JPS62111214A - Production of optical waveguide consisting of glass film with optical fiber - Google Patents

Production of optical waveguide consisting of glass film with optical fiber

Info

Publication number
JPS62111214A
JPS62111214A JP25085485A JP25085485A JPS62111214A JP S62111214 A JPS62111214 A JP S62111214A JP 25085485 A JP25085485 A JP 25085485A JP 25085485 A JP25085485 A JP 25085485A JP S62111214 A JPS62111214 A JP S62111214A
Authority
JP
Japan
Prior art keywords
glass
optical fiber
core
optical waveguide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25085485A
Other languages
Japanese (ja)
Inventor
Naoto Uetsuka
尚登 上塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP25085485A priority Critical patent/JPS62111214A/en
Publication of JPS62111214A publication Critical patent/JPS62111214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the connection loss to optical fibers and to eliminate the change of a transmission characteristic by external atmosphere by including a stage for depositing pulverized core glass particles by a thermal oxidation reaction or hydrolysis reaction on a glass substrate, heating the same to a high temp. and vitrifying the particles to transparent glass. CONSTITUTION:The optical fiber 4 of the length projecting from the side part of the starting glass quartz substrate 3 is embedded in a guide groove 32 for connection along said groove. The pulverized glass particles are then deposited on the substrate 3 by using a glass prepd. by mixing a refractive index increasing dopant such as geCl4 with SiCl4 which is the essential raw material for glass as a glass raw material for the glass. The deposited particles are heat-treated at a high temp. to form the transparent core glass 5 consisting of GeO2-SiO2. Etching is thereafter so executed that only the core glass 5 formed in the grooves of the pattern to be used as the core for the optical waveguide remains. The pulverous glass particles to be formed as the clad glass are deposited on the substrate 3 by a deposition method for pulverized glass particles using SiCl4 as the glass raw material for the glass in succession thereof and is sintered at a high temp.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光導波路の製造方法に係り、特に光ファイバ付
ガラス膜光導波路の+IA造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an optical waveguide, and particularly to a +IA manufacturing method for a glass film optical waveguide with an optical fiber.

[従来の技術] 従来のガラス膜光導波路の製造方法を第3図(a)〜(
f)の工程図を参照して説明する。
[Prior Art] A conventional method for manufacturing a glass film optical waveguide is shown in FIGS.
This will be explained with reference to the process diagram of f).

まず、石英ガラス基板31上にGeO2−SiO2系の
コア層となる多孔質ガラス32を堆積する(第3図(a
))。多孔質ガラス32の堆積には、ガラス基板上の5
iCfLaに屈折率増加ドーパントとしてGeO2を混
合した原料ガスを酸水素火炎内において加水分解反応あ
るいは熱酸化反応させてガラス微粒子を得るガラス微粒
子堆積法を用いる。この多孔質ガラス32の上に5iC
Q4を原料ガスとするガラス微粒子堆積法によりクラッ
ド届となる5i02の多孔質ガラス33を堆積する(第
3図(b))。
First, a porous glass 32 that will become a GeO2-SiO2-based core layer is deposited on a quartz glass substrate 31 (Fig. 3(a)
)). The deposition of the porous glass 32 involves the deposition of 5
A glass particle deposition method is used in which a raw material gas containing iCfLa mixed with GeO2 as a refractive index increasing dopant is subjected to a hydrolysis reaction or a thermal oxidation reaction in an oxyhydrogen flame to obtain glass particles. 5iC on this porous glass 32
Porous glass 33 of 5i02 serving as a clad layer is deposited by a glass particle deposition method using Q4 as a raw material gas (FIG. 3(b)).

次に、これを1500℃程度の高温で熱処理し、多孔質
ガラス32.33を透明ガラス化してそれぞれコアガラ
ス34.クラッドガラス35を形成する(第3図(C)
)。以上の工程により高屈折率のコアガラス34を相対
的に低屈折率のガラスで挟んだ石英ガラス多層膜が形成
される。
Next, this is heat-treated at a high temperature of about 1500° C. to make the porous glass 32 and 33 transparent glass, and the core glass 34. Form the clad glass 35 (Fig. 3(C)
). Through the above steps, a silica glass multilayer film is formed in which the core glass 34 having a high refractive index is sandwiched between glasses having a relatively low refractive index.

