2 ガスを基板25に吹き付け、基板25の上下面に付着したゴミ等を取り除く。 When taking out the substrate 25 on which the glass film has been formed from the reaction vessel 11, the inside of the reaction vessel 11 is broken to atmospheric pressure and then taken out from the substrate inlet / outlet 41. At this time, N 2 gas is sprayed onto the substrate 25 from the gas shower 44 in the reaction chamber front chamber 42 to remove dust and the like adhering to the upper and lower surfaces of the substrate 25.

以上より、下部電極16上に開空間26を形成して基板25を略平行に固定して、基板25の上面及び下面上にガラス膜を製造するので、ガラス膜の成膜時間を短くでき、極めて効率的、経済的である。   From the above, since the open space 26 is formed on the lower electrode 16 and the substrate 25 is fixed substantially in parallel, and the glass film is manufactured on the upper surface and the lower surface of the substrate 25, the film formation time of the glass film can be shortened. Extremely efficient and economical.

さらに、基板25とガラス膜の熱膨張係数や軟化温度に大きな差があっても基板表面のみならず、基板の下面にも略同一組成のガラス膜を同時に成膜することができるので、基板25への反り発生がほとんど生じない。   Furthermore, even if there is a large difference in the thermal expansion coefficient or softening temperature between the substrate 25 and the glass film, a glass film having substantially the same composition can be simultaneously formed not only on the substrate surface but also on the lower surface of the substrate. Almost no warpage occurs.

基板25の上面及び下面は下部電極16及び上部電極18からの輻射熱で十分に加熱され、プラズマも基板25の上面のみならず基板25下面に回りこんで発生し、かつガラス原料のガスとそのガスに反応するガスも基板25下面にも回りこむことができるので、基板25上面のみならず、基板25の下面にも同時にほぼ同一組成のガラス膜を成膜することができる。   The upper surface and the lower surface of the substrate 25 are sufficiently heated by the radiant heat from the lower electrode 16 and the upper electrode 18, and plasma is generated not only on the upper surface of the substrate 25 but also on the lower surface of the substrate 25. Since the gas which reacts to the substrate 25 can also flow into the lower surface of the substrate 25, a glass film having substantially the same composition can be formed not only on the upper surface of the substrate 25 but also on the lower surface of the substrate 25 at the same time.

本実施の形態では、アルコレート系の液体ソースを気化させたものを用いているので、わずかのギャップ内にもガスを回りこませることができ、基板表面のみならず、基板25下面にもほぼ同一組成のガラス膜を同時に成膜することができる。   In this embodiment, since an alcoholate-based liquid source is vaporized, gas can be circulated into a slight gap, and not only on the substrate surface but also on the lower surface of the substrate 25. Glass films having the same composition can be formed simultaneously.

また、基板の反りがほとんど発生しないことから、基板25上面及び下面上にはガラス組成の異なるガラス膜を複数層形成することが容易にできる。   Further, since the substrate is hardly warped, a plurality of glass films having different glass compositions can be easily formed on the upper surface and the lower surface of the substrate 25.

上部電極18及び下部電極16を所望の同一温度に加熱してガラス膜を成膜するため、基板上面及び下面上に形成されたガラス膜はほぼ同一組成でほぼ同じ膜厚で成膜することができる。   In order to form the glass film by heating the upper electrode 18 and the lower electrode 16 to the same desired temperature, the glass films formed on the upper and lower surfaces of the substrate may be formed with substantially the same composition and substantially the same film thickness. it can.

基板25は、加熱温度に耐えることができれば、石英ガラスや多成分ガラス等のガラス材料、半導体材料(Si、GaAs、InP等)、セラミックス、高分子材料、強誘電体材料のいずれを用いてもよい。   As long as the substrate 25 can withstand the heating temperature, any of glass materials such as quartz glass and multicomponent glass, semiconductor materials (Si, GaAs, InP, etc.), ceramics, polymer materials, and ferroelectric materials can be used. Good.

