JPS59137346A - Manufacture of glass waveguide - Google Patents

Manufacture of glass waveguide

Info

Publication number
JPS59137346A
JPS59137346A JP58010563A JP1056383A JPS59137346A JP S59137346 A JPS59137346 A JP S59137346A JP 58010563 A JP58010563 A JP 58010563A JP 1056383 A JP1056383 A JP 1056383A JP S59137346 A JPS59137346 A JP S59137346A
Authority
JP
Japan
Prior art keywords
glass
substrate
quartz glass
waveguide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58010563A
Other languages
Japanese (ja)
Other versions
JPS6365619B2 (en
Inventor
Juichi Noda
野田 壽一
Mitsuho Yasu
安 光保
Takao Edahiro
枝広 隆夫
Hiroshi Terui
博 照井
Morio Kobayashi
盛男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58010563A priority Critical patent/JPS59137346A/en
Publication of JPS59137346A publication Critical patent/JPS59137346A/en
Publication of JPS6365619B2 publication Critical patent/JPS6365619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain an embedded glass waveguide in a mass-producing manner while reducing the number of stages by patterning a diffusing substance on a polished glass substrate, depositing fine glass particles, and diffusing the patterned substance in a stage for converting the glass particles into transparent glass. CONSTITUTION:An SiO2 quartz glass substrate 1 is polished, the polished surface is lightly etched with an ammonium fluoride soln., and a film of metallic Ge 2 patterned by a lift-off method is deposited by a vapor deposition method using electron beams. Fine particles 4 of SiO2 quartz glass formed by causing hydrolysis in an oxyhydrogen flame mixed with gaseous SiCl4 are deposited on the substrate 1. The metallic Ge 2 converts into germanium oxide in the oxidizing atmosphere in the temp. rising stage. The substrate 1 is then annealed in a heating furnace filled with an oxidizing atmosphere. The fine particles 4 of SiO2 quartz glass are made perfectly transparent by annealing at 1,300 deg.C for 2hr. Ge ions diffuse in quartz glass in said stage for converting the fine particles 4 into transparent glass, and a waveguide having a diffusion layer 5 embedded in quartz glass is obtd.

Description

【発明の詳細な説明】 本発明は拡散によって埋め込みの低損失8次元カラス光
導波路を作製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of fabricating a buried low-loss eight-dimensional glass optical waveguide by diffusion.

従来のガラス導波路の拡散による作製法は、第1図(a
)に示すように、BK−7等のソーダガラス基板]の上
に、拡散源であるAgのパターン膜2を形成し、これを
第1図(b)に示すように、大気中ノ雰囲気で800〜
4100℃に加熱してAgイオンをガラス基板中に拡散
し、拡散した層8を導波路としていた。(参考文献: 
G、H,0hartier 、 P。
The conventional method for manufacturing glass waveguides by diffusion is shown in Figure 1 (a
), a pattern film 2 of Ag, which is a diffusion source, is formed on a soda glass substrate such as BK-7, and as shown in FIG. 800~
Ag ions were diffused into the glass substrate by heating to 4100° C., and the diffused layer 8 was used as a waveguide. (References:
G., H., Hartier, P.

Jaussaud + A、D、01iver + O
,Parriaux ” Opticalwave G
uides Publicated by E:Lec
tr:Lc FieldControlled  工o
n  li:xchange  in  Grass 
 ”1i:1eotron、  Lett、  Vol
、  1 4  、PP、  1 3 8〜1 34.
19781 この方法による作製方法は簡単であるが、埋め込み導波
路を実現することは不可能であるので、特にエツジに欠
けのないように、かつ1u角にM暦することは鈍しい欠
点があった。しかもクラッドが非対称になっているので
、ツCファイバとの結合損失も大きいという問題もあっ
た。
Jaussaud + A, D, 01iver + O
, Parriaux ” Opticalwave G
uides Published by E:Lec
tr:Lc Field Controlled
n li:xchange in Grass
“1i:1eotron, Lett, Vol.
, 1 4 , PP, 1 3 8 - 1 34.
19781 Although this method of fabrication is simple, it is impossible to realize a buried waveguide, so it has the drawback that it is difficult to make the edges so that they are not chipped and to have a 1u angle. . Moreover, since the cladding is asymmetrical, there is also the problem that the coupling loss with the C-type fiber is large.

