JPH07104139A - Production of glass waveguide and its apparatus for production - Google Patents

Production of glass waveguide and its apparatus for production

Info

Publication number
JPH07104139A
JPH07104139A JP25057993A JP25057993A JPH07104139A JP H07104139 A JPH07104139 A JP H07104139A JP 25057993 A JP25057993 A JP 25057993A JP 25057993 A JP25057993 A JP 25057993A JP H07104139 A JPH07104139 A JP H07104139A
Authority
JP
Japan
Prior art keywords
glass
substrate
waveguide
quartz
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25057993A
Other languages
Japanese (ja)
Inventor
Toshihide Tokunaga
利秀 徳永
Hiroaki Okano
広明 岡野
Toshikazu Kamoshita
敏和 鴨志田
Hideo Otsuki
秀夫 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP25057993A priority Critical patent/JPH07104139A/en
Publication of JPH07104139A publication Critical patent/JPH07104139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To produce the low-loss glass waveguide by forming a homogeneous bubbleless clad glass film. CONSTITUTION:A smooth silicon substrate 6 is placed on an SiC jig 5 in a quartz furnace core tube 7 and further a quartz glass substrate 3 deposited with a porous glass layer 4 is placed thereon. The heat from a heater 8 is effectively transmitted through the SiC jig 5 and the silicon substrate 6 to the quartz glass substrate 3 and the porous glass layer 4 is efficiently heated from the substrate 3 side. The heat radiation from the upper part of the quartz furnace core tube 7 to the porous glass layer 4 is suppressed by an opaque quartz glass plate 9. The porous glass layer 4 is vitrified to transparent glass from the substrate 3 side in such a manner, by which the homogeneous bubbleless transparent clad glass film is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコア導波路が形成された
石英ガラス基板などを覆うクラッドガラスとなる多孔質
ガラス層を焼結して透明ガラス化するガラス導波路の製
造方法及びその製造装置に関し、特に気泡のない均質な
透明クラッドガラス膜を得るために焼結の改善を図った
ガラス導波路の製造方法及びその製造装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a glass waveguide and a method for manufacturing the same, in which a porous glass layer serving as a clad glass covering a quartz glass substrate on which a core waveguide is formed is sintered to form a transparent glass. In particular, the present invention relates to a method for manufacturing a glass waveguide and a manufacturing apparatus for the same, in which sintering is improved in order to obtain a uniform transparent clad glass film having no bubbles.

【0002】[0002]

【従来の技術】ガラス導波路の低損失を図るには、石英
ガラス基板上にコア膜を均質に形成した後、ホトリソグ
ラフィ及びエッチング技術により微細でかつ均一なコア
導波路を形成しなければならない。更に、基板上のコア
導波路をクラッドガラスで埋め込む際に、気泡のない均
質な透明ガラス膜を形成する必要がある。透明クラッド
ガラス膜の形成には、一般に火炎堆積法で多孔質ガラス
をコア導波路を形成した基板上に堆積させ、堆積した多
孔質ガラス層を焼結してクラッド膜を得ている。この焼
結は、図3に示すように、電気炉の石英炉心管7内でな
され、多孔質ガラス層4が堆積された石英ガラス基板3
は石英ガラス製治具10上に設置され、石英炉心管7外
周のヒータ8で加熱される。
2. Description of the Related Art In order to reduce the loss of a glass waveguide, it is necessary to form a uniform core film on a quartz glass substrate and then form a fine and uniform core waveguide by photolithography and etching techniques. . Furthermore, it is necessary to form a uniform transparent glass film having no bubbles when the core waveguide on the substrate is filled with the clad glass. In forming the transparent clad glass film, generally, a porous glass is deposited by a flame deposition method on a substrate on which a core waveguide is formed, and the deposited porous glass layer is sintered to obtain a clad film. As shown in FIG. 3, this sintering is performed in the quartz furnace tube 7 of the electric furnace, and the quartz glass substrate 3 on which the porous glass layer 4 is deposited is formed.
Is placed on a quartz glass jig 10 and heated by a heater 8 around the quartz furnace tube 7.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来の
焼結によっては、多孔質ガラス層4を透明ガラス化した
クラッドガラス膜には気泡が残り、ガラス導波路の伝送
損失を増大させる原因となっていた。特に、図2に示す
ように、微細なコア導波路1で囲まれた幅の狭い箇所に
気泡2が残留しやすかった。
However, due to the above-mentioned conventional sintering, bubbles remain in the clad glass film obtained by making the porous glass layer 4 transparent and vitrification, which causes an increase in transmission loss of the glass waveguide. Was there. In particular, as shown in FIG. 2, the bubbles 2 were likely to remain in a narrow portion surrounded by the fine core waveguide 1.

【0004】本発明の目的は、気泡のない均質なクラッ
ドガラス膜を形成でき、低損失なガラス導波路を製造す
ることができるガラス導波路の製造方法及びその製造装
置を提供することにある。
An object of the present invention is to provide a glass waveguide manufacturing method and a manufacturing apparatus therefor capable of forming a uniform clad glass film without bubbles and manufacturing a low loss glass waveguide.

【0005】[0005]

【課題を解決するための手段】本発明に係るガラス導波
路の製造方法は、石英ガラス基板または石英ガラス膜付
きシリコン基板上にコア導波路を形成し、その上に多孔
質ガラスを堆積し、堆積した多孔質ガラス層を加熱によ
り透明ガラス化することでクラッドガラスを形成してガ
ラス導波路を製造する方法であって、上記多孔質ガラス
層を上記基板側から透明ガラス化するようにしている。
A method of manufacturing a glass waveguide according to the present invention comprises forming a core waveguide on a quartz glass substrate or a silicon substrate with a quartz glass film, and depositing porous glass on the core waveguide. A method for producing a glass waveguide by forming a clad glass by heating the deposited porous glass layer into a transparent glass by heating, wherein the porous glass layer is transparentized from the substrate side. .

【0006】また、本発明に係るガラス導波路の製造装
置は、石英ガラス基板または石英ガラス膜付きシリコン
基板上のコア導波路を覆うように堆積された多孔質ガラ
ス層を加熱して透明ガラス化する加熱炉を有するガラス
導波路の製造装置であって、上記加熱炉内に上記基板を
その裏面側より支持するための熱伝導の良い支持部材が
設けられているものである。
Further, the glass waveguide manufacturing apparatus according to the present invention heats the porous glass layer deposited so as to cover the core waveguide on the silica glass substrate or the silicon substrate with the silica glass film to form a transparent glass. In the apparatus for manufacturing a glass waveguide having a heating furnace, a supporting member having good thermal conductivity for supporting the substrate from the back surface side is provided in the heating furnace.

【0007】上記ガラス導波路の製造装置において、上
記加熱炉内に上記基板上の多孔質ガラス層側からの熱輻
射を低減するための遮蔽体を設けるようにしてもよい。
In the glass waveguide manufacturing apparatus, a shield for reducing heat radiation from the porous glass layer side on the substrate may be provided in the heating furnace.

【0008】[0008]

【作用】本発明のガラス導波路の製造方法では、多孔質
ガラス層を基板側から透明ガラス化しているので、透明
ガラス中にたとえ気泡が発生しても外部にすぐに抜け出
て、気泡が残存しない。一方、従来は、多孔質ガラス層
の表面側から透明ガラス化するので、発生した気泡が抜
け出にくく、クラッドガラス膜に残ってしまう。また、
本発明のガラス導波路の製造装置では、加熱炉内で熱伝
導の良い支持部材を用いて基板をその裏面側より支持し
ているので、加熱された支持部材の熱が基板側から多孔
質ガラス層に良好に伝熱されることとなり、多孔質ガラ
ス層は基板側より透明ガラス化が進行する。さらに、遮
蔽体により多孔質ガラス層の表面側からの熱輻射を阻止
すると、多孔質ガラス層の基板側よりも表面側が温度が
低いという温度分布がより明確に実現され、多孔質ガラ
ス層の表面側からの透明ガラス化を確実に防止できる。
In the method of manufacturing a glass waveguide of the present invention, since the porous glass layer is made into transparent glass from the substrate side, even if bubbles occur in the transparent glass, they immediately escape to the outside and the bubbles remain. do not do. On the other hand, conventionally, since transparent glass is formed from the surface side of the porous glass layer, the generated bubbles are difficult to escape and remain in the clad glass film. Also,
In the glass waveguide manufacturing apparatus of the present invention, since the substrate is supported from the back side of the substrate by using the supporting member having good thermal conductivity in the heating furnace, the heat of the heated supporting member is transferred from the substrate side to the porous glass. Heat is satisfactorily transferred to the layer, and the vitrification of the porous glass layer proceeds from the substrate side. Further, by blocking the heat radiation from the surface side of the porous glass layer by the shield, a temperature distribution in which the temperature of the surface side of the porous glass layer is lower than that of the substrate side is more clearly realized, and the surface of the porous glass layer is It is possible to reliably prevent transparent vitrification from the side.

【0009】[0009]

【実施例】以下に本発明に係るガラス導波路の製造方法
及びその製造装置の一実施例を図面を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a glass waveguide and a manufacturing apparatus therefor according to the present invention will be described below with reference to the drawings.

