JP3554178B2 - Manufacturing method of optical waveguide device - Google Patents

Manufacturing method of optical waveguide device Download PDF

Info

Publication number
JP3554178B2
JP3554178B2 JP6149498A JP6149498A JP3554178B2 JP 3554178 B2 JP3554178 B2 JP 3554178B2 JP 6149498 A JP6149498 A JP 6149498A JP 6149498 A JP6149498 A JP 6149498A JP 3554178 B2 JP3554178 B2 JP 3554178B2
Authority
JP
Japan
Prior art keywords
optical waveguide
film
sheet resistance
manufacturing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6149498A
Other languages
Japanese (ja)
Other versions
JPH11258439A (en
Inventor
厚男 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6149498A priority Critical patent/JP3554178B2/en
Publication of JPH11258439A publication Critical patent/JPH11258439A/en
Application granted granted Critical
Publication of JP3554178B2 publication Critical patent/JP3554178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光導波路素子の製造方法に関し、特に、基板に金属の熱拡散により光導波路を形成した光導波路素子の製造方法に関する。
【0002】
【従来の技術】
一般に、光導波路は、放射を一定領域に閉じ込め、そのエネルギーの流れを経路の軸に平行に案内して伝搬させる機能を有する。そのため、現在では、光ファイバケーブルで代表される光の導波線路を光導波路に変えることによって、光学部品の小型化を図るようにしている。
【0003】
前記光導波路としては、例えばGaAs系、InP系の半導体導波路、Si上に酸化膜を形成したり、ガラス基板を用いる誘電体(ガラス)導波路、LiNbOやLiTaO結晶で構成した強誘電体結晶導波路がある。
【0004】
特に、光導波路型変調器等のように、光導波路を伝送する光ビームに電極を通じて情報を乗せるような光学素子として、優れた電気光学特性を有するLiNbO結晶基板にTiを拡散させたTi拡散型LiNbO導波路が用いられている。
【0005】
前記Ti拡散型LiNbO導波路は、LiNbO結晶基板上にTiを蒸着して厚み数百ÅのTi膜を形成し、1000℃程度の温度で4〜10時間熱拡散させて局所的に屈折率を増大させることにより光導波路を作製するものである。このとき、熱拡散させるTi量は、蒸着によるTiの成膜の厚みで調整される。
【0006】
しかしながら、Ti膜を真空蒸着装置等の成膜装置で作製する場合、同一のTi膜の厚みに調整しながらも、熱拡散後の導波路の特性にバラツキが生じることがある。
【0007】
【発明が解決しようとする課題】
本発明は、このような課題を考慮してなされたものであり、基板に金属膜の金属熱拡散により光導波路を形成する光導波路素子の製造方法において、導波路の損失のバラツキが少なく、かつ、損失のレベルの低い、改良された光導波路素子の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記した課題を解決するために、本発明に係る光導波路素子の製造方法は、基板上に蒸着された金属膜の金属の熱拡散により光導波路を形成する光導波路素子の製造方法において、前記基板上に蒸着された前記金属膜の酸化度を測定して金属膜の良否を判定し、良品を熱拡散工程に移すことを特徴とする。
【0009】
本発明者等は、同一の金属膜の厚みに調整した場合において、導波路特性にバラツキが生じる原因について種々検討した結果、真空蒸着装置等の成膜装置のチャンバの汚れによるコンタミネーション、真空度の変動、水蒸気分圧の変動等により、金属膜の酸化度にバラツキが生じ、これが導波路特性のバラツキの原因となっていることを見出した。
【0010】
したがって、金属膜の酸化度を測定し、実質的に、該酸化度が所定の範囲内にある金属膜の良品のみを熱拡散工程で処理することで、導波路の損失のバラツキが少なく、かつ、損失のレベルの低い、良好な光導波路素子を得ることができる。ここで、所定の酸化度については、光導波路の個別の所要品質レベル等に応じて適宜設定することができる。
【0011】