さらに、クラッドガラス35の表面上にSiあるいはT
i等の金属1!!J36を、スパッタ法あるいは蒸着法
により被覆する(第3図(d))。そして、この金属膜
36をホトリソグラフィ技術によって所望の金属パター
ン37を残して除去する(第3図(e))。次に、金属
パターン37をマスクとしてコアガラス34およびクラ
ッドガラス35のエツチングを行なった後、金属パター
ン37を除去する(第3図(f))。このようにして所
望のパターンの光導波路が形成される。
Furthermore, Si or T is formed on the surface of the clad glass 35.
i etc metal 1! ! J36 is coated by sputtering or vapor deposition (FIG. 3(d)). Then, this metal film 36 is removed by photolithography leaving a desired metal pattern 37 (FIG. 3(e)). Next, the core glass 34 and cladding glass 35 are etched using the metal pattern 37 as a mask, and then the metal pattern 37 is removed (FIG. 3(f)). In this way, an optical waveguide with a desired pattern is formed.

第4図は以上の製造工程によって製作されたガラス光導
波路素子の入出力部分の斜視図である。
FIG. 4 is a perspective view of the input/output portion of the glass optical waveguide device manufactured by the above manufacturing process.

光ファイバ41との光接続を容易とするために、ガイド
用溝42が形成されている。このガイド用溝42に沿っ
て光ファイバ41を挿入し、コアガラス34をコアとす
る光導波路43と光ファイバ41とを接続する。
A guide groove 42 is formed to facilitate optical connection with the optical fiber 41. The optical fiber 41 is inserted along this guide groove 42, and the optical waveguide 43 having the core glass 34 as a core is connected to the optical fiber 41.

[発明が解決しようとする問題点] 光導波路43と光ファイバ41との接続方法として、両
者の接合部分にCO2レーザ光を照射して融着接続する
方法があるが、この方法ではCO2レーザ光が石英系ガ
ラスに吸収されて瞬時にしてガラス成分が蒸発してしま
い、その結果、低損失な融着接続を行なうことが困難で
あった。
[Problems to be Solved by the Invention] As a method of connecting the optical waveguide 43 and the optical fiber 41, there is a method of fusion splicing by irradiating the joint portion of the two with CO2 laser light. is absorbed by the quartz-based glass and the glass component evaporates instantly, making it difficult to perform low-loss fusion splicing.

また、光ファイバ同士の接続法として多用されている放
電融着法を用いようとすると、光ファイバ41と石英ガ
ラス基板31との熱容量の差が大ぎいため、融着接続す
ることが困難である。
Furthermore, when attempting to use the discharge fusion method, which is often used to connect optical fibers, it is difficult to perform fusion splicing because the difference in heat capacity between the optical fiber 41 and the quartz glass substrate 31 is large. .

ところで、特開昭59−202407号には、ガラス基
板上にガラス微粒子を堆積して形成した多孔質ガラス層
をレーザビーム照射により基板ガラスに達するまで局所
的に切断し、その後、残部を透明ガラス化して導波路を
形成する方法が開示されており、多孔質膜段階で接続フ
ァイバ用の溝をレーザビームで切り刻む例が挙げられて
いる。しかしながら、透明ガラス化された導波路の上記
ファイバ用溝に光ファイバを挿入するだけでは導波路と
光ファイバとを効率よくしかも強く接続することは困難
である。
By the way, in Japanese Patent Laid-Open No. 59-202407, a porous glass layer formed by depositing glass particles on a glass substrate is locally cut by laser beam irradiation until it reaches the substrate glass, and then the remaining part is cut into a transparent glass layer. A method is disclosed for forming a waveguide by using a laser beam, and an example is given in which a groove for a connecting fiber is cut with a laser beam at the porous film stage. However, it is difficult to efficiently and strongly connect the waveguide and the optical fiber simply by inserting the optical fiber into the fiber groove of the transparent vitrified waveguide.

