JP2927597B2 - Manufacturing method of glass waveguide - Google Patents

Manufacturing method of glass waveguide

Info

Publication number
JP2927597B2
JP2927597B2 JP4033308A JP3330892A JP2927597B2 JP 2927597 B2 JP2927597 B2 JP 2927597B2 JP 4033308 A JP4033308 A JP 4033308A JP 3330892 A JP3330892 A JP 3330892A JP 2927597 B2 JP2927597 B2 JP 2927597B2
Authority
JP
Japan
Prior art keywords
glass
porous
layer
core
clad layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4033308A
Other languages
Japanese (ja)
Other versions
JPH05232335A (en
Inventor
利秀 徳永
広明 岡野
敏和 鴨志田
尚登 上塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP4033308A priority Critical patent/JP2927597B2/en
Publication of JPH05232335A publication Critical patent/JPH05232335A/en
Application granted granted Critical
Publication of JP2927597B2 publication Critical patent/JP2927597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】本発明はガラス導波路の製造法に関するも
のである。
The present invention relates to a method for manufacturing a glass waveguide .

【0002】[0002]

【従来の技術】シリカ系ガラス導波路の製造には、コア
を形成した基板上に火炎加水分解反応により、多孔質ガ
ラス層を堆積した後、加熱して透明ガラス化することで
クラッド層を形成する技術が知られている。基板はシリ
カ(SiO2 )またはシリコン(Si)が用いられてお
り、多孔質ガラスの透明化温度で、基板の変形をなくす
ため、加熱温度は1350℃以下にする必要がある。こ
のことから、主にP,Bのドーパントを添加して透明化
温度を下げている。また、クラッド層の屈折率は伝送特
性上、シリカとほぼ同等にする必要がある。これは、特
に方向性結合器型合分波ガラス導波路の場合、屈折率に
より合分波特性が大きく変化するためである。
2. Description of the Related Art In manufacturing a silica-based glass waveguide, a porous glass layer is deposited on a substrate on which a core is formed by a flame hydrolysis reaction, and then heated to form a transparent glass, thereby forming a clad layer. Techniques for doing so are known. The substrate is made of silica (SiO 2 ) or silicon (Si), and the heating temperature needs to be 1350 ° C. or lower in order to eliminate the deformation of the substrate at the transparent glass transparentizing temperature. For this reason, P and B dopants are mainly added to lower the transparency temperature. Further, the refractive index of the cladding layer needs to be substantially equal to that of silica in terms of transmission characteristics. This is because, particularly in the case of a directional coupler type multiplexing / demultiplexing glass waveguide, the multiplexing / demultiplexing characteristics greatly change depending on the refractive index.

【0003】[0003]

【発明が解決しようとする課題】多孔質ガラスにより形
成されたクラッドとなる層は、40〜50μmと非常に
薄いため、ガラス化時に、B2 3 及びP2 5 は多孔
質ガラス層外に揮散する。また、多孔質ガラス層内での
2 3 とP2 5 の拡散状態が異なり、コア及び基板
表面にP2 5 量の多い層が形成され伝播損失及び合分
波特性等が大きく変化する。そのため、比較例として後
述するように異常ガラスの発生による特性の低下が問題
となった。
Since the clad layer formed of porous glass is very thin, 40 to 50 μm , B 2 O 3 and P 2 O 5 are converted to porous glass during vitrification. Volatilizes out of layer. In addition, the diffusion state of B 2 O 3 and P 2 O 5 in the porous glass layer is different, and a layer having a large amount of P 2 O 5 is formed on the core and the substrate surface, so that the propagation loss and the multiplexing / demultiplexing characteristics are reduced. It changes greatly. For this reason, as described later as a comparative example, there has been a problem that the characteristics are deteriorated due to the generation of abnormal glass.

【0004】そこで、クラッド層がP2 5 −B2 3
−SiO2 であり、かつクラッド層内の屈折率が均一と
なる製造法を確立する必要がある。
Therefore, the cladding layer is made of P 2 O 5 -B 2 O 3
It is necessary to establish a manufacturing method that is SiO 2 and has a uniform refractive index in the cladding layer.