他の方法として、T7+イオンを含む混合塩溶液中にガ
ラス基板の片面を浸し、ガラス片面にYは極を形成し、
該混合塩溶液中に白金電極を置いて電界を印加しながら
Tノ+イオンをガラス基板中に拡散し、これを導波路と
する方法がある。(参考文献: T、Ezawa an
d H・Nakagome ” 0pticalWav
e Guicle Formed by Electr
icallyInduced Migration o
f J、ons 1nGrassP1atesAppI
−1[)hyS−Lett、VOl、211Pp−58
4〜586゜1972) 電界拡散の場合には、埋め込み導波路は可能で・あるが
、拡散工程が面倒で、大面積化が難しく、量産的でない
という欠点がある。またこの方法では拡散が極めて速い
ので、拡散の制御が鍵しく、単一モード導波路のように
、数μmのコアを得ることは不可能に近いという問題が
ある。
As another method, one side of the glass substrate is immersed in a mixed salt solution containing T7+ ions, Y forms a pole on one side of the glass,
There is a method in which a platinum electrode is placed in the mixed salt solution and T+ ions are diffused into a glass substrate while applying an electric field, and this is used as a waveguide. (References: T, Ezawa an
d H. Nakagome” 0pticalWav
e Guicle Formed by Electr
ically Induced Migration o
f J, ons 1nGrassP1atesAppI
-1[)hyS-Lett, VOl, 211Pp-58
4-586° 1972) In the case of electric field diffusion, a buried waveguide is possible, but it has the drawbacks that the diffusion process is troublesome, it is difficult to enlarge the area, and it is not suitable for mass production. Furthermore, since diffusion is extremely fast in this method, control of diffusion is key, and there is a problem in that it is almost impossible to obtain a core of several μm as in a single mode waveguide.

本発明は以上の欠点を解決するためGこ、通常の熱拡散
により埋め込み形の導波路を実現することを目的とし、
屈折率を増加させる物質を、基板上に堆積した後、ガラ
ス倣粒子な透明化する過程で拡散させることを特徴とす
る。
In order to solve the above-mentioned drawbacks, the present invention aims to realize a buried waveguide using ordinary thermal diffusion.
The method is characterized in that a substance that increases the refractive index is deposited on a substrate and then diffused during the process of making the glass imitation particles transparent.

第2図(a) 、(b) 、 (c)に本発明の一実施
例の工程を示す。この実施例では5j−o2石石英ガラ
ス内光導波路を作製する方法について述べる。
FIGS. 2(a), (b), and (c) show the steps of an embodiment of the present invention. In this example, a method for manufacturing an optical waveguide in 5j-o2 quartz glass will be described.

第2図において、1は5108石英ガ石英ガラス内はG
e金属(拡散源)、4は8102石英ガラス粒子、5 
Get拡散層、6はSiO□石英ガラス透明層である0 まずSio、石英ガラス基板1を研磨し、研磨面をフッ
化アンモニウム液で軽くエツチングした後、第2図(a
)に示すように、リフトオフ法によりバタ、−ン化した
Ge金属2の膜を電子ビーム蒸着法により単一モード用
には500人、多モード用には2000A付着する。パ
ターン形状は単一モード用のときには幅8μm1多モー
ド用のときしこは80μmであって両方とも長さ4’0
’mmである。この基板に、s iCl 4ガスを混合
したH2と02の酸水素炎内で加水熱分解反応させ、第
2図(b)に示すように、生成されたSx02石英ガラ
ス微粒子4を堆積する。
In Figure 2, 1 is 5108 quartz glass and G is inside the quartz glass.
e metal (diffusion source), 4 is 8102 quartz glass particles, 5
The Get diffusion layer 6 is a SiO □ quartz glass transparent layer 0 First, the Sio, quartz glass substrate 1 is polished, and the polished surface is lightly etched with ammonium fluoride solution.
), a film of Ge metal 2, which has been turned into a butter by the lift-off method, is deposited by electron beam evaporation at a thickness of 500 for a single mode and 2000 for a multimode. The pattern shape is 8 μm in width for single mode, 80 μm in width for multimode, and 4'0 in length for both.
'mm. A hydrothermal decomposition reaction is carried out on this substrate in an oxyhydrogen flame of H2 and 02 mixed with s iCl 4 gas, and the generated Sx02 silica glass particles 4 are deposited as shown in FIG. 2(b).