さらに、第4図において先導波路43の側面が空気に接
しているため、水蒸気の凝縮等の外部の雰囲気によって
伝送特性が変化するという問題がある。
Furthermore, since the side surface of the leading waveguide 43 is in contact with the air in FIG. 4, there is a problem that the transmission characteristics change depending on the external atmosphere such as water vapor condensation.

[発明の目的] 本発明の目的は前記した従来技術の問題点を解消し、光
ファイバとの接続損失を低減すると共に外部の雰囲気に
よって伝送特性が変化することのない光ファイバ付ガラ
ス膜光導波路の製造方法を提供することにある。
[Object of the Invention] The object of the present invention is to solve the problems of the prior art described above, and to provide a glass film optical waveguide with an optical fiber, which reduces connection loss with an optical fiber and whose transmission characteristics do not change due to external atmosphere. The purpose of this invention is to provide a method for manufacturing the same.

[発明の概要] 本発明は上記目的を達成するために、ガラス基板上に凹
状の光導波路パターンと接続用光ファイバを埋め込むた
めのガイド溝とを形成する第1の工程と、該ガイド溝に
上記ガラス基板側面より外側に突き出る長さの光ファイ
バを埋め込む第2の工程と、上記ガラス基板上に熱酸化
反応あるいは加水分解反応によりコアガラス微粒子を堆
積し、これを高温加熱して透明ガラス化する第3の工程
と、透明ガラス化されたコアガラスのうち上記光導波路
パターン内に形成されたコアガラス以外のコアガラスを
除去する第4の工程と、上記ガラス基板上に熱酸化9反
応あるいは加水分解反応により上記コアガラスより低い
屈折率を有するタラツドガラスの微粒子を堆積し、これ
を高温加熱して透明ガラス化する第5の工程とからなる
方法により光ファイバ付ガラス膜光導波路を製造するも
のである。
[Summary of the Invention] In order to achieve the above object, the present invention includes a first step of forming a concave optical waveguide pattern and a guide groove for embedding a connecting optical fiber on a glass substrate, and A second step of embedding a length of optical fiber protruding outward from the side surface of the glass substrate, and depositing core glass fine particles on the glass substrate by thermal oxidation reaction or hydrolysis reaction, which are then heated to a high temperature to become transparent glass. a fourth step of removing core glass other than the core glass formed in the optical waveguide pattern from the transparent vitrified core glass; and a thermal oxidation reaction or A method for producing a glass film optical waveguide with an optical fiber by a method comprising a fifth step of depositing fine particles of Tallard glass having a refractive index lower than that of the core glass through a hydrolysis reaction, and heating the fine particles at a high temperature to turn them into transparent glass. It is.

[実施例] 以下、添付図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図(a)〜(f)は本発明の光ファイバ付ガラス膜
光導波路の製造方法の一実施例を示す工程図である。ま
ず、所要の光導波路パターンと光ファイバとの接続用ガ
イド溝のパターンを形成する様に、凸型のパターン11
を持った転写用金型1上にガラス形成元素のアルコキシ
ドから成るゾル液2を流し込む(第1図(a))、転写
用金型1の材料としては、例えばパイレックスガラスが
適当である。また、転写用金型1の表面に離型剤をコー
トしておくと、ゾル液2がゲル化した時、金型1よりは
ずし易い。ガラス原料のゾル液2としては1411ot
%の5i(OCH:+)4と28 so1%の1120
と58 mo1%のCf130Hの組成の溶液を用いる
と白濁のない透明なガラス基板を得ることができる。次
に、ゾル液2の加水分解が終了すると寒天状のウェット
ゲルが得られる。このウェットゲルは、金型1のパター
ン11に従って凹状のパターンが形成されている。ウェ
ットグルを常温で乾燥処理した後、約1300℃の高温
でHe及び02を流しながら熱処理すると透明な出発石
英ガラス基板3が得られる(第1図(b))。
FIGS. 1(a) to 1(f) are process diagrams showing an embodiment of the method for manufacturing a glass film optical waveguide with an optical fiber according to the present invention. First, a convex pattern 11 is formed so as to form a pattern of a guide groove for connecting a required optical waveguide pattern and an optical fiber.
A sol solution 2 made of an alkoxide of a glass-forming element is poured onto a transfer mold 1 having a glass-forming element (FIG. 1(a)). As a material for the transfer mold 1, for example, Pyrex glass is suitable. Furthermore, if the surface of the transfer mold 1 is coated with a release agent, it will be easier to remove the sol 2 from the mold 1 when it becomes a gel. 1411 ot as sol liquid 2 of glass raw material
%5i (OCH:+) 4 and 28 so1% 1120
By using a solution having a composition of 58 mo1% Cf130H, a transparent glass substrate without cloudiness can be obtained. Next, when the hydrolysis of the sol liquid 2 is completed, an agar-like wet gel is obtained. This wet gel has a concave pattern formed in accordance with the pattern 11 of the mold 1. After drying the wet glue at room temperature, it is heat-treated at a high temperature of about 1300° C. while flowing He and O2 to obtain a transparent starting quartz glass substrate 3 (FIG. 1(b)).

以上の工程により導波路用パターン31とファイバ接続
用ガイド溝32を持った出発石英ガラス基板3が得られ
る。第1図(C)は、この出発石英ガラス基板3に形成
された光ファイバとの接続用ガイド溝32の部分を示す
拡大図である。出発石英ガラス基板3の側部より突き出
る長さの光ファイバ4を接続用ガイド溝32に沿って埋
め込む。
Through the above steps, a starting quartz glass substrate 3 having a waveguide pattern 31 and a fiber connection guide groove 32 is obtained. FIG. 1(C) is an enlarged view showing a portion of a guide groove 32 for connection with an optical fiber formed in the starting quartz glass substrate 3. FIG. A length of optical fiber 4 protruding from the side of the starting quartz glass substrate 3 is embedded along the connection guide groove 32.

この場合、光ファイバ4のコアと光導波路となるfi3
1が一致する様にあらかじめ転写用金型1でパターンが
形成されている。
In this case, the core of the optical fiber 4 and the fi3 which becomes the optical waveguide
A pattern is formed in advance in the transfer mold 1 so that the numbers 1 and 1 coincide with each other.

次に、ガス噴出手段(図示せず)によりガラス原料ガス
を酸素ガス及び水素ガスと共に噴出し、酸素ガスと水素
ガスによる酸水素炎内で加水分解反応あるいは熱酸化反
応をさせるガラス微粒子堆積法により、ガラス原料ガス
をガラス微粒子としてガラス基板3上に堆積させる。す
なわち、ガラスの主原料である5i(J4にGeCft
a等の屈折率増加ドーパントを混合したガスをガラス原
料ガスとして用い、光ファイバ4が埋め込まれた出発石
英ガラス基板3上にガラス微粒子を堆積し、約1400
℃の高温で熱処理してGe02−5i02の透明なコア
ガラス5を形成する(第1図(d))。その後、先導波
路のコアとなるパターンの溝に形成されたコアガラス5
のみが残るようにエツチングを行なう(第1図(e))
。エツチングの方法としては、例えばCFaやCBrF
3などの反応ガスを使用する反応性スパッタエツチング
法を用いるとエツチング速度を大きくすることができる
Next, a glass particle deposition method is used in which glass raw material gas is ejected together with oxygen gas and hydrogen gas by a gas ejection means (not shown), and a hydrolysis reaction or thermal oxidation reaction is carried out in an oxyhydrogen flame caused by oxygen gas and hydrogen gas. , the frit gas is deposited on the glass substrate 3 as glass fine particles. In other words, GeCft is added to 5i (J4), which is the main raw material of glass.
Using a gas mixed with a refractive index increasing dopant such as a as a glass raw material gas, glass fine particles were deposited on the starting quartz glass substrate 3 in which the optical fiber 4 was embedded.
A transparent core glass 5 of Ge02-5i02 is formed by heat treatment at a high temperature of .degree. C. (FIG. 1(d)). After that, a core glass 5 is formed in the groove of the pattern that will become the core of the leading waveguide.
Etching is performed so that only a small portion remains (Fig. 1 (e))
. Etching methods include, for example, CFa and CBrF.
If a reactive sputter etching method using a reactive gas such as No. 3 is used, the etching rate can be increased.

次に、前記したガラス微粒子堆積法によって、5iCQ
aをガラス原料ガスとして用い、基板3上にクラッドガ
ラスとなるガラス微粒子を堆積する。
Next, by the glass fine particle deposition method described above, 5iCQ
Glass fine particles to become clad glass are deposited on the substrate 3 using a as a glass raw material gas.

また、ガラス原料ガスとしてコアの屈折率よりも低くな
るように屈折率減少ドーパントであるF3CQ3. G
eCff1a 、  PCQ3等を混合したカスヲ用い
てもよい。この場合には、軟化点が低くなるという利点
が生じる。さらに、約1400℃の高温で焼結させ透明
なりラッドガラス6を得る(第1図(f))。
Further, as a frit gas, F3CQ3. G
A mixture of eCff1a, PCQ3, etc. may also be used. In this case, the advantage arises that the softening point is lowered. Further, it is sintered at a high temperature of about 1400° C. to obtain transparent rad glass 6 (FIG. 1(f)).

以上の製造方法によって得られたY形弁岐器の一例を第
2図に示す。接続用光ファイバ4が付いているため、光
ファイバ同志の接続法として技術的に確立している放電
融着法により他の光ファイバと低損失に接続できる。ま
た、光導波路であるコアガラス5がクラッドガラス6に
埋め込まれているため水蒸気の凝縮など外部の雰囲気に
より伝送特性が変化することはない。
An example of a Y-shaped valve switch obtained by the above manufacturing method is shown in FIG. Since the connecting optical fiber 4 is attached, it can be connected to other optical fibers with low loss by the electrical discharge fusion method, which is technically established as a method for connecting optical fibers together. Furthermore, since the core glass 5, which is an optical waveguide, is embedded in the clad glass 6, the transmission characteristics will not change due to external atmosphere such as condensation of water vapor.

[発明の効果] 以上説明したように本発明によれば、次のごとき優れた
効果を発揮する。
[Effects of the Invention] As explained above, according to the present invention, the following excellent effects are exhibited.

(1)  接続用光ファイバが付いた光導波路素子を製
造することができるので、放電融着法等により他の伝送
用光ファイバと低損失に接続することができる。
(1) Since it is possible to manufacture an optical waveguide element with a connecting optical fiber, it is possible to connect it to other transmission optical fibers with low loss by a discharge fusion method or the like.

(2)  光が伝送されるコアガラスがクラッドガラス
によって埋め込まれており、空気に接していないので、
水蒸気の凝縮等の外部の雰囲気によって伝送特性が変化
することがない。
(2) The core glass through which light is transmitted is embedded in clad glass and is not in contact with air.
Transmission characteristics do not change due to external atmosphere such as water vapor condensation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の光ファイバ付ガラス膜
光導波路の製造方法の一実施例を示す工程図、第2図は
本発明により製造されたY形弁岐器の斜視図、第3図(
a)〜(f)は従来のガラス膜光導波路の製造方法を示
す工程図、第4図は従来の製造方法により作成されたガ
ラス光導波路素子の入出力部分の斜視図である。 図中、1は転写用金型、2はガラス形成元素のゾル液、
3はガラス基板、4は光ファイバ、5はコアガラス、6
はクラッドガラス、31は導波路用パターン、32はガ
イド溝である。
FIGS. 1(a) to (f) are process diagrams showing an embodiment of the method for manufacturing a glass film optical waveguide with optical fiber according to the present invention, and FIG. 2 is a perspective view of a Y-shaped valve manufactured according to the present invention. Figure, Figure 3 (
a) to (f) are process diagrams showing a conventional method for manufacturing a glass film optical waveguide, and FIG. 4 is a perspective view of an input/output portion of a glass optical waveguide element manufactured by the conventional manufacturing method. In the figure, 1 is a transfer mold, 2 is a sol solution of glass-forming elements,
3 is a glass substrate, 4 is an optical fiber, 5 is a core glass, 6
3 is a clad glass, 31 is a waveguide pattern, and 32 is a guide groove.