【0010】まず、ガラス導波路の基板として、1mm厚
で3インチの透明石英ガラス基板を用い、この基板上
に、電子ビーム蒸着法によってTiO2 −SiO2 系ガ
ラス膜を8μm の厚さで形成した。次いで、このガラス
膜上に、スパッタ法により1μm 厚のダングステンシリ
サイド(WSi)膜を形成した後、ホトリソグラフィ技
術によってコアパターンを転写し、更に反応性イオンエ
ッチングで幅8μm のコア導波路を形成した。その後、
コア導波路を形成した石英ガラス基板上に、火炎堆積法
でP2 5 −B2 3 −SiO2 系の多孔質ガラスを堆
積させ、320μm の厚さの多孔質ガラス層を形成し
た。
First, a transparent quartz glass substrate having a thickness of 1 mm and a size of 3 inches is used as a substrate for a glass waveguide, and a TiO 2 —SiO 2 type glass film having a thickness of 8 μm is formed on this substrate by an electron beam evaporation method. did. Next, a 1 μm thick dungsten silicide (WSi) film is formed on this glass film by sputtering, the core pattern is transferred by photolithography, and a core waveguide with a width of 8 μm is formed by reactive ion etching. did. afterwards,
A core waveguide formed quartz glass substrate, a flame deposition method to deposit P 2 O 5 -B 2 O 3 -SiO 2 based porous glass, to form a porous glass layer with a thickness of 320 .mu.m.

【0011】次に、石英ガラス基板3上の多孔質ガラス
層4を、図1に示す電気炉(製造装置)内で熱処理して
厚さ25μm の透明クラッドガラス膜を作成した。電気
炉は、図示のように、石英炉心管(加熱炉)7の外周に
ヒータ8を備えており、石英炉心管7内はHeガス雰囲
気としている。石英ガラス基板3は、SiC製治具5上
に1mm厚のシリコン基板6を介して載置されて石英炉心
管7内に置かれる。石英ガラス基板3が置かれる位置の
石英炉心管7内の上部には、熱輻射を遮るための不透明
石英ガラス板9が設けられている。
Next, the porous glass layer 4 on the quartz glass substrate 3 was heat-treated in the electric furnace (manufacturing apparatus) shown in FIG. 1 to form a transparent clad glass film having a thickness of 25 μm. As shown in the figure, the electric furnace is provided with a heater 8 on the outer circumference of a quartz furnace core tube (heating furnace) 7, and the inside of the quartz furnace core tube 7 is in a He gas atmosphere. The quartz glass substrate 3 is placed on a jig 5 made of SiC via a silicon substrate 6 having a thickness of 1 mm and placed in a quartz furnace tube 7. An opaque quartz glass plate 9 for blocking heat radiation is provided in the upper portion of the quartz furnace tube 7 where the quartz glass substrate 3 is placed.

【0012】ヒータ8に通電して電気炉の温度を10℃
/minで上げて1320℃まで昇温し、多孔質ガラス層4
を焼結した。ヒータ8からの熱は熱伝導の良いSiC製
治具5および表面が平滑で石英ガラスよりも約100倍
も熱伝導率の良いシリコン基板6を介して石英ガラス基
板3の裏面全面に有効に伝えられ、多孔質ガラス層4は
石英ガラス基板3側から効率よく加熱される。
The heater 8 is energized to bring the temperature of the electric furnace to 10 ° C.
per minute and the temperature is raised to 1320 ° C., and the porous glass layer 4
Was sintered. The heat from the heater 8 is effectively transmitted to the entire back surface of the quartz glass substrate 3 through the SiC jig 5 having good thermal conductivity and the silicon substrate 6 having a smooth surface and a thermal conductivity about 100 times better than that of quartz glass. The porous glass layer 4 is efficiently heated from the quartz glass substrate 3 side.

【0013】更に、石英炉心管7上部から多孔質ガラス
層4への熱輻射は不透明石英ガラス板9により遮られる
ため、多孔質ガラス層4の上面からの加熱は抑えられ
る。このため、石英ガラス基板3上の多孔質ガラス層4
は石英ガラス基板3側から次第に透明ガラス化する。こ
のようにして、多孔質ガラス層4を焼結して得られたク
ラッドガラス層は気泡の発生もなく均質な透明ガラス膜
であった。
Further, since heat radiation from the upper part of the quartz furnace tube 7 to the porous glass layer 4 is blocked by the opaque quartz glass plate 9, heating from the upper surface of the porous glass layer 4 is suppressed. Therefore, the porous glass layer 4 on the quartz glass substrate 3
Gradually becomes transparent glass from the side of the quartz glass substrate 3. In this way, the clad glass layer obtained by sintering the porous glass layer 4 was a homogeneous transparent glass film without generation of bubbles.

【0014】上記実施例に示す方法で、図2に示す1×
16スプリッターを作成し損失を測定したが、光ファイ
バを含めた挿入損失は12.8dBであり、各ポート間
のバラツキは±0.3dB以内と良好であった。一方、図
3に示す従来法でも1×16スプリッターを作成した
が、図2(b)に示すように、コア導波路1の狭隘部に
気泡が残存し、光ファイバを含めた挿入損失が14.5
dBで各ポート間のバラツキは±1dBと大きかった。
In the method shown in the above embodiment, 1 × shown in FIG.
A 16-splitter was prepared and the loss was measured. The insertion loss including the optical fiber was 12.8 dB, and the variation between the ports was within ± 0.3 dB, which was good. On the other hand, although the conventional method shown in FIG. 3 was also used to produce a 1 × 16 splitter, as shown in FIG. 2 (b), bubbles remained in the narrow portion of the core waveguide 1 and the insertion loss including the optical fiber was 14%. .5
The variation between dB was as large as ± 1 dB.

【0015】なお、上記実施例では、ガラス導波路の基
板として石英ガラス基板3を用いたが、石英ガラス膜付
きシリコン基板を用いるようにしてもよい。この場合に
はシリコン基板が伝熱性が良いので、支持部材としての
SiC製治具5及びシリコン基板6のうち、シリコン基
板6を用いずに石英ガラス膜付きシリコン基板をSiC
製治具に直接載せるようにしてもよい。
Although the quartz glass substrate 3 is used as the substrate of the glass waveguide in the above embodiment, a silicon substrate with a quartz glass film may be used. In this case, since the silicon substrate has good heat conductivity, among the jig 5 and the silicon substrate 6 as the supporting member, the silicon substrate with the quartz glass film is replaced with the SiC substrate without using the silicon substrate 6.
You may make it mount directly on a jig.

【0016】[0016]

【発明の効果】【The invention's effect】

(1) 請求項1に記載のガラス導波路の製造方法では、基
板上の多孔質ガラス層を焼結する際に、基板側から多孔
質ガラス層を透明ガラス化するようにしているので、気
泡が残存しない均質なクラッドガラス膜が形成でき、低
損失なガラス導波路を製造できる。
(1) In the method for producing a glass waveguide according to claim 1, when the porous glass layer on the substrate is sintered, the porous glass layer is made into transparent glass from the substrate side. It is possible to form a homogeneous clad glass film that does not remain, and to manufacture a low-loss glass waveguide.

【0017】(2) 請求項2に記載のガラス導波路の製造
装置では、基板側から熱を効率よく伝えるために熱伝導
の良い支持部材を用いるという簡単な構成で、多孔質ガ
ラス層を基板側から透明ガラス化するための温度分布を
実現しており、極めて実用的である。
(2) In the glass waveguide manufacturing apparatus according to the second aspect, the porous glass layer is formed on the substrate with a simple structure in which a supporting member having good heat conduction is used to efficiently transfer heat from the substrate side. It realizes a temperature distribution for vitrification from the side and is extremely practical.

【0018】(3) 請求項3に記載のガラス導波路の製造
装置では、多孔質ガラス層側からの熱複写を低減する遮
蔽体を追加するという簡単な構成で、多孔質ガラス層を
基板側から透明ガラス化するための温度分布を確実に実
現しており、極めて実用的である。
(3) In the glass waveguide manufacturing apparatus according to the third aspect, the porous glass layer is provided on the substrate side with a simple structure in which a shield for reducing thermal copying from the porous glass layer side is added. From this, the temperature distribution for transparent glass formation is surely realized, which is extremely practical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るガラス導波路の製造装置の一実施
例を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing one embodiment of a glass waveguide manufacturing apparatus according to the present invention.

【図2】ガラス導波路の一例としての1×16スプリッ
ターを示すもので、図2(a)は平面図であり、図2
(b)は図2(a)の部分拡大図である。
2 shows a 1 × 16 splitter as an example of a glass waveguide, FIG. 2 (a) is a plan view, and FIG.
FIG. 2B is a partially enlarged view of FIG.

【図3】従来のガラス導波路の製造装置を示す縦断面図
である。
FIG. 3 is a vertical cross-sectional view showing a conventional glass waveguide manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 コア導波路 2 気泡 3 石英ガラス基板 4 多孔質ガラス層 5 SiC製治具 6 シリコン基板 7 石英炉心管 8 ヒータ 9 不透明石英ガラス板 1 Core Waveguide 2 Bubble 3 Quartz Glass Substrate 4 Porous Glass Layer 5 SiC Jig 6 Silicon Substrate 7 Quartz Furnace Tube 8 Heater 9 Opaque Quartz Glass Plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大槻 秀夫 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Otsuki Inventor Hide 1-1 Otsuki 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Hitachi Cable Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】石英ガラス基板または石英ガラス膜付きシ
リコン基板上にコア導波路を形成し、その上に多孔質ガ
ラスを堆積し、堆積した多孔質ガラス層を加熱により透
明ガラス化することでクラッドガラスを形成してガラス
導波路を製造する方法において、上記多孔質ガラス層を
上記基板側から透明ガラス化するようにしたことを特徴
とするガラス導波路の製造方法。
1. A clad is formed by forming a core waveguide on a quartz glass substrate or a silicon substrate with a quartz glass film, depositing porous glass on the core waveguide, and heating the deposited porous glass layer into transparent glass. A method for producing a glass waveguide by forming glass, wherein the porous glass layer is made transparent glass from the side of the substrate.
【請求項2】石英ガラス基板または石英ガラス膜付きシ
リコン基板上のコア導波路を覆うように堆積された多孔
質ガラス層を加熱して透明ガラス化する加熱炉を有する
ガラス導波路の製造装置において、上記加熱炉内に上記
基板をその裏面側より支持するための熱伝導の良い支持
部材が設けられていることを特徴とするガラス導波路の
製造装置。
2. A glass waveguide manufacturing apparatus having a heating furnace for heating a porous glass layer deposited so as to cover a core waveguide on a quartz glass substrate or a silicon substrate with a quartz glass film to form a transparent glass. An apparatus for manufacturing a glass waveguide, characterized in that a supporting member having good thermal conductivity for supporting the substrate from the back side thereof is provided in the heating furnace.
【請求項3】上記加熱炉内に上記基板上の多孔質ガラス
層側からの熱輻射を低減するための遮蔽体が設けられて
いることを特徴とする請求項2記載のガラス導波路の製
造装置。
3. The production of a glass waveguide according to claim 2, wherein a shield for reducing heat radiation from the side of the porous glass layer on the substrate is provided in the heating furnace. apparatus.
JP25057993A 1993-10-06 1993-10-06 Production of glass waveguide and its apparatus for production Pending JPH07104139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25057993A JPH07104139A (en) 1993-10-06 1993-10-06 Production of glass waveguide and its apparatus for production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25057993A JPH07104139A (en) 1993-10-06 1993-10-06 Production of glass waveguide and its apparatus for production

Publications (1)

Publication Number Publication Date
JPH07104139A true JPH07104139A (en) 1995-04-21

Family

ID=17209995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25057993A Pending JPH07104139A (en) 1993-10-06 1993-10-06 Production of glass waveguide and its apparatus for production

Country Status (1)

Country Link
JP (1) JPH07104139A (en)

Similar Documents

Publication Publication Date Title
US6690872B2 (en) Silica based optical waveguide and production method therefor
JPH07104139A (en) Production of glass waveguide and its apparatus for production
JPH05215929A (en) Manufacture of glass waveguide
JP2927597B2 (en) Manufacturing method of glass waveguide
JP2000147293A (en) Substrate type optical waveguide and its manufacture
KR100219715B1 (en) Rare earth ion doped optical waveguide manufacturing method
JPH0145881B2 (en)
JP2827657B2 (en) Glass waveguide and manufacturing method thereof
JP2002162526A (en) Optical waveguide and method for producing the same
JPS59137346A (en) Manufacture of glass waveguide
JP3293411B2 (en) Method for manufacturing quartz-based glass waveguide device
JPH08110425A (en) Optical waveguide and its production and light transmission module
JP2842874B2 (en) Manufacturing method of waveguide type optical device
JP2603652B2 (en) Optical waveguide manufacturing method
KR970011521B1 (en) Plane optical waveguide manufacturing method
KR100461874B1 (en) Fabrication of planar waveguide with photosensitivity during FHD process
JPH0875941A (en) Production of optical waveguide
JPH08278421A (en) Vitreous silica based optical waveguide
JPH08292335A (en) Manufacture of optical waveguide
JPH05150129A (en) Production of glass waveguide
JP2000241636A (en) Quartz glass waveguide and manufacture thereof
JPH0462643B2 (en)
JPH06331844A (en) Quartz optical waveguide and its production
JPH07120632A (en) Manufacture of glass waveguide
JPH11314941A (en) Glass waveguide