Ge金属2は酸化雰囲気の昇温過程で酸化ゲルマニウム
(GeO,)に変化する。またSiO□石英ガラス微粒
子4の堆積層の厚さは単一モード用のときには200〜
300 pm、多モード用のときシこは800〜100
0μmである。堆積温度は約400°Cである。つぎに
この基板を酸化雰囲気の加熱炉シこ入れ、単一モード用
には1150℃で5時間焼鈍した後、さらに1800℃
しこ昇温して、さらに2時間焼鈍し、箋時聞〜多モード
用には1150°Cで100時間焼鈍した後、1800
℃に昇温して、さらに2時間焼鈍した。810□石英ガ
ラス微粒子4は1000℃に2時間焼鈍すれば完全に透
明化される。aeイオンは第2図(0)に示すように、
5108石英ガ石英ガラス内透明ガラス化過程で石英ガ
ラス内に、拡散し、拡散層5が石英ガラス内に埋め込め
られた導波路となる。つぎに導波路端面を研磨した0 作製した導波路特性は単一モード光ファイバで波長1.
3μmの半導体レーザ光全導入した結果、単一モード用
の場合8μm幅のパターンの近視野像は完全に単一モー
ドになっており、伝ばん損失は0.1 dB/crnで
あった。導波路5と単一モード光ファイバとの接続損失
はマツチング液を使用すると0.2dBであり、極めて
低い値を示した。
Ge metal 2 changes into germanium oxide (GeO,) during the temperature rising process of the oxidizing atmosphere. In addition, the thickness of the deposited layer of SiO□ quartz glass fine particles 4 is 200~
300 pm, multi-mode timing 800-100
It is 0 μm. The deposition temperature is approximately 400°C. Next, this substrate is placed in a heating furnace in an oxidizing atmosphere, and for single mode use, it is annealed at 1150°C for 5 hours, and then further heated to 1800°C.
The temperature was raised slightly and annealed for another 2 hours, and for paper sheets to multi-modes, annealed at 1150°C for 100 hours, then 1800°C.
The temperature was raised to 0.degree. C., and annealing was further performed for 2 hours. The 810□ quartz glass fine particles 4 become completely transparent when annealed at 1000° C. for 2 hours. As shown in Figure 2 (0), the ae ion is
5108 Quartz glass diffuses into the quartz glass during the transparent vitrification process, and the diffusion layer 5 becomes a waveguide embedded in the quartz glass. Next, the end face of the waveguide was polished.The characteristics of the produced waveguide were as follows: a single mode optical fiber with a wavelength of 1.
As a result of fully introducing the 3 μm semiconductor laser beam, the near-field pattern of the 8 μm wide pattern for single mode was completely single mode, and the propagation loss was 0.1 dB/crn. The connection loss between the waveguide 5 and the single mode optical fiber was 0.2 dB when a matching liquid was used, which was an extremely low value.

なお8102石英ガ石英ガラス内の堆積法として、Ge
パターン、嘆が形成された8102石英ガ石英ガラス基
板l0〜1100℃に保持した加熱炉に設定し、5iO
7,と02の混合ガスを流しても可能である。
As a deposition method in 8102 quartz glass, Ge
A 8102 quartz glass substrate with a pattern and a shape formed thereon was set in a heating furnace maintained at a temperature of 0 to 1100°C, and 5iO
It is also possible to flow a mixed gas of 7 and 02.

また拡散源としてG8以外の物質Aノ+Ti+Zr+S
b 、 Sn オよびそノ酸化物A40  、 TiO
2,Zr2O3゜8 Sb205+ SnO,! Agoも、S iog石英
ガラスが結晶化、しない条件下では拡散形光導波路の作
製は可能である。
Also, as a diffusion source, substances other than G8 A+Ti+Zr+S
b, Sn oxide and oxide A40, TiO
2, Zr2O3゜8 Sb205+ SnO,! With Ago, it is also possible to fabricate a diffused optical waveguide under conditions where Siog quartz glass does not crystallize.

さらに通常の多成分系ガラスでも、基板と同じ多成分系
ガラス微粒子を堆積できれは、本発明の方法は適用でき
る。この場合、堆積するガラスは基板ガラスとほぼ同じ
熱膨張係数を有し、堆積ガラスの屈折率が基板ガラスの
屈折率より小さく、はぼ等しいことが条件となる。
Furthermore, the method of the present invention can be applied to ordinary multicomponent glass as long as the same multicomponent glass particles as those on the substrate can be deposited. In this case, the conditions are that the glass to be deposited has approximately the same coefficient of thermal expansion as the substrate glass, and the refractive index of the deposited glass is smaller than, and approximately equal to, the refractive index of the substrate glass.