Claims (3)

【特許請求の範囲】[Claims] (1)ガラス基板上に凹状の光導波路パターンと接続用
光ファイバを埋め込むためのガイド溝とを形成する第1
の工程と、該ガイド溝に上記ガラス基板側面より外側に
突き出る長さの光ファイバを埋め込む第2の工程と、上
記ガラス基板上に熱酸化反応あるいは加水分解反応によ
りコアガラス微粒子を堆積し、これを高温加熱して透明
ガラス化する第3の工程と、透明ガラス化されたコアガ
ラスのうち上記光導波路パターン内に形成されたコアガ
ラス以外のコアガラスを除去する第4の工程と、上記ガ
ラス基板上に熱酸化反応あるいは加水分解反応により上
記コアガラスより低い屈折率を有するクラッドガラスの
微粒子を堆積し、これを高温加熱して透明ガラス化する
第5の工程とからなることを特徴とする光ファイバ付ガ
ラス膜光導波路の製造方法。
(1) A first step in which a concave optical waveguide pattern and a guide groove for embedding a connecting optical fiber are formed on a glass substrate.
a second step of embedding a length of optical fiber protruding outward from the side surface of the glass substrate in the guide groove; depositing core glass fine particles on the glass substrate by thermal oxidation reaction or hydrolysis reaction; a third step of heating the glass at a high temperature to make it transparent vitrified; a fourth step of removing core glass other than the core glass formed in the optical waveguide pattern from among the transparent vitrified core glass; A fifth step of depositing fine particles of clad glass having a refractive index lower than that of the core glass on the substrate by thermal oxidation reaction or hydrolysis reaction, and heating the fine particles at high temperature to make transparent glass. A method for manufacturing a glass film optical waveguide with an optical fiber.
(2)上記第1の工程が、上記光導波路パターンと上記
ガイド溝との凸型のパターンを有する転写用金型上にガ
ラス形成元素のゾル液を流し込み、加水分解反応により
ゲルガラスを得て、該ゲルガラスを乾燥処理した後、高
温熱処理を行なうことからなることを特徴とする特許請
求の範囲第1項記載の光ファイバ付ガラス膜光導波路の
製造方法。
(2) in the first step, a sol solution of a glass forming element is poured onto a transfer mold having a convex pattern of the optical waveguide pattern and the guide groove, and gel glass is obtained by a hydrolysis reaction; 2. The method of manufacturing a glass film optical waveguide with an optical fiber according to claim 1, which comprises performing a high temperature heat treatment after drying the gel glass.
(3)上記ガラス形成元素がアルコキシドであることを
特徴とする特許請求の範囲第2項記載の光ファイバ付ガ
ラス膜光導波路の製造方法。
(3) The method for manufacturing a glass film optical waveguide with an optical fiber according to claim 2, wherein the glass-forming element is an alkoxide.
JP25085485A 1985-11-11 1985-11-11 Production of optical waveguide consisting of glass film with optical fiber Pending JPS62111214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25085485A JPS62111214A (en) 1985-11-11 1985-11-11 Production of optical waveguide consisting of glass film with optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25085485A JPS62111214A (en) 1985-11-11 1985-11-11 Production of optical waveguide consisting of glass film with optical fiber

Publications (1)

Publication Number Publication Date
JPS62111214A true JPS62111214A (en) 1987-05-22