【0005】本発明の目的は、前記した従来技術の欠点
を解消し、伝送特性が安定したガラス導波路の製造法
提案することにある。
An object of the present invention is to solve the above-mentioned disadvantages of the prior art and to propose a method of manufacturing a glass waveguide having stable transmission characteristics.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、シリカ
ガラス基板またはシリカ系ガラスが形成されたシリコン
基板上にコアを形成し、コアを覆うように多孔質クラッ
ド層を堆積させたのち、透明ガラス化することでクラッ
ド層を形成したガラス導波路の製造法において、コア直
上にB 2 3 を含有し、P 2 5 を含有しない第1多孔
質クラッド層を形成し、第1多孔質クラッド層を覆って
2 5 及びB 2 3 を含有する第2多孔質クラッド層
を形成し、その後、焼結によりP 2 5 を拡散させ、P
2 5 の濃度がクラッド層全体で均一になった時点で焼
結を終了させ、屈折率の均一なガラスクラッド層とする
ガラス導波路の製造法にある。
SUMMARY OF THE INVENTION The gist of the present invention is that silica
Silicon on glass substrate or silica glass
A core is formed on a substrate, and a porous crack is
After depositing a metal layer,
In the method of manufacturing a glass waveguide having a
First porous material containing B 2 O 3 and no P 2 O 5
Forming a porous cladding layer and covering the first porous cladding layer
Second porous cladding layer containing P 2 O 5 and B 2 O 3
Is formed, and then P 2 O 5 is diffused by sintering ,
When the concentration of 2 O 5 becomes uniform in the entire cladding layer,
Terminates sintering and forms a glass clad layer with a uniform refractive index
In the method of manufacturing a glass waveguide.

【0007】[0007]

【0008】この際、第1多孔質クラッド層の厚さが、
第2多孔質クラッド層と同等もしくはそれより厚いこと
が好ましい。
At this time, the thickness of the first porous cladding layer is
It is preferable that the thickness is equal to or larger than the second porous cladding layer.

【0009】また、第1多孔質クラッド層及び第2多孔
質クラッド層共にGeO2 またはTiO2 が含まれてい
ても良い。
Further, both the first porous clad layer and the second porous clad layer may contain GeO 2 or TiO 2 .

【0010】[0010]

【実施例】本発明の実施例を図1及び図2を用いて以下
に述べる。
Examples of EXAMPLES The invention will be described below with reference to FIGS.

【0011】外径3inch,厚さ1mmの石英ガラス
基板上に、8μm厚のTiO2 −SiO2 のコアガラ
ス膜を電子ビーム蒸着法で形成した。石英ガラス基板
の比屈折率差△nは0.3%であった。該基板表面
に、スパッタ法でWSi膜を厚さ1μm形成した。さら
にホトレジストを塗布後、マスクアライナーでコアパタ
ーンを転写し、ベーキング後余分な部分を除去した。次
に、反応性イオンエッチング(RIE)により、まず、
ホトレジストのコアパターンをベースに、WSiのみを
エッチングしたのち、ホトレジストを除去する。しかる
のち、RIEでコアガラスをエッチングし、コアを形
成した。該基板を450°に加熱したターンテーブルに
置き、火炎堆積法を用いて、まず、SiCl4 とBCl
3 を酸水素バーナに供給し、B2 3 −SiO2 の第1
多孔質クラッド層を厚さ25μm形成する。その後上
記バーナにPCl3 を添加し、P2 5 −B2 3 −S
iO2 の第2多孔質クラッド層を厚さ20μm形成し
た。該基板は電気炉において石英ガラス炉心管内に位置
させ、雰囲気をHeガスとし5℃/minの昇温速度で
1300℃まで昇温させ、1時間保持することにより透
明ガラス化して、図2 (c) に示すガラスクラッド層
得た。ガラスクラッド層全体の厚さは20μmであっ
た。また石英ガラス基板との比屈折率差△nは−0.
02%であり、厚さ方向及び面内の△nは±0.01%
以内で一致していた。
An 8 μm thick TiO 2 —SiO 2 core glass film was formed on a quartz glass substrate 4 having an outer diameter of 3 inches and a thickness of 1 mm by electron beam evaporation. Quartz glass substrate 4
And the relative refractive index difference Δn was 0.3%. A WSi film having a thickness of 1 μm was formed on the surface of the substrate by a sputtering method. Further, after applying a photoresist, the core pattern was transferred by a mask aligner, and after baking, unnecessary portions were removed. Next, by reactive ion etching (RIE),
After etching only the WSi based on the core pattern of the photoresist, the photoresist is removed. Thereafter, the core glass was etched by RIE to form a core 1 . The substrate was placed on a turntable heated to 450 ° and, using a flame deposition method, first, SiCl 4 and BCl
3 to an oxyhydrogen burner, and the first of B 2 O 3 —SiO 2
The porous cladding layer 2 is formed to a thickness of 25 μm. Thereafter, PCl 3 was added to the burner, and P 2 O 5 -B 2 O 3 -S
The second porous cladding layer 3 of iO 2 was formed to a thickness of 20 μm. The substrate is positioned in the quartz glass furnace tube in an electric furnace, the atmosphere was warmed to 1300 ° C. at a heating rate of 5 ° C. / min and He gas, and transparent glass by holding for 1 hour, Fig 2 (c to obtain a glass cladding layer 5 shown in). The thickness of the entire glass clad layer 5 was 20 μm. Further, the relative refractive index difference Δn from the quartz glass substrate 4 is −0.1.
Δn in the thickness direction and in the plane is ± 0.01%
Within the match.