なお透明化過程において基板ガラスも軟化するので、基
板ガラスより軟化温度の高い材料を試料設定台として用
いなければならない。
Note that since the substrate glass also softens during the transparentization process, a material with a higher softening temperature than the substrate glass must be used as the sample setting table.

以上説明したように、本発明のガラス導波路の作製法に
よれば、工程が極めて少なく、かつ量産的に埋め込みの
ガラス導波路を実現できるので、光ミキサ、光分波器時
各種の低損失、低価格な光回路へ適用できる。特に従来
不可能に近いと考えられていた拡散によるSi02石英
ガラス導波路が本発明によれば容易に作製できる利点が
ある。
As explained above, according to the method for manufacturing a glass waveguide of the present invention, embedded glass waveguides can be realized in mass production with extremely few steps. , can be applied to low-cost optical circuits. In particular, the present invention has the advantage that a Si02 quartz glass waveguide by diffusion, which was conventionally thought to be nearly impossible, can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は従来の拡散によるガラス導
波路の作製工程図、 第2図(a) l (b) 、 (C)は本発明の一実
施例の工程図である。 1・・・ガラス基板    2・・・拡散源3.5・・
・拡散層すなわち導波路 4・・・・基板ガラスと同組戊のガラス微粒子6・・・
透明化したガラス層 特許出願人 日本電信電話公社 第2図
FIGS. 1(a) and 1(b) are process diagrams for manufacturing a glass waveguide using conventional diffusion, and FIGS. 2(a), (b), and (C) are process diagrams for an embodiment of the present invention. 1... Glass substrate 2... Diffusion source 3.5...
- Diffusion layer or waveguide 4...Glass particles 6 of the same structure as the substrate glass...
Transparent glass layer patent applicant Nippon Telegraph and Telephone Corporation Figure 2

Claims (1)

【特許請求の範囲】 】4 研磨したガラス基板上に、拡散物質を膜状かつ所
望とずべき形状にパターン化した後、ガラス倣粒子をO
VD法または火炎トーチにより、該基板上に堆積し、高
温で透明ガラス化する過程で該拡散物質を拡散し、これ
を光導波路とすることを特徴とするガラス導波路の作製
法。 ム 特許請求の範囲第1項記載のガラス導波路の作製法
において、拡散物質としてGe 、 Al。 Ti 、 Z−r 、 Sb 、 Nb 、 Ta 、
 Sn 、 Agおよびその酸化物であるG302+ 
1203. Tie□。 Zr2O3,5b205. Nb2O5,Ta205.
 SnO2゜AgOを用いることを特徴とするガラス導
波路の作製法。 8、 特#’f 請求の範囲第1項記載のガラス導波路
の作製法において、拡散源が付着された8102石英ガ
ラス基板上に、3102石英ガラス導波路を形成する方
法として、5iOl、と02のガスを流し、加熱炉に置
かれた該基板上にs i、o 。 石英ガラス基板上を堆積するかもしくはH2と02の火
炎中にS IC14を流し、該基板上に8102石英ガ
ラス倣粒子を堆積し、該5i02石英ガラス倣粒子を高
温で透明化する過程で、特許請求の範囲第2項に記載さ
れた拡散物質を拡散することを特徴とするガラス導波路
の作製法。
[Claims] 4. After patterning the diffusing substance into a film and desired shape on a polished glass substrate, the glass imitation particles are exposed to O.
A method for producing a glass waveguide, characterized in that the diffusion substance is deposited on the substrate by a VD method or a flame torch, and the diffusion substance is diffused in the process of being made into transparent glass at high temperature, thereby forming an optical waveguide. In the method for manufacturing a glass waveguide according to claim 1, Ge or Al is used as the diffusing substance. Ti, Z-r, Sb, Nb, Ta,
Sn, Ag and its oxide G302+
1203. Tie□. Zr2O3,5b205. Nb2O5, Ta205.
A method for manufacturing a glass waveguide characterized by using SnO2°AgO. 8. Feature #'f In the method for manufacturing a glass waveguide according to claim 1, a method for forming a 3102 quartz glass waveguide on an 8102 quartz glass substrate to which a diffusion source is attached includes 5iOl and 02 s i,o onto the substrate placed in a heating furnace. In the process of depositing on a quartz glass substrate or flowing SIC14 into a H2 and 02 flame, depositing 8102 quartz glass imitation particles on the substrate, and making the 5i02 quartz glass imitation particles transparent at high temperature, the patent A method for producing a glass waveguide, comprising diffusing the diffusing substance according to claim 2.
JP58010563A 1983-01-27 1983-01-27 Manufacture of glass waveguide Granted JPS59137346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58010563A JPS59137346A (en) 1983-01-27 1983-01-27 Manufacture of glass waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58010563A JPS59137346A (en) 1983-01-27 1983-01-27 Manufacture of glass waveguide