このとき、金属膜の酸化度の評価指標としてシート抵抗を用い、前記金属膜のシート抵抗が20〜45Ω/□の範囲内となるものを良品として、熱拡散工程に移すことにより、金属膜の酸化度を容易かつ適正に把握することができ、上記した本発明の効果を好適に発揮することができる。
【0012】
また、本発明に係る光導波路素子の製造方法において、基板としてLiNbO基板を用い金属としてTiを用いて熱拡散による光導波路を形成することにより、上記した本発明の効果を一層好適に発揮することができる。
【0013】
【発明の実施の形態】
以下、本発明に係る光導波路素子の製造方法を、図1〜図6を参照しながら説明する。
【0014】
図1に示す本実施の形態に係る製造方法により製造された光導波路素子10は、LiNbO基板12に所定形状の光導波路14が形成されており、該光導波路14上に偏光子16、及び位相変調器18が設けられている。
【0015】
製造した光導波路素子10のLiNbO基板12のサイズは、幅(図1中、Z方向)が約3mm、光導波路14方向(図1中、Y方向)の長さが約30mmであり、偏光子16のサイズは、光導波路14の長さ方向(図1中、Y方向)に対応する部分が約1mm、光導波路14の幅方向(図1中、Z方向)に対応する部分が約2mmである。
【0016】
図2に示すように、前記光導波路素子10は、LiNbO基板12にTiの熱拡散により光導波路14が形成されており、光導波路14上にAl膜20、およびAl膜22から形成される偏光子16が設けられている。
【0017】
この場合、LiNbO基板12の厚みは約1mmであり、光導波路14の幅、深さはともに数μmである。また、光導波路14上に積層される偏光子16の各膜の厚みは、Al膜20が500Å、Al膜22が3000Åである。
【0018】
本実施の形態に係る光導波路素子10の製造方法について、以下に説明する。
【0019】
図3に示すように、先ず、LiNbO基板12を準備し、これを洗浄する(図3A)。次いで、前記LiNbO基板12上にフォトレジストを塗布してフォトレジスト膜13とする(図3B)。その後、フォトレジスト膜13を露光、現像処理して、光導波路14を形成するための開口15を設ける(図3C)。その後、開口15を含むフォトレジスト膜13の全面に400Åの厚みのTi膜17を形成する(図3D)。Ti膜の形成は、蒸着装置を用いて真空度2.0×10−4Pa、常温で蒸着することにより行う。次いで、LiNbO基板12上のフォトレジスト膜13をリフトオフ処理して、該フォトレジスト膜13上に形成されたTi膜17をフォトレジスト膜13とともに除去する(図3E)。次いで、後述する方法により、Ti膜17のシート抵抗Rsを測定し、シート抵抗Rsが20〜45Ω/□の範囲内にある場合は、Ti膜17が良好であると判定し、引き続き、LiNbO基板12を熱拡散炉に投入して、Tiを約1000℃の温度で、4〜10時間熱拡散させて熱処理を行う。この熱処理により、Ti膜17が酸化されることによって、LiNbO基板12内に拡散されて、Tiの拡散による光導波路14が形成される(図3F)。さらに、定法により、偏光子16、及び位相変調器18を設けることにより、図1に示す光導波路素子10が完成する。なお、蒸着により形成されたTi膜17のシート抵抗Rsが20〜45Ω/□の範囲を外れる場合は、Ti膜17が不良であると判定し、その後の製造工程から外す。
【0020】
ここで、Ti膜17のシート抵抗Rsの測定は、図4の概念図に示すように、4探針法を利用した方法により行う。
【0021】
すなわち、LiNbO基板12上に形成されたTi膜17に等間隔S(cm)に設けられた4本の探針28を押しつけて電流i(A)を流し、電圧e(V)を測定することで、以下の式を用いてシート抵抗Rsを求める。
【0022】
まず、Ti膜17の抵抗率ρ(Ω/cm)は、
ρ=(e・π・t・F)/(i・ln2)
で表される。ここで、πは円周率であり、tはTi膜17の厚み(単位cm)であり、FはTi膜17が探針28の間隔Sに比べて半無限に広がっていることを前提とする本式においてその条件を満たさない場合(目安として、Ti膜17の端部と探針28との間隔が探針28の間隔Sの10倍以下の場合)の補正係数である。本実施の形態におけるTi膜17の厚みは400Åであり、用いた4探針装置の探針28の間隔Sは0.1cmであることから補正係数Fは1とした。このとき、シート抵抗Rsは、
Rs=ρ/t
で定義することができ、上式より、
Rs=ρ/t=(π/ln2)・(e/i)
となり、電流iと電圧eを測定することによりシート抵抗Rs(単位Ω/□)が求まる。
【0023】
なお、製造工程においてシート抵抗Rsを測定する場合は、シート抵抗Rs測定用のダミーウエハを各蒸着バッチに入れる方法や製品ウエハ上にシート抵抗Rs測定用のエリアを設ける方法等を用いる。
【0024】
図5にシート抵抗Rsと導波路の損失との関係を示す。ここでシート抵抗Rsを測定するための光導波路素子10の光導波路作製条件として、Ti膜17の厚みを400Åと450Åの2水準とし、Ti膜17を蒸着中の酸素分圧を種々変えることによって種々の酸化度のTi膜17を得て、それぞれについて、シート抵抗Rsと、導波路の損失を測定した。
【0025】