【0012】本実施例では、図3の方向性結合器型合分
波器を製造したが、図4に示す合分波特性が得られ、光
ファイバとの接続損0.1dB/ケを含んだガラス導
波路のポートα,βのアイソレーションは−25dB以
下であり、良好な分波特性を示した。
In this embodiment, the directional coupler type multiplexer / demultiplexer shown in FIG. 3 was manufactured. The multiplexing / demultiplexing characteristics shown in FIG. 4 were obtained, and the connection loss with the optical fiber 7 was 0.1 dB / cm. , The isolation of the ports α and β of the glass waveguide containing was -25 dB or less, showing a good demultiplexing characteristic.

【0013】ここで、比較例として、第1多孔質クラッ
ド層の形成において、当初からPCl3 を供給し、P2
5 −B2 3 −SiO2 の第2多孔質クラッド層のみ
を全て該基板上に形成後、透明ガラス化し、ガラスクラ
ッド膜を得たもの(図2(a) 参照)は、図2(b)に示
すように、コアと石英ガラス基板上に、P2 5
よる、石英ガラスより屈折率の高い異常ガラス層6が形
成され、伝播光は上記の層にも伝播し、損失は10dB
と大きく、また、ポートα,βのアイソレーションは−
5dB以下と大幅に合分波特性は悪くなった。また、別
の比較例として第1多孔質クラッド層が厚さ20μm
で第2多孔質クラッド層が25μmのものは上記と類
似の現象が見られ、損失は3dB、アイソレーションは
−10dBであった。
Here, as a comparative example, in forming the first porous cladding layer, PCl 3 was supplied from the beginning and P 2 was supplied.
After forming only the second porous cladding layer of O 5 —B 2 O 3 —SiO 2 on the substrate, the glass was formed into a transparent glass to obtain a glass cladding film 5 (see FIG. 2A). As shown in FIG. 2 (b), an extraordinary glass layer 6 made of P 2 O 5 having a higher refractive index than that of quartz glass is formed on the core 1 and the quartz glass substrate 4 , and the propagating light also propagates to the above layers. , Loss is 10dB
And the isolation of ports α and β is −
The multiplexing / demultiplexing characteristics were significantly deteriorated to 5 dB or less. As another comparative example, the first porous cladding layer 2 has a thickness of 20 μm.
When the second porous cladding layer 3 had a thickness of 25 μm, a phenomenon similar to the above was observed, and the loss was 3 dB and the isolation was −10 dB.

【0014】[0014]

【発明の効果】第1多孔質クラッド層にB2 3 をドー
ピングし、第2多孔質クラッド層にP2 5 及びB2
3 をドーピングしたことで、結果的にコアとの界面に高
いP 2 5 濃度の異常ガラス層がない屈折率の均一なガ
ラスクラッド層が形成でき、良好な伝送特性を有するガ
ラス導波路を得ることができる。
The first porous cladding layer is doped with B 2 O 3 , and the second porous cladding layer is doped with P 2 O 5 and B 2 O.
As a result of doping 3 , the interface with the core
A glass clad layer having a uniform refractive index without an abnormal glass layer having a high P 2 O 5 concentration can be formed, and a glass waveguide having good transmission characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明製造法の中間段階で第1及び第2の多孔
質クラッド層を形成した状態を示す横断面図である。
FIG. 1 is a cross-sectional view showing a state in which first and second porous cladding layers are formed at an intermediate stage of the manufacturing method of the present invention.

【図2】比較例のガラス導波路と本発明により製造した
ガラス導波路の横断面図と、A−B−C断面での屈折率
分布を示す線図であり、(a),(b) は比較例の場合、(c),
(d) は本発明の場合を示す。
FIGS. 2A and 2B are a cross-sectional view of a glass waveguide of a comparative example and a glass waveguide manufactured according to the present invention, and a diagram showing a refractive index distribution in an ABC cross section. In the case of the comparative example, (c),
(d) shows the case of the present invention.

【図3】方向性結合器型合分波器の一例を示す概略図。FIG. 3 is a schematic diagram showing an example of a directional coupler type multiplexer / demultiplexer.

【図4】本発明製造法による方向性結合器型合分波器の
波長1.3μm/1.55μmの合分波特性を示す線
図。
FIG. 4 is a diagram showing the multiplexing / demultiplexing characteristics at a wavelength of 1.3 μm / 1.55 μm of the directional coupler type multiplexer / demultiplexer manufactured by the present invention.

【符号の説明】[Explanation of symbols]

1 コア 2 第1多孔質クラッド層 3 第2多孔質クラッド層 4 シリカガラス基板 5 ガラスクラッド層 6 異常ガラス層 Reference Signs List 1 core 2 first porous clad layer 3 second porous clad layer 4 silica glass substrate 5 glass clad layer 6 abnormal glass layer

フロントページの続き (72)発明者 鴨志田 敏和 茨城県日立市日高町5丁目1番1号 日 立電線株式会社オプトロシステム研究所 内 (72)発明者 上塚 尚登 茨城県日立市日高町5丁目1番1号 日 立電線株式会社オプトロシステム研究所 内 (56)参考文献 特開 平5−208836(JP,A) 特開 昭57−139708(JP,A) 特開 昭62−124511(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02B 6/10 - 6/22 Continued on the front page (72) Inventor Toshikazu Kamoshida 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Prefecture Within Nippon Electric Cable Co., Ltd. Optro System Research Laboratory (72) Inventor Naoto Uezuka Hidaka-cho, Hitachi City, Ibaraki Prefecture 5-1-1, Nippon Electric Cable Co., Ltd. Optrosystem Research Laboratories (56) References JP-A-5-208836 (JP, A) JP-A-57-139708 (JP, A) JP-A-62-124511 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) G02B 6/ 10-6/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリカガラス基板またはシリカ系ガラスが
形成されたシリコン基板上にコアを形成し、コアを覆う
ようにSiO2 を主成分とする多孔質ガラスのクラッド
となる層を堆積させたのち、透明ガラス化することでガ
ラスクラッド層を形成するガラス導波路の製造法におい
て、コア直上にB2 3 を含有し、P2 5 を含有しな
い第1多孔質クラッド層を形成し、第1多孔質クラッド
層を覆ってP2 5 及びB2 3 を含有する第2多孔質
クラッド層を形成し、その後、焼結によりP 2 5 を拡
散させ、P 2 5 の濃度がクラッド層全体で均一になっ
た時点で焼結を終了させ、屈折率の均一なガラスクラッ
ド層とすることを特徴とするガラス導波路の製造法。
A core is formed on a silica glass substrate or a silicon substrate on which a silica-based glass is formed, and a layer serving as a cladding of porous glass containing SiO 2 as a main component is deposited so as to cover the core. In a method of manufacturing a glass waveguide in which a glass clad layer is formed by vitrification, a first porous clad layer containing B 2 O 3 and not containing P 2 O 5 is formed immediately above a core, (1) A second porous clad layer containing P 2 O 5 and B 2 O 3 is formed to cover the porous clad layer, and then the P 2 O 5 is expanded by sintering.
And the concentration of P 2 O 5 becomes uniform over the entire cladding layer.
Sintering is completed at the point of time to form a glass clad layer having a uniform refractive index.
【請求項2】第1多孔質クラッド層の厚さが、第2多孔
質クラッド層と同等もしくはそれより厚いことを特徴と
する請求項記載のガラス導波路の製造法。
2. A thickness of the first porous cladding layer, the preparation of the glass waveguide of claim 1, wherein the second porous cladding layer equal to or thicker than that.
JP4033308A 1992-02-20 1992-02-20 Manufacturing method of glass waveguide Expired - Fee Related JP2927597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4033308A JP2927597B2 (en) 1992-02-20 1992-02-20 Manufacturing method of glass waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4033308A JP2927597B2 (en) 1992-02-20 1992-02-20 Manufacturing method of glass waveguide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3940599A Division JPH11314941A (en) 1999-02-18 1999-02-18 Glass waveguide

Publications (2)

Publication Number Publication Date
JPH05232335A JPH05232335A (en) 1993-09-10
JP2927597B2 true JP2927597B2 (en) 1999-07-28

Family

ID=12382933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4033308A Expired - Fee Related JP2927597B2 (en) 1992-02-20 1992-02-20 Manufacturing method of glass waveguide

Country Status (1)

Country Link
JP (1) JP2927597B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267864A (en) * 2001-03-06 2002-09-18 Sumitomo Electric Ind Ltd Manufacturing method for optical waveguide device, and optical waveguide device
WO2008108422A1 (en) * 2007-03-07 2008-09-12 Nec Corporation Optical waveguide module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139708A (en) * 1981-02-23 1982-08-28 Nippon Telegr & Teleph Corp <Ntt> Production of optical waveguide
JP2622108B2 (en) * 1985-11-25 1997-06-18 日本電信電話株式会社 Method for manufacturing silicon wafer with optical waveguide film
JPH05208836A (en) * 1992-01-30 1993-08-20 Sumitomo Electric Ind Ltd Production of glass thin film and production system therefor

Also Published As

Publication number Publication date
JPH05232335A (en) 1993-09-10

Similar Documents

Publication Publication Date Title
US6690872B2 (en) Silica based optical waveguide and production method therefor
JPS6291434A (en) Manufacture of plane-shaped optical waveguide
JP3001406B2 (en) Manufacturing method of optical waveguide
JP2927597B2 (en) Manufacturing method of glass waveguide
JPH05215929A (en) Manufacture of glass waveguide
JP3070018B2 (en) Quartz optical waveguide and method of manufacturing the same
JPS63184707A (en) Manufacture of planar light waveguide
JP2000147293A (en) Substrate type optical waveguide and its manufacture
EP1209493A1 (en) An optical waveguide and a method for producing it
JP3208744B2 (en) Manufacturing method of optical waveguide
KR100219715B1 (en) Rare earth ion doped optical waveguide manufacturing method
JPH11314941A (en) Glass waveguide
JP3293411B2 (en) Method for manufacturing quartz-based glass waveguide device
JPH0843654A (en) Silica glass waveguide and its production
JPH06331844A (en) Quartz optical waveguide and its production
JPS59137346A (en) Manufacture of glass waveguide
JPH06263452A (en) Production of optical waveguide
JPH09243846A (en) Production of high specific refractive index difference optical waveguide
JP2001074959A (en) Embedded type optical waveguide and its production
JPH05257021A (en) Production of optical waveguide
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element
JPH05150129A (en) Production of glass waveguide
JP2603652B2 (en) Optical waveguide manufacturing method
JP2000241636A (en) Quartz glass waveguide and manufacture thereof
JPH0875940A (en) Production of optical waveguide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees