JP2004099994A - Method for forming glass film - Google Patents

Method for forming glass film Download PDF

Info

Publication number
JP2004099994A
JP2004099994A JP2002265007A JP2002265007A JP2004099994A JP 2004099994 A JP2004099994 A JP 2004099994A JP 2002265007 A JP2002265007 A JP 2002265007A JP 2002265007 A JP2002265007 A JP 2002265007A JP 2004099994 A JP2004099994 A JP 2004099994A
Authority
JP
Japan
Prior art keywords
glass film
forming
electrode
glass
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002265007A
Other languages
Japanese (ja)
Inventor
Kentaro Ohira
大平 健太郎
Takashi Nakayama
中山 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002265007A priority Critical patent/JP2004099994A/en
Publication of JP2004099994A publication Critical patent/JP2004099994A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a glass film by which a uniform glass film can be formed without depending on gas pressure in particular among film formation conditions. <P>SOLUTION: High frequency electric power is applied to an upper shower electrode 1 and a lower electrode 2 set inside a vacuum vessel 5 to generate plasma. The gaseous starting material of glass introduced from the upper shower electrode is decomposed. Thus, a glass film is formed on a substrate 9 set on the lower electrode 2. In this case, gaseous Ar 11 is introduced into the vacuum vessel 5 simultaneously with the introduction of the gaseous starting material on the film formation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光通信分野で広く用いられる光導波路用ガラス膜の形成方法に関するものである。
【0002】
【従来の技術】
図4は、光導波路用ガラス膜形成に用いられるプラズマCVD装置を示す(例えば、特許文献1参照)。この種のCVD装置は、真空チャンバ5内に上部シャワー電極1と、下部電極2とを備えて構成されている。上部電極1には、13.56MHzの高周波電力が、電源装置3を介して印加されており、下部電極2には、380kHzの高周波電力が、電源装置4を介して印加されている。6は真空ポンプ、7は各電極を加熱するヒータ、8はチャンバ内に原料ガスを供給するガス供給装置を示す。下部電極2上には基板9が設置される。
【0003】
ガラス膜の形成時には、加熱され気化した原料ガスを上部シャワー電極1から真空チャンバ5内に導入し、真空ポンプ6にてある一定の圧力となるように真空引きを行う。その後、上部シャワー電極1に13.56MHz、下部電極2に380kHzの高周波電力を同時に印加してプラズマを発生し、下部電極2上の基板9にガラス膜を形成する。
【0004】
光導波路の製造工程には、コアガラス膜形成工程、コアを伝搬する光を閉じ込めるクラッド膜形成工程等があり、ガラス膜に要求される特性には、屈折率が安定していること、膜厚の面内分布が少ないこと、ガラス膜形成後の基板反り量が少ないこと等が挙げられる。
【0005】
【特許文献1】
特開2002−22990号公報
【0006】
【発明が解決しようとする課題】
ところで、屈折率に関しては、成膜後の熱処理によって安定させることができる。しかし、基板上のガラス膜の膜厚面内分布は、成膜条件や成膜後のクリーニング条件、装置のメンテナンス状態等に大きく左右される。成膜条件に関しては、ガラス膜の原料となるTEOS(テトラエトキシジシラン)と酸素の混合ガスの流量によって面内分布が変化し、図5に示すように、チャンバ5内のガス圧力が高くなるほど膜厚面内分布が大きくなる。
【0007】
その値は、400mTorrで2%程度であったのに対し、1000mTorrでは14.5%であった。
【0008】
そこで、本発明の目的は、上述した従来技術が有する課題を解消し、成膜条件の中で特にガス圧力に依存することなく均一なガラス膜を形成できるガラス膜の形成方法を提供することにある。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、真空容器内に設置された上部シャワー電極、下部電極に高周波電力を印加してプラズマを発生させ、上部シャワー電極より導入されたガラスの原料ガスを分解して下部電極上に設置された基板上にガラス膜を形成するガラス膜の形成方法において、成膜時に真空容器内に原料ガスを導入すると共に、Arガスを導入することを特徴とする。
【0010】
請求項2記載の発明は、請求項1記載のものにおいて、ガラスの原料ガスがTEOS(テトラエトキシシラン)と酸素の混合ガスであり、酸素流量がTEOS流量の20倍以上であることを特徴とする。
【0011】
請求項3記載の発明は、請求項1又は2記載のものにおいて、成膜時の真空容器内の圧力が100〜1000mTorrであることを特徴とする。
【0012】
請求項4記載の発明は、請求項1乃至3のいずれか一項記載のものにおいて、成膜時の上部電極に印加する高周波電力が50〜250W、下部電極に印加する電力が50〜1000Wであることを特徴とする。
【0013】
本発明では、成膜時に原料ガスとArガスを導入し、ガス粒子同士の衝突確率を増加させてプラズマの電子密度を上昇し、原料ガスの分解効率を高め、これによりチャンバ内で均一なプラズマを形成することができることから膜厚の面内分布を低減することができる。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態について説明する。
【0015】
図1は、本実施形態に適用されるプラズマCVD装置を示している。このプラズマCVD装置は、真空チャンバ5内に上部シャワー電極1と、下部電極2とを備えて構成されている。上部電極1には、13.56MHzの高周波電力が、電源装置3を介して印加されており、下部電極2には、380kHzの高周波電力が、電源装置4を介して印加されている。6は真空ポンプ、7は各電極を加熱するヒータ、8はチャンバ内に原料ガスを供給するガス供給装置を示す。下部電極2上にはシリコン基板9が設置される。
【0016】
この実施形態では、ガス供給装置8の他に、Arガス供給装置11、及びガス混合装置10を備えて構成される。
【0017】
ガラス膜の形成時には、まず、真空チヤンバ5内を、5×10−3Torr以下まで排気し、ヒータ7によって、上部電極1を250℃に加熱し、下部電極2を300℃に加熱する。
【0018】
その後、チャンバ5内にTEOSを30sccm、酸素を1000sccm導入し、チャンバ5内の圧力を1Torrとする。
【0019】
ついで、上部電極1に、13.56MHz、100Wの高周波電力を印加し、下部電極2に、380kHz、200Wの高周波電力を印加して、真空チャンバ5内にプラズマを発生させ、下部電極2上に設置したシリコン基板9上にガラス膜を膜圧2μmで形成した。
【0020】
また、シリコン基板9を使用せずに石英基板を使用して、同じ条件にて当該石英基板上に膜厚2μmのガラス膜を形成し、両基板を1100℃酸素雰囲気中で3時間熱処理を行った。
【0021】
そして、まず、この段階で、両基板の膜圧評価を行った。膜厚評価にはプリズムカプラを使用し、λ=633nmで膜厚を評価した。膜厚面内分布は、シリコン基板9上の5点の測定値より算出した。基板の反り評価は、石英基板の裏面を触針段差計にて測定し、反り量を応力換算式に代入して求めた。その結果、シリコン基板9の膜厚面内分布は14.4%、石英基板の反り評価(内部応力)は、24.5Mpaであった。
【0022】
つぎに、成膜条件を上記と同様に、TEOSを30sccm、酸素を1000sccm、チャンバ5内の圧力を1Torrに設定し、上部電極1に13.56MHz、100Wの高周波電力を印加し、下部電極2に、380kHz、200Wの高周波電力を印加し、ヒータ7によって、上部電極1を250℃に加熱し、下部電極2を300℃に加熱し、Arガスを400、700、800、900、1000sccm導入し、それぞれの流量における膜厚面内分布と、反り評価(内部応力)を評価した。
【0023】
膜厚面内分布は、図2に示すように、Ar流量の増加と共に減少し、400sccmで7.3%、900sccmでは最小の2.5%となった。また、反り評価(内部応力)は、図3に示すように、Arガスの400、700、800、900、1000sccmの導入により、最大で15Mpa、最小で−11Mpa程度と低減された。
【0024】
以上、一実施形態に基づいて本発明を説明したが、本発明は、これに限定されるものでないことは明らかである。
【0025】
【発明の効果】
本発明によれば、成膜時のガス圧力に依存することなく膜厚の面内分布の少ない均一なガラス膜を形成することができる。
【図面の簡単な説明】
【図1】本発明によるプラズマCVD装置を示す構造図。
【図2】本発明による膜厚面内分布のArガス流量依存性を示す図。
【図3】本発明による反り評価のArガス流量依存性を示す図。
【図4】従来のプラズマCVD装置を示す構造図。
【図5】従来の膜厚面内分布のガス圧力依存性を示す図。
【符号の説明】
1 上部シャワー電極
2 下部電極
3 13.56MHz高周波電源
4 380kHz高周波電源
5 真空チャンバ
6 真空ポンプ
7 ヒータ
8 原料ガス供給装置
9 基板
10 ガス混合装置
11 Arガス供給装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming a glass film for an optical waveguide widely used in the optical communication field.
[0002]
[Prior art]
FIG. 4 shows a plasma CVD apparatus used for forming a glass film for an optical waveguide (for example, see Patent Document 1). This type of CVD apparatus includes an upper shower electrode 1 and a lower electrode 2 in a vacuum chamber 5. 13.56 MHz high frequency power is applied to the upper electrode 1 via a power supply device 3, and 380 kHz high frequency power is applied to the lower electrode 2 via a power supply device 4. Reference numeral 6 denotes a vacuum pump, 7 denotes a heater for heating each electrode, and 8 denotes a gas supply device for supplying a source gas into the chamber. A substrate 9 is provided on the lower electrode 2.
[0003]
When forming the glass film, the heated and vaporized source gas is introduced from the upper shower electrode 1 into the vacuum chamber 5, and the vacuum pump 6 is evacuated to a certain pressure. Thereafter, high-frequency power of 13.56 MHz is simultaneously applied to the upper shower electrode 1 and 380 kHz to the lower electrode 2 to generate plasma, and a glass film is formed on the substrate 9 on the lower electrode 2.
[0004]
The optical waveguide manufacturing process includes a core glass film forming process, a cladding film forming process for confining light propagating through the core, and the like. The characteristics required for the glass film include a stable refractive index, Is small, and the amount of substrate warpage after the glass film is formed is small.
[0005]
[Patent Document 1]
JP, 2002-22990, A
[Problems to be solved by the invention]
Incidentally, the refractive index can be stabilized by heat treatment after film formation. However, the in-plane distribution of the glass film on the substrate greatly depends on the film forming conditions, the cleaning conditions after film formation, the maintenance state of the apparatus, and the like. Regarding the film forming conditions, the in-plane distribution changes depending on the flow rate of the mixed gas of TEOS (tetraethoxydisilane) and oxygen, which are the raw materials of the glass film, and as shown in FIG. The distribution in the thick plane increases.
[0007]
The value was about 2% at 400 mTorr, whereas it was 14.5% at 1000 mTorr.
[0008]
Therefore, an object of the present invention is to provide a method for forming a glass film capable of forming a uniform glass film without depending on the gas pressure in the film forming conditions, which solves the above-mentioned problems of the related art. is there.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, a high-frequency power is applied to an upper shower electrode and a lower electrode provided in a vacuum vessel to generate plasma, and a raw material gas of glass introduced from the upper shower electrode is decomposed to lower the lower electrode. In a method for forming a glass film on a substrate provided thereon, a source gas is introduced into a vacuum vessel and an Ar gas is introduced at the time of film formation.
[0010]
According to a second aspect of the present invention, in the first aspect, the raw material gas for the glass is a mixed gas of TEOS (tetraethoxysilane) and oxygen, and the oxygen flow rate is 20 times or more the TEOS flow rate. I do.
[0011]
According to a third aspect of the present invention, in the first or second aspect, the pressure in the vacuum chamber at the time of film formation is 100 to 1000 mTorr.
[0012]
According to a fourth aspect of the present invention, in the first aspect, the high frequency power applied to the upper electrode during film formation is 50 to 250 W, and the power applied to the lower electrode is 50 to 1000 W. There is a feature.
[0013]
In the present invention, a source gas and an Ar gas are introduced at the time of film formation, the probability of collision between gas particles is increased, the electron density of the plasma is increased, the decomposition efficiency of the source gas is increased, and thus a uniform plasma is formed in the chamber. Can be formed, so that the in-plane distribution of the film thickness can be reduced.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
[0015]
FIG. 1 shows a plasma CVD apparatus applied to the present embodiment. This plasma CVD apparatus is provided with an upper shower electrode 1 and a lower electrode 2 in a vacuum chamber 5. 13.56 MHz high frequency power is applied to the upper electrode 1 via a power supply device 3, and 380 kHz high frequency power is applied to the lower electrode 2 via a power supply device 4. Reference numeral 6 denotes a vacuum pump, 7 denotes a heater for heating each electrode, and 8 denotes a gas supply device for supplying a source gas into the chamber. A silicon substrate 9 is provided on the lower electrode 2.
[0016]
In this embodiment, an Ar gas supply device 11 and a gas mixing device 10 are provided in addition to the gas supply device 8.
[0017]
When forming the glass film, first, the inside of the vacuum chamber 5 is evacuated to 5 × 10 −3 Torr or less, and the heater 7 heats the upper electrode 1 to 250 ° C. and the lower electrode 2 to 300 ° C.
[0018]
After that, 30 sccm of TEOS and 1000 sccm of oxygen are introduced into the chamber 5, and the pressure in the chamber 5 is set to 1 Torr.
[0019]
Next, a high frequency power of 13.56 MHz and 100 W is applied to the upper electrode 1, and a high frequency power of 380 kHz and 200 W is applied to the lower electrode 2 to generate plasma in the vacuum chamber 5. A glass film was formed on the placed silicon substrate 9 at a film pressure of 2 μm.
[0020]
Further, using a quartz substrate without using the silicon substrate 9, a glass film having a thickness of 2 μm is formed on the quartz substrate under the same conditions, and both substrates are heat-treated at 1100 ° C. in an oxygen atmosphere for 3 hours. Was.
[0021]
First, at this stage, the film pressure of both substrates was evaluated. The film thickness was evaluated using a prism coupler at λ = 633 nm. The film thickness in-plane distribution was calculated from measured values at five points on the silicon substrate 9. The warpage of the substrate was determined by measuring the back surface of the quartz substrate with a stylus profilometer and substituting the amount of warpage into a stress conversion formula. As a result, the in-plane distribution of the film thickness of the silicon substrate 9 was 14.4%, and the warpage evaluation (internal stress) of the quartz substrate was 24.5 Mpa.
[0022]
Next, in the same manner as described above, TEOS was set to 30 sccm, oxygen was set to 1000 sccm, the pressure in the chamber 5 was set to 1 Torr, high frequency power of 13.56 MHz and 100 W was applied to the upper electrode 1, Then, high frequency power of 380 kHz and 200 W is applied, the upper electrode 1 is heated to 250 ° C. by the heater 7, the lower electrode 2 is heated to 300 ° C., and Ar gas is introduced at 400, 700, 800, 900 and 1000 sccm. The in-plane distribution of the film thickness at each flow rate and the evaluation of warpage (internal stress) were evaluated.
[0023]
As shown in FIG. 2, the in-plane distribution of the film thickness decreased with an increase in the Ar flow rate, and became 7.3% at 400 sccm and the minimum 2.5% at 900 sccm. Further, as shown in FIG. 3, the warpage evaluation (internal stress) was reduced to about 15 Mpa at the maximum and to about −11 Mpa at the minimum by introducing 400, 700, 800, 900 and 1000 sccm of Ar gas.
[0024]
As described above, the present invention has been described based on one embodiment, but it is apparent that the present invention is not limited to this.
[0025]
【The invention's effect】
According to the present invention, a uniform glass film having a small in-plane distribution of the film thickness can be formed without depending on the gas pressure at the time of film formation.
[Brief description of the drawings]
FIG. 1 is a structural view showing a plasma CVD apparatus according to the present invention.
FIG. 2 is a graph showing the dependence of the in-plane distribution of the film thickness on the flow rate of Ar gas according to the present invention.
FIG. 3 is a graph showing the dependence of the warpage evaluation on the Ar gas flow rate according to the present invention.
FIG. 4 is a structural view showing a conventional plasma CVD apparatus.
FIG. 5 is a view showing gas pressure dependency of a conventional film thickness distribution in a plane.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 upper shower electrode 2 lower electrode 3 13.56 MHz high frequency power supply 4 380 kHz high frequency power supply 5 vacuum chamber 6 vacuum pump 7 heater 8 raw material gas supply device 9 substrate 10 gas mixing device 11 Ar gas supply device

Claims (4)

真空容器内に設置された上部シャワー電極、下部電極に高周波電力を印加してプラズマを発生させ、上部シャワー電極より導入されたガラスの原料ガスを分解して下部電極上に設置された基板上にガラス膜を形成するガラス膜の形成方法において、
成膜時に真空容器内に原料ガスを導入すると共に、Arガスを導入することを特徴とするガラス膜の形成方法。
High-frequency power is applied to the upper shower electrode and the lower electrode installed in the vacuum vessel to generate plasma, and the raw material gas of the glass introduced from the upper shower electrode is decomposed to form on the substrate installed on the lower electrode. In a method of forming a glass film for forming a glass film,
A method for forming a glass film, wherein a source gas is introduced into a vacuum vessel during film formation and an Ar gas is introduced.
ガラスの原料ガスがTEOS(テトラエトキシシラン)と酸素の混合ガスであり、酸素流量がTEOS流量の20倍以上であることを特徴とする請求項1記載のガラス膜の形成方法。2. The method for forming a glass film according to claim 1, wherein the raw material gas of the glass is a mixed gas of TEOS (tetraethoxysilane) and oxygen, and an oxygen flow rate is 20 times or more of the TEOS flow rate. 成膜時の真空容器内の圧力が100〜1000mTorrであることを特徴とする請求項1又は2記載のガラス膜の形成方法。The method for forming a glass film according to claim 1, wherein the pressure in the vacuum vessel during film formation is 100 to 1000 mTorr. 成膜時の上部電極に印加する高周波電力が50〜250W、下部電極に印加する電力が50〜1000Wであることを特徴とする請求項1乃至3のいずれか一項記載のガラス膜の形成方法。The method for forming a glass film according to any one of claims 1 to 3, wherein a high-frequency power applied to the upper electrode during film formation is 50 to 250 W, and a power applied to the lower electrode is 50 to 1000 W. .
JP2002265007A 2002-09-11 2002-09-11 Method for forming glass film Pending JP2004099994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265007A JP2004099994A (en) 2002-09-11 2002-09-11 Method for forming glass film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265007A JP2004099994A (en) 2002-09-11 2002-09-11 Method for forming glass film

Publications (1)

Publication Number Publication Date
JP2004099994A true JP2004099994A (en) 2004-04-02

Family

ID=32264259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265007A Pending JP2004099994A (en) 2002-09-11 2002-09-11 Method for forming glass film

Country Status (1)

Country Link
JP (1) JP2004099994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755286B2 (en) 2005-08-25 2010-07-13 Panasonic Corporation Glass film, process for production thereof, and optical electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755286B2 (en) 2005-08-25 2010-07-13 Panasonic Corporation Glass film, process for production thereof, and optical electronic device

Similar Documents

Publication Publication Date Title
JP4371576B2 (en) Equipment for depositing films
KR970067623A (en) Method and apparatus for improving the film stability of a halogen-doped silicon oxide film
JP2004099994A (en) Method for forming glass film
JP2004133184A (en) Method for manufacturing optical waveguide and plasma enhanced cvd system
JP2002164330A (en) Plasma treatment apparatus having transmission window covered with light shielding film
KR20070076721A (en) Improvement method for process of forming thin films of semiconductor devices
JPH04343456A (en) Manufacture of semiconductor device
JP3697155B2 (en) Silicon dioxide film generation method and optical waveguide generation method
JP2003193239A (en) Method and apparatus for depositing glass film
JPH09306900A (en) Microwave plasma processor and plasma processing method
JP2002261096A (en) Manufacturing method of glass film using plasma cvd device
JP3771034B2 (en) Manufacturing method of optical waveguide
JPS59177919A (en) Selective growth of thin film
JPH11223707A (en) Optical member and its production
JP2003107203A (en) Method and apparatus for forming antireflection film and antireflection film
JP3086424B2 (en) Fabrication method of interlayer insulating film
JP6352847B2 (en) Manufacturing method of optical waveguide
JP4379023B2 (en) Nitrogen-added glass film and waveguide manufacturing method using the same
JP2001337241A (en) Method for manufacturing optical waveguide
TW202405216A (en) Optical device improvement
JP2007133264A (en) Method and apparatus for manufacturing optical waveguide component
JP3167995B2 (en) Fabrication method of interlayer insulating film
JP2000056157A (en) Production of optical waveguide
JPS6277466A (en) Formation of thin film
JPH0557732B2 (en)