図5から明らかなように、シート抵抗Rsを20〜45の範囲内とすることにより、導波路の損失の値を小さく、かつ、そのバラツキを4.1〜4.5の狭い範囲内とすることができて好適であり、一方、シート抵抗Rsが20未満および45を超えると、いずれの場合においても導波路の損失が増大し、かつ、最大7.5まで大きくバラツキを生じており、好ましくないことがわかる。ここで、Ti膜17として好適なもの(良品)の範囲内では、Ti膜17の厚みが400Å、450Åと異なるにもかかわらず、シート抵抗Rsと導波路の損失との関係がほぼ一致する傾向を示すことから、導波路特性を管理する手段としては、Ti膜17の厚みを厳密に調整する通常の方法よりも、シート抵抗Rsを測定する方法の方が有効であることがわかる。また、シート抵抗Rsに代えて通常の抵抗Rを酸化度の指標とする方法は、抵抗R測定用のパターンをウエハ上に形成する必要があり、かつ、そのパターンの寸法精度のバラツキにより、直接、抵抗R測定の精度に影響を及ぼすことから、この方法よりもシート抵抗Rs測定法の方が有用である。
【0026】
なお、シート抵抗Rsの測定方法として、外部磁界によってTi膜17内に発生する渦電流を利用した方法等を用いることもできる。
【0027】
図6は、本実施の形態に係る光導波路素子10のTi膜17のシート抵抗RsとSIMS(二次イオン質量分析)によって測定したTi膜17中に含有される酸素濃度(任意尺度による酸素原子のピーク強度)との関係を示す。シート抵抗Rsと酸素濃度とは高度の相関があり、該シート抵抗Rsが、酸素濃度(酸化度)の指標として有用であることが検証された。また、図5と図6に示すように、導波路の損失とTi膜17の酸化度とに相関があることもわかった。
【0028】
【発明の効果】
以上説明したように、本発明に係る光導波路素子の製造方法によれば、基板上に蒸着された金属膜の金属の熱拡散により光導波路を形成する光導波路素子の製造方法において、前記基板上に蒸着された前記金属膜の酸化度を測定して金属膜の良否を判定し、良品を熱拡散工程に移すようにしている。
【0029】
したがって、金属膜の酸化度を測定し、実質的に、該酸化度が所定の範囲内にある金属膜の良品のみを熱拡散工程で処理することで、導波路特性のバラツキが少ない光導波路素子を得るという効果を達成することができる。
【0030】
このとき、金属膜の酸化度の評価指標としてシート抵抗を用い、前記金属膜のシート抵抗が20〜45Ω/□の範囲内にある金属膜を良品として、熱拡散工程に移すようにすることにより、金属膜の酸化度を好適にかつ簡易に測定できる。
【0031】
また、LiNbO基板上にTiの拡散による光導波路を形成する方法において、本発明の効果を一層好適に発揮することができる。
【図面の簡単な説明】
【図1】本実施の形態に係る製造方法により製造した光導波路素子の平面図である。
【図2】図1の光導波路素子のII−II線断面図である。
【図3】図1の光導波路素子を製造する工程を説明するための図であり、
図3Aは、LiNbO基板を洗浄する工程を示し、
図3Bは、LiNbO基板上にフォトレジスト膜を形成する工程を示し、
図3Cは、フォトレジスト膜を露光、現像処理して、開口部を形成する工程を示し、
図3Dは、フォトレジスト膜上にTi膜を形成する工程を示し、
図3Eは、フォトレジスト膜をリフトオフして光導波路用のTi膜のみを残し、Ti膜のシート抵抗を測定する工程を示し、
図3Fは、熱拡散により、LiNbO基板上に光導波路を形成する工程を示す図である。
【図4】シート抵抗測定法として4探針法を用いるときの測定原理を説明するための概念図である。
【図5】本実施の形態に係る光導波路素子のTi膜のシート抵抗と導波路の損失との関係を示す図である。
【図6】本実施の形態に係る光導波路素子のTi膜のシート抵抗とTi膜中に含有される酸素濃度との関係を示す図である。
【符号の説明】
10…光導波路素子 12…LiNbO基板
14…光導波路 16…偏光子
17…Ti膜(金属膜) 18…位相変調器
20…Al膜 22…Al膜
28…探針
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical waveguide device, and more particularly, to a method for manufacturing an optical waveguide device in which an optical waveguide is formed on a substrate by thermal diffusion of metal.
[0002]
[Prior art]
In general, an optical waveguide has a function of confining radiation in a certain region and guiding and propagating the energy flow parallel to the axis of the path. Therefore, at present, the size of an optical component is reduced by changing a light waveguide represented by an optical fiber cable to an optical waveguide.
[0003]
As the optical waveguide, for example, a GaAs-based or InP-based semiconductor waveguide, an oxide film formed on Si, a dielectric (glass) waveguide using a glass substrate, or a ferroelectric formed of LiNbO 3 or LiTaO 3 crystal There is a body crystal waveguide.
[0004]
In particular, as an optical element, such as an optical waveguide type modulator, capable of carrying information on a light beam transmitted through an optical waveguide through an electrode, a Ti diffusion in which Ti is diffused into a LiNbO 3 crystal substrate having excellent electro-optical characteristics. A type LiNbO 3 waveguide is used.
[0005]
The Ti-diffused LiNbO 3 waveguide is formed by depositing Ti on a LiNbO 3 crystal substrate to form a Ti film having a thickness of several hundreds of mm, and thermally diffusing at a temperature of about 1000 ° C. for 4 to 10 hours to locally refract. The optical waveguide is manufactured by increasing the ratio. At this time, the amount of Ti to be thermally diffused is adjusted by the thickness of the Ti film formed by vapor deposition.
[0006]
However, when the Ti film is manufactured by a film forming apparatus such as a vacuum evaporation apparatus, the characteristics of the waveguide after thermal diffusion may vary even though the thickness of the Ti film is adjusted to be the same.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and in a method of manufacturing an optical waveguide element in which an optical waveguide is formed by metal thermal diffusion of a metal film on a substrate, variations in waveguide loss are small, and It is an object of the present invention to provide an improved method for manufacturing an optical waveguide device having a low level of loss.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a method for manufacturing an optical waveguide device according to the present invention is a method for manufacturing an optical waveguide device, wherein the optical waveguide is formed by thermal diffusion of metal of a metal film deposited on a substrate. The quality of the metal film is determined by measuring the degree of oxidation of the metal film deposited thereon, and the non-defective product is transferred to a thermal diffusion process.