基板25を形成する材料を広範囲に選択することで、反射ミラー用ガラス膜、フィルタ用ガラス膜、偏向ミラー用ガラス膜、絶縁用ガラス膜、光拡散用ガラス膜等に適用できる。   By selecting a material for forming the substrate 25 in a wide range, it can be applied to a reflection mirror glass film, a filter glass film, a deflection mirror glass film, an insulating glass film, a light diffusion glass film, and the like.

ガラス原料となるガスはアルコレート系の液体ソースを気化させたガスのほかに、SiH4 系のガスを用いてもよい。 As the glass raw material gas, an SiH 4 -based gas may be used in addition to a gas obtained by vaporizing an alcoholate-based liquid source.

また、高周波電力は、13.56MHzより高くてもよく、マイクロ波の周波数でもよい。   Further, the high frequency power may be higher than 13.56 MHz, or may be a microwave frequency.

上部電極18及び下部電極16の加熱温度は、300℃から600℃の温度範囲内であればよく、抵抗加熱以外に赤外線加熱でもよい。電極温度が300℃より低いと、均一で低損失なガラス膜が得にくく、600℃より高いと真空を保持するための部材や装置を設けるのが難しいためである。   The heating temperature of the upper electrode 18 and the lower electrode 16 should just be in the temperature range of 300 to 600 degreeC, and may be infrared heating other than resistance heating. This is because if the electrode temperature is lower than 300 ° C., it is difficult to obtain a uniform and low-loss glass film, and if it is higher than 600 ° C., it is difficult to provide a member or device for maintaining a vacuum.

また、Si系液体ソース28、O2 ガス、C26ガス以外に、Ge系液体ソース31、P系液体ソース34、N2 ガス、NH3 ガスを用いることで、基板25の上下面にSiO2 膜、GeO2 を含むSiO2 膜、P25を含むSiO2 膜、さらにNが添加されたガラス膜を形成することができる。 Further, in addition to the Si-based liquid source 28, O 2 gas, and C 2 F 6 gas, a Ge-based liquid source 31, a P-based liquid source 34, N 2 gas, and NH 3 gas are used so that the upper and lower surfaces of the substrate 25 are formed. SiO 2 film, SiO 2 film containing GeO 2, SiO 2 film containing P 2 O 5, may be further formed a glass layer which N is added.

製造装置1に設けられる大容量排気装置13であるメカニカルブースターポンプ14及びドライポンプ15は2セットに限定されず、2セット以上設けてもよい。   The mechanical booster pump 14 and the dry pump 15 that are the large-capacity exhaust devices 13 provided in the manufacturing apparatus 1 are not limited to two sets, and two or more sets may be provided.

ただし、排気装置は排気量が大きいものである必要がある。なぜなら、N2 、C26、NH3 等のガスは、SiO2 のガラス膜内にNやFを大量に添加させるために用いるが、酸素欠陥の少ない、かつ、OH基の混入の少ないガラス膜を成膜するために少なくとも流量100sccm流す必要があり、N2 、NH3 、C26等のガスの流量を増やすと、それに応じてO2 の流量を増やす必要がある。 However, the exhaust device needs to have a large displacement. This is because gases such as N 2 , C 2 F 6 , and NH 3 are used to add a large amount of N and F into the glass film of SiO 2 , but there are few oxygen defects and little OH group contamination. In order to form a glass film, it is necessary to flow at least 100 sccm. When the flow rate of a gas such as N 2 , NH 3 , C 2 F 6 is increased, the flow rate of O 2 needs to be increased accordingly.

よって、大流量のガスを導入し、反応容器11内を高真空度に保った状態にするには、大容量な排気装置が必要となる。これにより、反応容器11内に大流量のガスを流しながら高真空でガラス膜を成膜できる。   Therefore, in order to introduce a large flow of gas and keep the inside of the reaction vessel 11 at a high vacuum level, a large capacity exhaust device is required. Thereby, a glass film can be formed in a high vacuum while flowing a large amount of gas into the reaction vessel 11.