Family

ID=17213993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25085485A Pending JPS62111214A (en) 1985-11-11 1985-11-11 Production of optical waveguide consisting of glass film with optical fiber

Country Status (1)

Country Link
JP (1) JPS62111214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878727A (en) * 1988-06-30 1989-11-07 Battelle Memorial Institute Multimode channel waveguide optical coupling devices and methods
JPH06347665A (en) * 1993-06-08 1994-12-22 Nec Corp Production of optical device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752012A (en) * 1980-09-12 1982-03-27 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical branching circuit
JPS57119314A (en) * 1981-01-16 1982-07-24 Omron Tateisi Electronics Co Connecting method between optical fiber and optical waveguide
JPS58105111A (en) * 1981-12-18 1983-06-22 Nippon Telegr & Teleph Corp <Ntt> Method and device for manufacturing light guide film of glass
JPS59152235A (en) * 1983-02-15 1984-08-30 Hitachi Cable Ltd Preparation of optical fiber
JPS59202407A (en) * 1983-05-02 1984-11-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of light guide
JPS59216106A (en) * 1983-05-24 1984-12-06 Nippon Telegr & Teleph Corp <Ntt> Quartz system light guide and its manufacture
JPS6027615A (en) * 1983-07-22 1985-02-12 Hitachi Ltd Production of optical glass

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752012A (en) * 1980-09-12 1982-03-27 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical branching circuit
JPS57119314A (en) * 1981-01-16 1982-07-24 Omron Tateisi Electronics Co Connecting method between optical fiber and optical waveguide
JPS58105111A (en) * 1981-12-18 1983-06-22 Nippon Telegr & Teleph Corp <Ntt> Method and device for manufacturing light guide film of glass
JPS59152235A (en) * 1983-02-15 1984-08-30 Hitachi Cable Ltd Preparation of optical fiber
JPS59202407A (en) * 1983-05-02 1984-11-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of light guide
JPS59216106A (en) * 1983-05-24 1984-12-06 Nippon Telegr & Teleph Corp <Ntt> Quartz system light guide and its manufacture
JPS6027615A (en) * 1983-07-22 1985-02-12 Hitachi Ltd Production of optical glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878727A (en) * 1988-06-30 1989-11-07 Battelle Memorial Institute Multimode channel waveguide optical coupling devices and methods
JPH06347665A (en) * 1993-06-08 1994-12-22 Nec Corp Production of optical device

Similar Documents

Publication Publication Date Title
EP0331335B1 (en) Device including a substrate-supported optical waveguide, and method of manufacture
CA1145171A (en) Glass waveguide for optical circuit and fabrication method thereof
JP3230679B2 (en) Waveguide structure
JPS62111214A (en) Production of optical waveguide consisting of glass film with optical fiber
JPH0585882B2 (en)
JP3283922B2 (en) Manufacturing method of planar optical waveguide and obtained device
JPH02244104A (en) Glass optical wave guide
JPH09222525A (en) Production of optical waveguide
JPS59137346A (en) Manufacture of glass waveguide
JP3293411B2 (en) Method for manufacturing quartz-based glass waveguide device
JPS602905A (en) Manufacture of diffusion type glass waveguide
JPS61158303A (en) Formation of quartz optical waveguide
US20020064360A1 (en) Optical waveguide and a method for producing it
JPH05257021A (en) Production of optical waveguide
JPS6039605A (en) Production of optical waveguiding film
JPS62204207A (en) Production of quartz flat plate optical circuit
JP2618260B2 (en) Method for producing intermediate for optical fiber preform
JPH0843654A (en) Silica glass waveguide and its production
JPH05319843A (en) Production of curved optical waveguide substrate
KR20010047296A (en) Planar optic waveguide using aerosol process and method for manufacturing the same
JPS59202407A (en) Manufacture of light guide
JPH0875940A (en) Production of optical waveguide
JPS636509A (en) Manufacture of glass coupler
JPH05127032A (en) Optical waveguide and its production
JP2603652B2 (en) Optical waveguide manufacturing method