[0009]
The present inventors have conducted various studies on the causes of variations in the waveguide characteristics when the thickness of the metal film is adjusted to the same value. As a result, the present inventors have found that contamination due to contamination of a chamber of a film forming apparatus such as a vacuum evaporation apparatus and a degree of vacuum. It has been found that variations in the degree of oxidation of the metal film occur due to variations in the water vapor partial pressure, etc., which cause variations in the waveguide characteristics.
[0010]
Therefore, the degree of oxidation of the metal film is measured, and substantially only the non-defective metal film having the degree of oxidation within a predetermined range is processed in the heat diffusion step, so that the variation in the loss of the waveguide is small, and Thus, a good optical waveguide element having a low loss level can be obtained. Here, the predetermined degree of oxidation can be appropriately set according to the individual required quality level of the optical waveguide and the like.
[0011]
At this time, the sheet resistance is used as an evaluation index of the degree of oxidation of the metal film, and the sheet resistance of the metal film within the range of 20 to 45 Ω / □ is regarded as a non-defective product and is transferred to the heat diffusion step, whereby the metal film is The degree of oxidation can be easily and appropriately grasped, and the effects of the present invention described above can be suitably exerted.
[0012]
In the method of manufacturing an optical waveguide device according to the present invention, the effect of the present invention described above is more suitably exhibited by forming an optical waveguide by thermal diffusion using a LiNbO 3 substrate as a substrate and using Ti as a metal. be able to.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for manufacturing an optical waveguide device according to the present invention will be described with reference to FIGS.
[0014]
The optical waveguide device 10 manufactured by the manufacturing method according to the present embodiment shown in FIG. 1 has an optical waveguide 14 of a predetermined shape formed on a LiNbO 3 substrate 12, and a polarizer 16 on the optical waveguide 14, and A phase modulator 18 is provided.
[0015]
The size of the LiNbO 3 substrate 12 of the manufactured optical waveguide element 10 is such that the width (Z direction in FIG. 1) is about 3 mm, the length in the optical waveguide 14 direction (Y direction in FIG. 1) is about 30 mm, and the polarization is The size of the element 16 is approximately 1 mm at a portion corresponding to the length direction of the optical waveguide 14 (Y direction in FIG. 1), and approximately 2 mm at a portion corresponding to the width direction of the optical waveguide 14 (Z direction in FIG. 1). It is.
[0016]
As shown in FIG. 2, in the optical waveguide device 10, an optical waveguide 14 is formed on a LiNbO 3 substrate 12 by thermal diffusion of Ti, and an Al 2 O 3 film 20 and an Al film 22 are formed on the optical waveguide 14. A polarizer 16 to be formed is provided.
[0017]
In this case, the thickness of the LiNbO 3 substrate 12 is about 1 mm, and the width and the depth of the optical waveguide 14 are both several μm. The thickness of each film of the polarizer 16 laminated on the optical waveguide 14 is 500 ° for the Al 2 O 3 film 20 and 3000 ° for the Al film 22.
[0018]
A method for manufacturing the optical waveguide device 10 according to the present embodiment will be described below.