Publications (2)

Publication Number Publication Date
JPS59137346A true JPS59137346A (en) 1984-08-07
JPS6365619B2 JPS6365619B2 (en) 1988-12-16

Family

ID=11753707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58010563A Granted JPS59137346A (en) 1983-01-27 1983-01-27 Manufacture of glass waveguide

Country Status (1)

Country Link
JP (1) JPS59137346A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134730A (en) * 1984-12-06 1986-06-21 Nec Corp Production of optical control element
JPS62217206A (en) * 1986-03-19 1987-09-24 Sumitomo Electric Ind Ltd Production of optical waveguide
WO2000046618A1 (en) * 1999-02-05 2000-08-10 The University Court Of The University Of Glasgow Waveguide for an optical circuit and method of fabrication thereof
WO2012027987A1 (en) * 2010-09-01 2012-03-08 北京大学 Surface treatment method for germanium-based part

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134730A (en) * 1984-12-06 1986-06-21 Nec Corp Production of optical control element
JPH0644086B2 (en) * 1984-12-06 1994-06-08 日本電気株式会社 Method of manufacturing light control element
JPS62217206A (en) * 1986-03-19 1987-09-24 Sumitomo Electric Ind Ltd Production of optical waveguide
WO2000046618A1 (en) * 1999-02-05 2000-08-10 The University Court Of The University Of Glasgow Waveguide for an optical circuit and method of fabrication thereof
GB2362963A (en) * 1999-02-05 2001-12-05 Univ Glasgow Waveguide for an optical circuit and method of fabrication thereof
GB2362963B (en) * 1999-02-05 2003-03-12 Univ Glasgow Waveguide for an optical circuit and method of fabrication thereof
US6735370B1 (en) 1999-02-05 2004-05-11 The University Court Of The University Of Glasgow Waveguide for an optical circuit and method of fabrication thereof
WO2012027987A1 (en) * 2010-09-01 2012-03-08 北京大学 Surface treatment method for germanium-based part

Also Published As

Publication number Publication date
JPS6365619B2 (en) 1988-12-16

Similar Documents

Publication Publication Date Title
US5243677A (en) Quartz optical waveguide and method for producing the same
JPS59137346A (en) Manufacture of glass waveguide
US6339667B1 (en) Optical waveguide and method for fabricating the same
JPH05215929A (en) Manufacture of glass waveguide
JP3070018B2 (en) Quartz optical waveguide and method of manufacturing the same
JP3575342B2 (en) Method for manufacturing silica glass optical waveguide
JPS59198407A (en) Production of optical waveguide film with diffraction grating
JP3245347B2 (en) Manufacturing method of optical waveguide device
JPH0313907A (en) Production of substrate type optical waveguide
JPS602905A (en) Manufacture of diffusion type glass waveguide
KR100219715B1 (en) Rare earth ion doped optical waveguide manufacturing method
KR20020040551A (en) Optical waveguide and manufacturing method thereof
JPS63184707A (en) Manufacture of planar light waveguide
JP3293411B2 (en) Method for manufacturing quartz-based glass waveguide device
JP2927597B2 (en) Manufacturing method of glass waveguide
JPH05181031A (en) Optical waveguide and its production
JPH05257021A (en) Production of optical waveguide
JPH0829634A (en) Production of optical waveguide
JP2603652B2 (en) Optical waveguide manufacturing method
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element
JP3031066B2 (en) Method for manufacturing oxide film and method for manufacturing optical waveguide
JP2953173B2 (en) Optical waveguide
JPS62111214A (en) Production of optical waveguide consisting of glass film with optical fiber
JPH06331844A (en) Quartz optical waveguide and its production
KR100377929B1 (en) Optical waveguide device and manufacturing method thereof