さらに、基板25の両面の少なくとも一方を鏡面状態に研磨された基板25を用いてもよい。鏡面状態に研磨された基板を用いることで、膜厚や屈折率等の分布が均一なガラス膜を形成できる。   Further, a substrate 25 in which at least one of both surfaces of the substrate 25 is polished in a mirror state may be used. By using a substrate polished in a mirror state, a glass film having a uniform distribution of film thickness, refractive index, and the like can be formed.

次に、図3(a)〜(d)により導波路の製造方法について説明する。   Next, a method for manufacturing a waveguide will be described with reference to FIGS.

先ず、図3(a)に示すように、石英ガラス基板50の上下面に低屈折率の下部クラッド層となるガラス膜を成膜する。   First, as shown in FIG. 3A, a glass film serving as a lower clad layer having a low refractive index is formed on the upper and lower surfaces of the quartz glass substrate 50.

図1に示した上部電極18及び下部電極16を400℃に加熱した状態で、[Si(OC254 ]を気化したガスとO2 ガスとC26ガスとをテープヒータ45で所望の温度に加熱されたガス供給配管23で、ガス流量比O2 :C26が4:1となるよう混合して重畳させてから反応容器11内に導入し、35分間プラズマ雰囲気下で下部クラッドとなる第1ガラス膜51、52を成膜する。 In a state where the upper electrode 18 and the lower electrode 16 shown in FIG. 1 are heated to 400 ° C., a gas obtained by vaporizing [Si (OC 2 H 5 ) 4 ], an O 2 gas, and a C 2 F 6 gas are used as a tape heater 45. In the gas supply pipe 23 heated to the desired temperature, the gas flow ratio O 2 : C 2 F 6 is mixed and superposed so as to be 4: 1, and then introduced into the reaction vessel 11 for 35 minutes in the plasma atmosphere. First glass films 51 and 52 are formed as lower clads below.

この工程で基板50上面には波長632.8nmにおいて屈折率が1.438±0.001のガラス膜51を2.1μm±0.3μmの厚さで形成でき、基板50下面には、波長632.8nmにおける屈折率が1.438±0.0008のガラス膜52を2.0μm±0.2μmの厚さで形成できた。   In this step, a glass film 51 having a refractive index of 1.438 ± 0.001 at a wavelength of 632.8 nm can be formed on the upper surface of the substrate 50 with a thickness of 2.1 μm ± 0.3 μm. A glass film 52 having a refractive index of 1.438 ± 0.0008 at .8 nm could be formed to a thickness of 2.0 μm ± 0.2 μm.

また、上述の第1ガラス膜51、52の成膜条件を変えて第1ガラス膜を成膜した工程について説明する。   In addition, a process of forming the first glass film by changing the film forming conditions of the first glass films 51 and 52 described above will be described.

上部電極18及び下部電極16の加熱温度、使用ガス及び成膜時間は同じであるが、O2 ガスをC26ガスの流量比をO2 :C26=13:1とした。これにより基板上面には波長632.8nmにおける屈折率が1.415±0.0014のガラス膜を2.0μm±0.35μmの厚みで形成でき、基板下面には波長632.8nmにおける屈折率が1.414±0.001のガラス膜を1.9μm±0.3μmの厚さで形成することができた。 The heating temperature of the upper electrode 18 and the lower electrode 16, the gas used and the deposition time are the same, O 2 gas of C 2 F 6 gas flow ratio of O 2: C 2 F 6 = 13: set to 1. Thus, a glass film having a refractive index of 1.415 ± 0.0014 at a wavelength of 632.8 nm can be formed on the upper surface of the substrate with a thickness of 2.0 μm ± 0.35 μm, and a refractive index at a wavelength of 632.8 nm can be formed on the lower surface of the substrate. A glass film of 1.414 ± 0.001 could be formed with a thickness of 1.9 μm ± 0.3 μm.

第1ガラス膜51、52は、石英ガラス基板50の上面及び下面に対してほぼ400℃に加熱した状態で成膜して得られているので、温度に対して安定なガラス膜であり、このガラス膜をさらに高い温度800〜1200℃の範囲で加熱処理してもガラス膜の屈折率はほとんど変わらない、安定したガラス膜であった。   Since the first glass films 51 and 52 are obtained by forming the first glass films 51 and 52 on the upper and lower surfaces of the quartz glass substrate 50 while being heated to approximately 400 ° C., the first glass films 51 and 52 are glass films that are stable with respect to temperature. Even if the glass film was heat-treated at a higher temperature in the range of 800 to 1200 ° C., the refractive index of the glass film remained almost unchanged and was a stable glass film.

次に、図3(b)に示すように、第1ガラス膜51、52上に、基板50上面ではコア層を形成する第2ガラス膜を成膜する。   Next, as shown in FIG. 3B, a second glass film that forms a core layer on the upper surface of the substrate 50 is formed on the first glass films 51 and 52.

上部電極18及び下部電極16を400℃に加熱した状態で、[Si(OC254 ]を恒温槽で75℃に加熱して気化させた蒸気とO2 ガスとN2 ガスをテープヒータ45で80℃で加熱されたガス供給配管23に導入する。ガス流量比はN2 :O2 =10:1で混合して重畳させてから反応容器11内に導入し、35分間プラズマ雰囲気下で第2ガラス膜53、54を形成した。 While the upper electrode 18 and the lower electrode 16 are heated to 400 ° C., the vaporized vapor, O 2 gas, and N 2 gas of [Si (OC 2 H 5 ) 4 ] heated to 75 ° C. in a thermostat are taped The gas is introduced into the gas supply pipe 23 heated at 80 ° C. by the heater 45. The gas flow ratio was N 2 : O 2 = 10: 1 mixed and superimposed, and then introduced into the reaction vessel 11 to form second glass films 53 and 54 in a plasma atmosphere for 35 minutes.

これにより、基板50上面の第1ガラス膜51の上層には、波長632.8nmにおける屈折率が1.47012±0.0006の第2ガラス膜53を1.8μm±0.46μmの厚さで形成でき、基板50下面の第1ガラス膜52の上層(図では下側)には、波長632.8nmにおける屈折率が1.4698±0.0014の第2ガラス膜54を1.8μm±0.23μmの厚さで形成することができた。   As a result, the second glass film 53 having a refractive index of 1.47012 ± 0.0006 at a wavelength of 632.8 nm is formed on the upper surface of the first glass film 51 on the upper surface of the substrate 50 with a thickness of 1.8 μm ± 0.46 μm. A second glass film 54 having a refractive index of 1.4698 ± 0.0014 at a wavelength of 632.8 nm is formed on the upper layer (lower side in the drawing) of the first glass film 52 on the lower surface of the substrate 50 by 1.8 μm ± 0. A thickness of 23 μm could be formed.

また、上述の第2ガラス膜53、54の成膜条件を変えて第2ガラス膜を成膜した工程について説明する。   In addition, a process of forming the second glass film by changing the film forming conditions of the second glass films 53 and 54 described above will be described.

上部電極18及び下部電極16を400℃に加熱した状態で、[Si(OC254 ]の流量を6sccm、[Ge(OCH34]の流量を0.8sccmに設定し、恒温槽で75℃に加熱して気化させた蒸気と、O2 ガスとN2 ガスをテープヒータ45で80℃に加熱された供給配管23に導入する。ガス流量比N2 :O2は14:1で混合して重畳させてから反応容器11内に導入し、35分間プラズマ雰囲気下で第2ガラス膜を形成した。 With the upper electrode 18 and the lower electrode 16 heated to 400 ° C., the flow rate of [Si (OC 2 H 5 ) 4 ] is set to 6 sccm, and the flow rate of [Ge (OCH 3 ) 4 ] is set to 0.8 sccm to keep the temperature constant. Steam vaporized by heating to 75 ° C. in the tank, and O 2 gas and N 2 gas are introduced into the supply pipe 23 heated to 80 ° C. by the tape heater 45. The gas flow ratio N 2 : O 2 was mixed at 14: 1 and superimposed, and then introduced into the reaction vessel 11 to form a second glass film in a plasma atmosphere for 35 minutes.

これにより、基板上面の第1ガラス膜上層には、波長632.8nmにおける屈折率が1.498±0.0004の第2ガラス膜を1.98μm±0.04μmの厚さで形成でき、基板下面の第1ガラス膜の上層には、波長632.8nmにおける屈折率が1.497±0.009の第2ガラス膜を1.93μm±0.10μmの厚さで形成することができた。   As a result, a second glass film having a refractive index of 1.498 ± 0.0004 at a wavelength of 632.8 nm can be formed in a thickness of 1.98 μm ± 0.04 μm on the first glass film upper layer on the upper surface of the substrate. A second glass film having a refractive index of 1.497 ± 0.009 at a wavelength of 632.8 nm was formed on the upper layer of the first glass film on the lower surface with a thickness of 1.93 μm ± 0.10 μm.

次に、図3(c)に示すように、第2ガラス膜53を断面が矩形状のコア層55に形成する。   Next, as shown in FIG. 3C, the second glass film 53 is formed on the core layer 55 having a rectangular cross section.

基板50上面の第2ガラス膜53を酸素雰囲気中において、1000℃で2時間加熱処理した後、室温まで下げ、その後、第2ガラス膜53上にフォトレジストを塗布、ベーキング処理する。そのレジスト膜上にコア層55の導波路パターンの描かれたフォトマスクを置いて、フォトマスクの上方から紫外線を照射する。紫外線照射後、現像してコア層55の導波路パターンと同じフォトレジストパターンが第2ガラス膜53上に得られる。   The second glass film 53 on the upper surface of the substrate 50 is heat-treated at 1000 ° C. for 2 hours in an oxygen atmosphere, then lowered to room temperature, and then a photoresist is applied onto the second glass film 53 and baked. A photomask on which the waveguide pattern of the core layer 55 is drawn is placed on the resist film, and ultraviolet rays are irradiated from above the photomask. After the ultraviolet irradiation, development is performed to obtain the same photoresist pattern as the waveguide pattern of the core layer 55 on the second glass film 53.

次に、そのフォトレジストパターンをエッチングマスクとして、リアクティブイオンエッチング装置(RIE)を用いたドライエッチング工程で、エッチングガスとしてCHF3 ガスを流しながら、第2ガラス膜53をパターニングし、断面が矩形状のコア層55が得られる。 Next, using the photoresist pattern as an etching mask, the second glass film 53 is patterned while a CHF 3 gas is allowed to flow as an etching gas in a dry etching process using a reactive ion etching apparatus (RIE). A core layer 55 having a shape is obtained.

次に、図3(d)に示すように、コア層55を有する基板を再び装置1に入れ、上述の第1ガラス膜51、52と同じ組成からなる第3ガラス膜56、57を、コア層55上、第1ガラス膜51上層及び第2ガラス膜54上層(図では下側)に約10μmの膜厚で形成した。   Next, as shown in FIG. 3D, the substrate having the core layer 55 is put into the apparatus 1 again, and the third glass films 56 and 57 having the same composition as the first glass films 51 and 52 are replaced with the cores. On the layer 55, the upper layer of the first glass film 51 and the upper layer of the second glass film 54 (lower side in the figure) were formed with a film thickness of about 10 μm.

その後、基板を1100℃で酸素雰囲気中において2時間熱処理を施し、導波路58の完成とする。   Thereafter, the substrate is heat-treated at 1100 ° C. in an oxygen atmosphere for 2 hours to complete the waveguide 58.

その高温熱処理は、800℃〜1350℃の範囲内で施せばよい。   What is necessary is just to give the high temperature heat processing within the range of 800 to 1350 degreeC.

次に、上述の製造方法で作製された導波路58の反りと光学特性の測定結果について説明する。   Next, the measurement results of the warpage and optical characteristics of the waveguide 58 manufactured by the above-described manufacturing method will be described.

導波路58の反りの発生は、ガラス膜形成前の直径4インチの石英ガラス基板50の反りは約7μmであったのに対して、導波路58形成後のガラス基板の反りは約9μmであり、導波路形成による反りはほとんどない。よって、基板50の上面及び下面に同一条件で、同一組成、同一膜厚のガラス膜が形成できる。   The warpage of the waveguide 58 occurs when the quartz glass substrate 50 having a diameter of 4 inches before the glass film is formed is about 7 μm, whereas the warp of the glass substrate after the formation of the waveguide 58 is about 9 μm. There is almost no warpage due to the waveguide formation. Therefore, glass films having the same composition and the same film thickness can be formed on the upper and lower surfaces of the substrate 50 under the same conditions.

長さが30cmの直線とS字状の曲線で構成した導波路パターンからなる導波路58において、TEモード及びTMモードでの波長1550nmにおける伝搬損失を測定した。その結果、TE及びTMモード間での損失差は0.05dB以下とほとんどなく、偏波依存性の極めて小さい導波路が形成できる。   Propagation loss at a wavelength of 1550 nm in the TE mode and TM mode was measured in the waveguide 58 composed of a waveguide pattern composed of a straight line having a length of 30 cm and an S-shaped curve. As a result, there is almost no loss difference between TE and TM modes of 0.05 dB or less, and a waveguide with extremely small polarization dependence can be formed.

さらに、本実施の形態の導波路の製造方法を用いることで、図3(c)に示すような、フォトリソグラフィやドライエッチングにより矩形状に加工された導波路のコアパターンを得るのに失敗したときは、基板50下面に積層された第1及び第2ガラス膜52、54を用いて導波路パターンを加工できる。これにより、導波路の作製歩留まりの改善や、導波路の低コスト化が可能になる。   Furthermore, by using the waveguide manufacturing method of the present embodiment, it has failed to obtain a waveguide core pattern processed into a rectangular shape by photolithography or dry etching as shown in FIG. In some cases, the waveguide pattern can be processed using the first and second glass films 52 and 54 laminated on the lower surface of the substrate 50. Thereby, the production yield of the waveguide can be improved and the cost of the waveguide can be reduced.

本実施の形態のガラス膜及び導波路の製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the glass film and waveguide of this Embodiment. 図1の製造装置の下部電極に基板を固定する構造を示し、(a)はその上平面図であり、(b)は側面図である。The structure which fixes a board | substrate to the lower electrode of the manufacturing apparatus of FIG. 1 is shown, (a) is the upper top view, (b) is a side view. (a)〜(d)は、基板両面にガラス膜を成膜し、導波路を形成する工程断面図である。(A)-(d) is process sectional drawing which forms a glass film in both surfaces of a board | substrate, and forms a waveguide. 従来のCVD法によるガラス膜の製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the glass film by the conventional CVD method.

符号の説明Explanation of symbols

11 反応容器
16 下部電極
17 ギャップ
18 上部電極
24 基板固定部材
25 基板
26 開空間
11 Reaction vessel 16 Lower electrode 17 Gap 18 Upper electrode 24 Substrate fixing member 25 Substrate 26 Open space

Claims (14)

反応容器内で上部電極と下部電極とを対向するように配置させ、その電極に高電圧を印加すると共に、電極を加熱し、ガラス原料となるガスを容器内に導入してプラズマ雰囲気下で基板にガラス薄膜を形成するガラス膜の製造方法において、下部電極上にギャップを介して基板を配置すると共にその基板の下面に開空間を形成し、その基板の上下面にガラス膜を成膜することを特徴とするガラス膜の製造方法。   The upper electrode and the lower electrode are arranged so as to face each other in the reaction vessel, a high voltage is applied to the electrode, the electrode is heated, and a gas serving as a glass raw material is introduced into the vessel to form a substrate in a plasma atmosphere. In a glass film manufacturing method for forming a glass thin film on a substrate, a substrate is disposed on the lower electrode through a gap, an open space is formed on the lower surface of the substrate, and a glass film is formed on the upper and lower surfaces of the substrate. A method for producing a glass film. 上記ギャップの高さは、2mmから15mmの範囲内である請求項1記載のガラス膜の製造方法。   The method for producing a glass film according to claim 1, wherein the height of the gap is in the range of 2 mm to 15 mm. 上記下部電極上に基板固定部材を、その上部に配置される基板の外周に位置するように設けた請求項1または2記載のガラス膜の製造方法。   The method for producing a glass film according to claim 1, wherein a substrate fixing member is provided on the lower electrode so as to be positioned on the outer periphery of the substrate disposed thereon. 上記基板固定部材は柱状に形成され、基板の外周に位置して少なくとも3本設けられ、その柱状の基板固定部材上に基板が載置されて成膜される請求項1から3いずれかに記載のガラス膜の製造方法。   4. The substrate fixing member is formed in a columnar shape, and at least three are provided on the outer periphery of the substrate, and the substrate is placed on the columnar substrate fixing member to form a film. Of manufacturing a glass film. 上記原料ガスは、アルコレート系の液体ソースを気化させたガス、またはSiH4 系のガスを用いた請求項1から4いずれかに記載のガラス膜の製造方法。 5. The method for producing a glass film according to claim 1, wherein the source gas is a gas obtained by vaporizing an alcoholate-based liquid source or a SiH 4 -based gas. 上記基板の両面にガラス組成の異なるガラス膜を複数層積層する請求項1から5いずれかに記載のガラス膜の製造方法。   The method for producing a glass film according to claim 1, wherein a plurality of glass films having different glass compositions are laminated on both surfaces of the substrate. 上記基板には、ガラス、半導体、セラミックス及び高分子材料で形成された基板を用いた請求項1から6いずれかに記載のガラス膜の製造方法。   The method for producing a glass film according to claim 1, wherein the substrate is a substrate formed of glass, semiconductor, ceramics, and a polymer material. 上記基板の両面の少なくとも一方が、鏡面状態に研磨された基板を用いた請求項1から7いずれかに記載のガラス膜の製造方法。   The manufacturing method of the glass film in any one of Claim 1 to 7 using the board | substrate with which at least one of both surfaces of the said board | substrate was grind | polished in the mirror surface state. 上記上部電極及び下部電極を300〜600℃の範囲内で同じ温度に加熱した請求項1から8いずれかに記載のガラス膜の製造方法。   The manufacturing method of the glass film in any one of Claim 1 to 8 which heated the said upper electrode and the lower electrode to the same temperature within the range of 300-600 degreeC. 上記原料ガスにSi(OC254 を気化させたガスとO2 ガス及びC26ガスを混合したガスを所定の混合比で導入し、フッ素が添加されたガラス膜を成膜する請求項1から9いずれか記載のガラス膜の製造方法。 A gas obtained by vaporizing Si (OC 2 H 5 ) 4 into the source gas and a gas mixed with O 2 gas and C 2 F 6 gas are introduced at a predetermined mixing ratio to form a glass film to which fluorine is added. The method for producing a glass film according to claim 1. 請求項10記載の製造方法で製造したガラス膜の上層にそのガラス膜よりも屈折率の高いガラス層を積層することを特徴とするガラス膜の製造方法。   A method for producing a glass film, comprising: laminating a glass layer having a refractive index higher than that of the glass film on an upper layer of the glass film produced by the production method according to claim 10. 請求項1から11いずれかのガラス膜の製造方法で形成したガラス膜を
800℃から1350℃の範囲内の温度で高温熱処理する工程と、
フォトリソグラフィとドライエッチングにより導波路パターンを形成する工程と
を含むことを特徴とする導波路の製造方法。
A step of subjecting the glass film formed by the method for producing a glass film according to any one of claims 1 to 11 to a high temperature heat treatment at a temperature within a range of 800 ° C to 1350 ° C;
And a step of forming a waveguide pattern by photolithography and dry etching.
請求項12記載の導波路の製造方法で形成した基板上面の導波路パターン上及び基板下面のガラス膜上にSi(OC254 を気化させたガスとO2 ガス及びC26ガスを混合したガスを所定の混合比で導入し、フッ素が添加されたガラス膜を形成することを特徴とする導波路の製造方法。 A gas obtained by vaporizing Si (OC 2 H 5 ) 4 , an O 2 gas, and C 2 F 6 on the waveguide pattern on the upper surface of the substrate and the glass film on the lower surface of the substrate formed by the waveguide manufacturing method according to claim 12. A method of manufacturing a waveguide, wherein a mixed gas is introduced at a predetermined mixing ratio to form a glass film to which fluorine is added. 請求項13記載の導波路の製造方法で形成した導波路パターンが形成された基板を800℃から1350℃の温度範囲内で高温熱処理をしたことを特徴とする導波路の製造方法。
14. A method for manufacturing a waveguide, comprising subjecting a substrate on which a waveguide pattern formed by the method for manufacturing a waveguide according to claim 13 is formed to a high temperature heat treatment within a temperature range of 800.degree. C. to 1350.degree.
JP2003394344A 2003-11-25 2003-11-25 Glass film manufacturing method and waveguide manufacturing method Pending JP2005154827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394344A JP2005154827A (en) 2003-11-25 2003-11-25 Glass film manufacturing method and waveguide manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394344A JP2005154827A (en) 2003-11-25 2003-11-25 Glass film manufacturing method and waveguide manufacturing method

Publications (1)

Publication Number Publication Date
JP2005154827A true JP2005154827A (en) 2005-06-16

Family

ID=34720435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394344A Pending JP2005154827A (en) 2003-11-25 2003-11-25 Glass film manufacturing method and waveguide manufacturing method

Country Status (1)

Country Link
JP (1) JP2005154827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103635A (en) * 2005-10-04 2007-04-19 Mitsubishi Heavy Ind Ltd Film forming apparatus, and film forming method
JP2016062014A (en) * 2014-09-19 2016-04-25 日本碍子株式会社 Optical component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103635A (en) * 2005-10-04 2007-04-19 Mitsubishi Heavy Ind Ltd Film forming apparatus, and film forming method
JP4625394B2 (en) * 2005-10-04 2011-02-02 三菱重工業株式会社 Film forming apparatus and film forming method
JP2016062014A (en) * 2014-09-19 2016-04-25 日本碍子株式会社 Optical component

Similar Documents

Publication Publication Date Title
US7325419B2 (en) Method of forming a phosphorus doped optical core using a PECVD process
US4425146A (en) Method of making glass waveguide for optical circuit
JP2002323633A (en) Optical waveguide device and method for manufacturing the same
JP2005154827A (en) Glass film manufacturing method and waveguide manufacturing method
JP2005187847A (en) Method for forming glass film, apparatus for manufacturing the same, and method for forming waveguide
CN115685598A (en) Waveguide structure with core-spun electro-optic material layer, preparation method and application
KR100509510B1 (en) Fabrication for uniform planar waveguide
JP2005089838A (en) Glass film with ultralow refractive index, and method for manufacturing wave guide using it
JP4001416B2 (en) Method for manufacturing buried planar lightwave circuit element
JP4379023B2 (en) Nitrogen-added glass film and waveguide manufacturing method using the same
JPH10319263A (en) Optical waveguide and its production as well as optical device
KR100439749B1 (en) Method for fabricating optical waveguide on fused silica substrates using inductively coupled plasma etcher
JPH05181031A (en) Optical waveguide and its production
JPH10300962A (en) Manufacture of light guide
JP2953173B2 (en) Optical waveguide
JP3454134B2 (en) Waveguide and manufacturing method thereof
JP2004099994A (en) Method for forming glass film
JP2001337241A (en) Method for manufacturing optical waveguide
JPH11194221A (en) Forming method of optical waveguide and optical waveguide element
JP2000089053A (en) Manufacture of optical waveguide circuit
JP2984130B2 (en) Glass film for optical waveguide by plasma CVD method and method for manufacturing optical waveguide
JP4042644B2 (en) Manufacturing method of high delta low loss waveguide
JPH0777620A (en) Quartz optical waveguide and its production
EP1073107B1 (en) Preparation of a silicon substrate
JPS6172206A (en) Substrate type waveguide and its production