[0019]
As shown in FIG. 3, first, a LiNbO 3 substrate 12 is prepared and washed (FIG. 3A). Next, a photoresist is applied on the LiNbO 3 substrate 12 to form a photoresist film 13 (FIG. 3B). Thereafter, the photoresist film 13 is exposed and developed to provide an opening 15 for forming the optical waveguide 14 (FIG. 3C). Thereafter, a Ti film 17 having a thickness of 400 ° is formed on the entire surface of the photoresist film 13 including the opening 15 (FIG. 3D). The Ti film is formed by vapor deposition at a normal temperature of 2.0 × 10 −4 Pa using a vapor deposition apparatus. Next, the photoresist film 13 on the LiNbO 3 substrate 12 is lifted off to remove the Ti film 17 formed on the photoresist film 13 together with the photoresist film 13 (FIG. 3E). Next, the sheet resistance Rs of the Ti film 17 is measured by a method described later, and when the sheet resistance Rs is in the range of 20 to 45 Ω / □, it is determined that the Ti film 17 is good, and then LiNbO 3 The substrate 12 is placed in a thermal diffusion furnace, and Ti is thermally diffused at a temperature of about 1000 ° C. for 4 to 10 hours to perform a heat treatment. By this heat treatment, the Ti film 17 is oxidized and diffused into the LiNbO 3 substrate 12 to form the optical waveguide 14 by Ti diffusion (FIG. 3F). Further, the optical waveguide device 10 shown in FIG. 1 is completed by providing the polarizer 16 and the phase modulator 18 by a conventional method. If the sheet resistance Rs of the Ti film 17 formed by vapor deposition is out of the range of 20 to 45 Ω / □, the Ti film 17 is determined to be defective, and is removed from the subsequent manufacturing steps.
[0020]
Here, the measurement of the sheet resistance Rs of the Ti film 17 is performed by a method using a four probe method as shown in the conceptual diagram of FIG.
[0021]
That is, current i (A) is applied by pressing four probes 28 provided at equal intervals S (cm) on Ti film 17 formed on LiNbO 3 substrate 12, and voltage e (V) is measured. Thus, the sheet resistance Rs is obtained using the following equation.
[0022]
First, the resistivity ρ (Ω / cm) of the Ti film 17 is
ρ = (e · π · t · F) / (i · ln2)
It is represented by Here, π is the pi, t is the thickness (unit: cm) of the Ti film 17, and F is based on the assumption that the Ti film 17 is extended infinitely in comparison with the interval S between the probes 28. This equation is a correction coefficient when the condition is not satisfied (when the distance between the end of the Ti film 17 and the probe 28 is 10 times or less of the distance S between the probes 28). In the present embodiment, the thickness of the Ti film 17 is 400 °, and the spacing S between the probes 28 of the four probe device used is 0.1 cm, so that the correction coefficient F is set to 1. At this time, the sheet resistance Rs is
Rs = ρ / t
And from the above formula,
Rs = ρ / t = (π / ln2) · (e / i)
The sheet resistance Rs (Ω / □) is obtained by measuring the current i and the voltage e.
[0023]
When measuring the sheet resistance Rs in the manufacturing process, a method of putting a dummy wafer for measuring the sheet resistance Rs into each deposition batch, a method of providing an area for measuring the sheet resistance Rs on a product wafer, or the like is used.
[0024]
FIG. 5 shows the relationship between the sheet resistance Rs and the loss of the waveguide. Here, as conditions for manufacturing the optical waveguide of the optical waveguide element 10 for measuring the sheet resistance Rs, the thickness of the Ti film 17 is set at two levels of 400 ° and 450 °, and the oxygen partial pressure during the deposition of the Ti film 17 is variously changed. The Ti films 17 having various degrees of oxidation were obtained, and the sheet resistance Rs and the loss of the waveguide were measured for each.
[0025]
As is clear from FIG. 5, by setting the sheet resistance Rs within the range of 20 to 45, the value of the loss of the waveguide is reduced, and the variation thereof is set within the narrow range of 4.1 to 4.5. On the other hand, when the sheet resistance Rs is less than 20 or more than 45, the loss of the waveguide increases in any case, and a large variation occurs up to 7.5, which is preferable. I understand that there is no. Here, within the range of a suitable (non-defective) Ti film 17, the relationship between the sheet resistance Rs and the loss of the waveguide tends to be substantially the same, despite the fact that the thickness of the Ti film 17 is different from 400 ° and 450 °. From the above, it can be seen that the method of measuring the sheet resistance Rs is more effective than the usual method of strictly adjusting the thickness of the Ti film 17 as a means for managing the waveguide characteristics. In addition, in the method of using the ordinary resistance R as an index of the degree of oxidation instead of the sheet resistance Rs, it is necessary to form a pattern for measuring the resistance R on a wafer, and the dimensional accuracy of the pattern is directly changed. The sheet resistance Rs measurement method is more useful than this method because it affects the accuracy of the resistance R measurement.
[0026]
As a method for measuring the sheet resistance Rs, a method utilizing an eddy current generated in the Ti film 17 by an external magnetic field or the like can be used.
[0027]
FIG. 6 shows the sheet resistance Rs of the Ti film 17 of the optical waveguide device 10 according to the present embodiment and the concentration of oxygen contained in the Ti film 17 measured by SIMS (secondary ion mass spectrometry) (oxygen atoms on an arbitrary scale). (Peak intensity). There is a high degree of correlation between the sheet resistance Rs and the oxygen concentration, and it has been verified that the sheet resistance Rs is useful as an index of the oxygen concentration (oxidation degree). Further, as shown in FIGS. 5 and 6, it was also found that there was a correlation between the loss of the waveguide and the degree of oxidation of the Ti film 17.
[0028]
【The invention's effect】
As described above, according to the method for manufacturing an optical waveguide device according to the present invention, the method for manufacturing an optical waveguide device in which an optical waveguide is formed by thermal diffusion of metal of a metal film deposited on a substrate includes: The quality of the metal film is determined by measuring the degree of oxidation of the metal film deposited on the substrate, and the non-defective product is transferred to a thermal diffusion process.
[0029]
Therefore, the degree of oxidation of the metal film is measured, and substantially only the non-defective metal film having the degree of oxidation within the predetermined range is processed in the heat diffusion step, so that the optical waveguide element with less variation in the waveguide characteristics. Can be achieved.
[0030]
At this time, sheet resistance is used as an evaluation index of the degree of oxidation of the metal film, and a metal film having a sheet resistance in the range of 20 to 45 Ω / □ is regarded as a non-defective product and transferred to the heat diffusion step. In addition, the degree of oxidation of the metal film can be suitably and easily measured.
[0031]
Further, in the method of forming an optical waveguide by diffusion of Ti on a LiNbO 3 substrate, the effect of the present invention can be more suitably exerted.
[Brief description of the drawings]
FIG. 1 is a plan view of an optical waveguide device manufactured by a manufacturing method according to an embodiment.
FIG. 2 is a sectional view taken along line II-II of the optical waveguide device of FIG.
FIG. 3 is a view for explaining a step of manufacturing the optical waveguide device of FIG. 1;
FIG. 3A shows a step of cleaning the LiNbO 3 substrate,
FIG. 3B shows a step of forming a photoresist film on a LiNbO 3 substrate,
FIG. 3C shows a step of exposing and developing the photoresist film to form an opening;
FIG. 3D shows a step of forming a Ti film on the photoresist film,
FIG. 3E shows a step of measuring the sheet resistance of the Ti film by lifting off the photoresist film, leaving only the Ti film for the optical waveguide,
FIG. 3F is a diagram showing a step of forming an optical waveguide on a LiNbO 3 substrate by thermal diffusion.
FIG. 4 is a conceptual diagram for explaining a measurement principle when a four-probe method is used as a sheet resistance measuring method.
FIG. 5 is a diagram showing the relationship between the sheet resistance of the Ti film of the optical waveguide element according to the present embodiment and the loss of the waveguide.
FIG. 6 is a diagram showing the relationship between the sheet resistance of the Ti film and the concentration of oxygen contained in the Ti film of the optical waveguide device according to the present embodiment.
[Explanation of symbols]
10 ... optical waveguide device 12 ... LiNbO 3 substrate 14 ... optical waveguide 16 ... polarizer 17 ... Ti film (metal film) 18 ... phase modulator 20 ... Al 2 O 3 film 22 ... Al film 28 ... probe

Claims (3)

基板上に蒸着された金属膜の金属の熱拡散により光導波路を形成する光導波路素子の製造方法において、前記基板上に蒸着された前記金属膜の酸化度を測定して金属膜の良否を判定し、良品を熱拡散工程に移すことを特徴とする光導波路素子の製造方法。In a method for manufacturing an optical waveguide device, wherein an optical waveguide is formed by thermal diffusion of metal of a metal film deposited on a substrate, the degree of oxidation of the metal film deposited on the substrate is measured to determine the quality of the metal film. And transferring the non-defective product to a heat diffusion process. 請求項1記載の製造方法において、金属膜の酸化度の評価指標としてシート抵抗を用い、前記金属膜のシート抵抗が20〜45Ω/□の範囲内にあるものを良品として熱拡散工程に移すことを特徴とする光導波路素子の製造方法。2. The manufacturing method according to claim 1, wherein sheet resistance is used as an evaluation index of the degree of oxidation of the metal film, and a sheet having a sheet resistance in the range of 20 to 45 Ω / □ is transferred to the heat diffusion step as a non-defective product. A method for manufacturing an optical waveguide device, comprising: 請求項1または2記載の製造方法において、LiNbO基板上にTiの拡散による光導波路を形成することを特徴とする光導波路素子の製造方法。 3. The method according to claim 1, wherein an optical waveguide is formed on the LiNbO3 substrate by diffusion of Ti.
JP6149498A 1998-03-12 1998-03-12 Manufacturing method of optical waveguide device Expired - Fee Related JP3554178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6149498A JP3554178B2 (en) 1998-03-12 1998-03-12 Manufacturing method of optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6149498A JP3554178B2 (en) 1998-03-12 1998-03-12 Manufacturing method of optical waveguide device

Publications (2)

Publication Number Publication Date
JPH11258439A JPH11258439A (en) 1999-09-24
JP3554178B2 true JP3554178B2 (en) 2004-08-18

Family

ID=13172716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6149498A Expired - Fee Related JP3554178B2 (en) 1998-03-12 1998-03-12 Manufacturing method of optical waveguide device

Country Status (1)

Country Link
JP (1) JP3554178B2 (en)

Also Published As

Publication number Publication date
JPH11258439A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
Smith et al. Correlation of Reduction in Optically Induced Refractive‐Index Inhomogeneity with OH Content in LiTaO3 and LiNbO3
EP0554593B1 (en) A method of manufacturing a device employing a substrate of a material that exhibits the pyroelectric effect
US5018809A (en) Fabrication method and structure of optical waveguides
JP3554178B2 (en) Manufacturing method of optical waveguide device
US4719442A (en) Platinum resistance thermometer
JP2655678B2 (en) Integrated optical waveguide, method of manufacturing the same, and electro-optic modulator using integrated optical waveguide
US4334774A (en) Alignment of optical components
Atuchin et al. Investigation of optical waveguides fabricated by titanium diffusion in LiTaO3
US20030108314A1 (en) Method for forming two thin conductive films isolated electrically from each other on a fiber
JPH1152315A (en) Operation point control method for waveguide light modulator and waveguide light modulator
CN117075365A (en) Low direct current drift film and preparation method thereof
EP0191052A1 (en) Platinum Resistance Thermometer and Method for Forming a Platinum Resistance Thermometer.
JP3207876B2 (en) Manufacturing method of optical waveguide device
JP2001208926A (en) Method of producing optical waveguide element
CN117031793A (en) Thin film applied to electro-optic modulator and preparation method thereof
JPH11258440A (en) Optical waveguide channel element and its manufacture
JPS60112004A (en) Optical waveguide device
McLachlan Theoretical and Experimental Investigations of Titanium Diffused Lithium Niobate Optical Waveguides
CN116859628A (en) Low direct current drift film and preparation method thereof
JPH10104559A (en) Optical waveguide device
JPH0886930A (en) Formation of lithium niobate crystal wafer optical waveguide
JPH11251104A (en) Heat generating thin-film element sensor and its manufacture
JPH09269469A (en) Optical waveguide device
JPS6159403A (en) Manufacture of optical waveguide lens
US6518078B2 (en) Articles useful as optical waveguides and method for manufacturing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees