JPS59216106A - Quartz system light guide and its manufacture - Google Patents

Quartz system light guide and its manufacture

Info

Publication number
JPS59216106A
JPS59216106A JP58090100A JP9010083A JPS59216106A JP S59216106 A JPS59216106 A JP S59216106A JP 58090100 A JP58090100 A JP 58090100A JP 9010083 A JP9010083 A JP 9010083A JP S59216106 A JPS59216106 A JP S59216106A
Authority
JP
Japan
Prior art keywords
layer
quartz
waveguide
light guide
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58090100A
Other languages
Japanese (ja)
Inventor
Yasubumi Yamada
泰文 山田
Masao Kawachi
河内 正夫
Mitsuho Yasu
安 光保
Hiroshi Terui
博 照井
Morio Kobayashi
盛男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58090100A priority Critical patent/JPS59216106A/en
Publication of JPS59216106A publication Critical patent/JPS59216106A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1342Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using diffusion

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a quartz system light guide which has good consistency with fibers and is under a little influence of the roughening of a light guide surface and the deformation of a circuit shape by providing a layer which is narrower than the light quide and has a high refractive index near the boundary surface between a glass substrate and the area of a quartz system light quide on the substrate except a light input/output part. CONSTITUTION:Metal 5 for a dopant is vapor-deposited on the quartz glass substrate 1 which is polished into a specular surface and patterned in a desired shape by fine lithography. Then, an SiO2 glass particulate layer 2a is formed thereupon. The substrate is heated to diffuse the thin film 5 into the layer 2a and make the layer 2a transparent, forming a core layer 2b. Then, a desired circuit pattern is formed by reactive sputter etching. In this case, the width of the light guide is set larger than that of a dopant diffusion part 5b. Porous quartz glass is deposited thereupon and made transparent to form a clad layer 3. Consequently, the quartz system light quide which has good consistency with fibers and is under a little influence of the roughening of the light guide surface, deformation of the circuit shape, etc., is obtained.

Description

【発明の詳細な説明】 (並業上の利用分!l’j−ン 本発明は1、低損失で、かつファイバとの読会性のよい
石英糸光尋眞路とよO・その製造方法に崗するものであ
る。
[Detailed Description of the Invention] (Used in the field of business!) The present invention is characterized by 1. A quartz fiber optical fiber path with low loss and good readability with fibers, and a method for manufacturing the same. It is something that will help you.

(征米技術〉 石英カラス基板上に形成さnる石英ガラス糸光辱波路は
光ファイバとの整会性がよく、また・匿粗性にも俊IL
でいるので、光分岐−結合回路・光ζキサー等の光超信
用部品への応用が期待3才している。
(Seimei technology) The quartz glass fiber optical waveguide formed on the quartz glass substrate has good alignment with the optical fiber, and also has excellent stability and roughness.
Therefore, it is expected that it will be applied to optical super-reliable components such as optical branching and coupling circuits and optical ζ kissers.

従来、Cの棟の光導阪路は、第1図の工程で作製δr[
でい1こ。ミす、鋭面研賠さnだ石英カラス基&1上に
、5IO2糸多孔買ガラス微粒子2at堆狽aせゐし第
1図(匈〕。次に、h温(約1500 C)に加熱して
5iOz多孔質ガラスを透明化テる。この結末、810
2糸コア)@ 2 bができる〔に31図(IJ) 、
:l。つい−〇、例えは反応性スバツタエツナングによ
り回路パターン會形成Tゐ〔第1図(C〕’i。4は尋
波路界面を示す。最後に、七の上にクラッド層となる5
LCh糸多孔質ガラス勿、堆桓・透明化し石英ガラスク
ラッド層a2形成する〔第1図(d)〕。
Conventionally, the light guide path in the C building was manufactured using the process shown in Figure 1.
1 piece. Two 5IO2 threads of porous glass particles were deposited on top of the quartz glass substrate, which had been sharply polished. 5iOz porous glass is made transparent.The result is 810
2 thread core) @ 2 b can be made [Figure 31 (IJ),
:l. Finally, for example, a circuit pattern is formed by reactive substrate etching. 4 shows the waveguide interface.Finally, 5 forms a cladding layer on top of 7.
The LCh yarn is made of porous glass, and is then deposited and made transparent to form a silica glass cladding layer a2 [FIG. 1(d)].

し刀h L 、こrLらの畠′6造方法では、深いエツ
チング(4’−−モート用で5〜lOμ?n 、多モー
ド用では5tl−100μtn )が心安でめす、この
除VC生じる導波路界面4の微小な凹凸の7こめ、従来
の導波路では界面で光が敢乱さrL易く、光伝搬損失か
2 dB / trn以上めるという欠点があった。ま
た、同時に、床いエツテングにより倣組回路ノ(ターン
の形状の< ’3= rLが発生し、こ2−Lにより、
例えはY分岐回路では分岐点での損失が大さくなるとい
う問題もあった。
In the method of Hatake et al., deep etching (5 to 10μ?n for 4'-mote, 5tl to 100μtn for multimode) is safe, and the conductor that generates this removed VC can be safely etched. Due to the minute irregularities on the waveguide interface 4, conventional waveguides have the disadvantage that light is easily disturbed at the interface, resulting in an optical propagation loss of 2 dB/trn or more. At the same time, due to the floor etching, the shape of the copying circuit (<'3 = rL of the turn shape is generated, and due to this 2-L,
For example, in a Y branch circuit, there is a problem in that the loss at the branch point becomes large.

(発明の目的ン 不発明は、これらのへ点を除去丁4)ために提案δtL
1ζもので、善波路内の屈伏率分布r制御することによ
り、ファイバとの読会性がよく、7J)つ、導波路界面
の九fL、2よび回路形状のくず2’tの!−譬の少な
い石英系光導波路ヶ得ることケ目的とするものである。
(The purpose of the invention is to remove these points) to propose δtL
1ζ, by controlling the bending rate distribution r in the waveguide, it has good readability with the fiber, 7J), 9fL at the waveguide interface, 2 and the circuit shape debris 2't! - The purpose is to obtain a quartz-based optical waveguide with fewer defects.

(兄り」の猶g) 上孔の目的?達成づ−る7c、め、本光り」はカラス基
板上の石英糸光専波路に2いて、該光導波路の九人出力
部ン除く頭載の基板との昇面句近に濾光導波路よりも幅
の狭い扁屈折重層ヶ収りたことt竹位と1−る石英糸光
専波路ケ元明の蒙旨とj−ゐものである。
(An older brother's grace) What is the purpose of Kamikochi? Achieving 7c, this light is placed in the quartz fiber optical waveguide on the glass substrate, and the filtering waveguide is placed close to the top surface of the substrate, excluding the nine output parts of the optical waveguide. It is also the case that the narrow oblate refractive layer is accommodated in the bamboo position and the quartz fiber optical wave path is the same as the original light of Yuanmei.

さらに不発明はカラス基板上にカラス形成原料カスの熱
歌化りゐいは火炎加水分解反応により多孔寅力イス鳩葡
堆積しに後、加熱して透明カラス化し、し71)る後エ
ツテングにr ’) Qr ”It。
Furthermore, the present invention is to heat the raw material residue for forming a glass on a glass substrate by depositing a porous glass layer through a flame hydrolysis reaction, and then heating it to form a transparent glass, and then etching it. r') Qr ”It.

光回路パターンヶ形成する石英糸光縛波路の製造方法Q
こ2いて、多孔質カラス層の堆積に先たち、ドーパント
用金桟膜をカラス基板上に形成し、エツチングによりハ
[望の眼光回路パター ンに対応″′J′る)ψ状のド
ーパント用金楓腺パターンr形成して、a−<こと勿%
徴とす/:)石英系光害波路の製造方法を発明の秩旨と
するものである。
Manufacturing method Q of quartz fiber optical tied wave path forming optical circuit pattern
2. Prior to the deposition of the porous glass layer, a dopant film is formed on the glass substrate, and etched to form a ψ-shaped dopant film corresponding to the desired optical circuit pattern. Gold maple gland pattern r is formed, a-
The purpose of the invention is to provide a method for manufacturing a quartz-based light-polluting waveguide.

次VC不づれ明の実施例會醗付図面について説明する。Next, the drawings of the embodiment of VC Fuzuremei will be explained.

なお実施例は一つの例示であって、本発明の柘神會逸脱
しない範囲で、独々の変更あるいは改良葡行いうること
は追うまでもない。
It should be noted that the embodiments are merely illustrative, and it goes without saying that individual changes or improvements can be made without departing from the scope of the present invention.

第2図は不発明の実施例の製造方法の工程欲ψj図忙ボ
フー。疏聞ψ11むり、7こ石英ガラス基板lの上に、
ドーパント用金属博膜5(例えはGeJi蒸XJ法める
いはスパック法号で5ooi〜2000^の厚ちにつQ
ブる〔第2図(a)〕。ついで、通常のW、帷すングラ
ノイ技術を用いてドーパント用金属薄膜5勿lツ[鼠の
形状にパターン化する〔第2図(b) ) 0次に、こ
の上にカラス形成原料カスの熱鹸化あるいは火炎加水分
解反応により合成された8102糸多孔賀力ラス微粒す
胎2ai形成する〔第2凶(C)〕。その後、基板ケカ
ね熱してS i02糸多孔負カラス微粒子層2aへのド
ーパントi属薄)模5の拡散ならひに、8102糸多孔
買力ラス微粒す層2.v逍明化を行ないドーパント拡散
部Is 5 b $−よひ5102糸コア層2b’に形
成するし第2図(d> 〕。仄いで、反ル6性スバツタ
エツナンク゛vCxv、t”tr象の回路バクーン?形
成する。この除、エツチングV(より形成丁ゐ導波路の
謳はドーパント拡散部5bの輔より広くとるし第2図(
e」〕。最佐V’−z この上に、多孔質石英ガラスr
堆積し、透明化ラーることvcより、石英ガラスクラッ
ド層3?形成する〔第2図(f)〕。
FIG. 2 is a process flow chart of the manufacturing method of the non-inventive embodiment. On a 7-piece quartz glass substrate with a diameter of ψ11 mm,
Metal film 5 for dopants (for example, GeJi vapor XJ method or spac method number 500~2000^ thickness)
[Figure 2 (a)]. Next, a 5-layer metal thin film for dopant is patterned into the shape of a mouse using the usual W and granite technique (Fig. 2(b)). 8102 fibers synthesized by saponification or flame hydrolysis reaction form microscopic grains (second stage (C)). Thereafter, the substrate is heated to diffuse the dopant into the Si02 porous negative glass fine particle layer 2a, and then the 8102 yarn porous negative glass fine particle layer 2a is diffused. A dopant diffusion region Is 5 b is formed in the yarn core layer 2b' by lightening, as shown in Fig. 2 (d>). The waveguide is formed wider than the dopant diffusion region 5b by etching V (see Fig. 2).
e”]. Saisa V'-z On top of this, porous quartz glass r
The quartz glass cladding layer 3 is deposited and transparentized from the VC layer. form [Fig. 2(f)].

本不発による力紙によt*LIf、第3凶に示す屈折十
分布が侍も7’lる。第3図(b)は紀3凶(a)のA
 A’曲での屈折率分布でりゐ。通常、コアJ@2bの
屈折率はクラッド層3及び石英ガラス基板lのそ/1.
より1係程度太きくしである。1だ、ドーパント拡散部
5bは、コア層の他の部分の屈折率よりj艮太3%程度
大きくする。第3図(C)は、第3[囚(a)のBB’
面での屈折率分布である。こ扛らより、4を波路にあ・
リーゐ光パワーは第3図(a)の光パワー分7rXi中
心6′で示すように、横方向には゛°甲心刺近し集中し
、厚さ方向にはコア層2bの基板111111に集中す
る。このため、導波光は非対称ではめるか、等談路界面
4の荒tし及び微δjI11回路パターンの小完全性の
影害勿受けにくく低損失導波路か侍らrLる。
Due to the power of this misfire, t*LIf, the samurai also has 7'l of refraction as shown in the third attack. Figure 3 (b) is A of Ki 3 Kyo (a).
The refractive index distribution at the A' curve. Usually, the refractive index of the core J@2b is 1/1 that of the cladding layer 3 and the quartz glass substrate l.
The comb is about 1 comb thicker. 1, the dopant diffusion portion 5b has a refractive index approximately 3% larger than the refractive index of other portions of the core layer. Figure 3 (C) shows the BB' of the third prisoner (a).
This is the refractive index distribution on the surface. From here, put 4 on the wave path.
As shown by the optical power 7rXi center 6' in FIG. 3(a), the lead optical power is concentrated in the lateral direction near the core of the core, and concentrated in the thickness direction at the substrate 111111 of the core layer 2b. do. For this reason, the guided light is asymmetrically fitted, or a low-loss waveguide is formed, which is less susceptible to the effects of the roughness of the equidistant interface 4 and the small integrity of the circuit pattern.

第4図は、不発明の実施例でめる石英系光導波路の上凹
図葡示す。導波路コア層2bは深さ。
FIG. 4 shows a top-concave diagram of a silica-based optical waveguide according to an embodiment of the present invention. The waveguide core layer 2b has a depth.

幅ともVC50Pmの多モード用であり、ドーノくント
拡散都5bはG67.(拡散したものでろる。ドーパン
ト層は轡波路瑞部近傍では除去して2く。
Both widths are for multi-mode use with VC50Pm, and Dornokunto diffusion capital 5b is G67. (The dopant layer is probably a diffused one.The dopant layer is removed near the edge of the wave path.)

また、F〜パント層の端部は図示のようにゆるやかなテ
ーバ状にブーる。ドーパント層部分での導波光パワー分
布は桿波路幅の中心付近に集中fるので、導波路界11
114の凹凸の影りdは少ない。
Further, the ends of the F~ punt layer are gently tapered as shown in the figure. The power distribution of the guided light in the dopant layer is concentrated near the center of the waveguide width, so the waveguide field 11
The shadow d of the unevenness of 114 is small.

ト、<ント拡散都5bのある部分では元パワーが基板1
llllに集中しているが、導波路の両端付近では、ド
ーパント拡散部5bはないので、導波光は導波路中に対
称的に分布する。このため、光ファイバのパワー分布と
の輩曾住か良いので接続が効率よく容易に行なえる。こ
の導波路の伝搬損失はドーパント拡散M5ヒ〒會む部分
では0.2dH/CInと低損失であった。
In a certain part of the diffusion capital 5b, the original power is on the board 1.
However, since there is no dopant diffusion section 5b near both ends of the waveguide, the guided light is distributed symmetrically in the waveguide. Therefore, the power distribution is very similar to that of the optical fiber, so the connection can be made efficiently and easily. The propagation loss of this waveguide was as low as 0.2 dH/CIn in the portion where the dopant diffusion M5 meets.

第5図は、本発明の他の実施ψりのY分岐回路の上面図
を示す。導波路6から入射した光は、導波路7と導波路
8とに分岐さfLる。導波路6及び7は線幅50pη2
.導波路8は分岐直後の線幅が30μm″′Cあり、曲
がυ部分へて、線幅50μmに広がる。分岐角は3°で
ある。ドーパント拡散1155bはGe ’<拡散した
ものであり、線幅は導波路6及び7では10μm1分岐
した部分は3μmでるる。ドーパント拡散部5bのパタ
ーンの端はゆるいテーパーとなっている。第6図はドー
パント拡散部5bケつけた本発明の導波路内でのパワー
分布とドーパント拡散部5bのない従来の棉彼路内での
分布との比較會示している。第6図(a)のドーパント
拡散部5btつり一1j場会には分岐点9Vこ近つくと
、導波路全体に分布してい7ζ光ハワーは中心付近に集
中した俊、2つの山勿もつ1こ分布になる。導波路の分
岐点9では、すでに光のパワーは2つに分離しているた
め、エツナング過程で分岐角のなまりが2こっても、こ
の影響ははとんと受けない。分岐点9會通過し1こ後、
4波路7及び8r伝搬する光は七のパワー分布業、ゆる
やかに導波路全体にひろけつつ、出力端に近つく。出力
端では、パワー分布は導波路内で対称的になるので、フ
ァイバとの接続効率はよい。−力、[有]層5勿つけな
い第6図(b)に示す従来の場合には、光のパワーが導
波路全体に広がった1ま分岐点9に達する。この1ζめ
、分岐点9のなまt)eCよる散乱損失が生ずる。比5
図に示し1ζ不実施例の場合、分岐による損失はo、2
aB、 i yζ、分岐の分配比は2:1であった。比
較として、Ge層のない第6図(1))の構造の場合、
分岐による損失は2.4 (113でめった。
FIG. 5 shows a top view of a Y branch circuit according to another embodiment of the present invention. The light incident from the waveguide 6 is branched into a waveguide 7 and a waveguide 8 fL. Waveguides 6 and 7 have a line width of 50pη2
.. The waveguide 8 has a line width of 30 μm''C immediately after branching, and when the curve reaches the υ portion, the line width widens to 50 μm.The branching angle is 3°.The dopant diffusion 1155b is Ge'<diffused, The line width is 10 μm for the waveguides 6 and 7, and 3 μm for the branched portion.The end of the pattern of the dopant diffusion portion 5b is gently tapered. Fig. 6 shows the waveguide of the present invention with the dopant diffusion portion 5b. This figure shows a comparison between the power distribution within the dopant diffusion section 5b and the distribution within the conventional cross section without the dopant diffusion section 5b. When approaching this point, the 7ζ light power distributed throughout the waveguide is concentrated near the center, and the power of the light becomes one with two peaks.At the branching point 9 of the waveguide, the light power has already been divided into two. Because they are separated, even if the branching angle is rounded by 2 during the etching process, this effect will not be affected at all.After passing 9 branching points and 1
The light propagating through the four waveguides 7 and 8r gradually spreads over the entire waveguide and approaches the output end due to the power distribution of the waveguides 7 and 8r. At the output end, the power distribution is symmetrical within the waveguide, so the connection efficiency with the fiber is good. In the conventional case shown in FIG. 6(b) in which the optical power layer 5 is not attached, the optical power reaches a branch point 9 where the optical power spreads over the entire waveguide. A scattering loss occurs due to this 1ζ, the raw value t)eC of the branch point 9. ratio 5
In the case of the 1ζ non-embodiment shown in the figure, the loss due to branching is o, 2
The distribution ratio of aB, i yζ, and branches was 2:1. For comparison, in the case of the structure shown in FIG. 6 (1) without a Ge layer,
The loss due to branching was 2.4 (rare at 113).

(発ψjの効果ン 以上欧り」したように、不先明の石英糸光専波路の製造
法によ7’Lばパターン化の容易なGe Ill!の形
状勿調節することに↓ジ導波路内での元パワー分布の制
御が行なえるので、Hr望の回路パターン葡形成するエ
ツナング加工時に生ずる導波路界面の荒n、回路形状の
なまり寺の損失費因の影響ケ受けない石英糸九導波路が
得られる。
(As the effect of radiation ψj has been surpassed, it is possible to adjust the shape of Ge Ill!, which is easy to pattern, by using the unexplored manufacturing method of quartz fiber optical waveguide.) Since the original power distribution within the waveguide can be controlled, the quartz yarn is unaffected by the roughness of the waveguide interface that occurs during the etching process to form the desired circuit pattern, and the loss cost caused by the roundness of the circuit shape. A waveguide is obtained.

1だ、ファイバとの接続部では、光のパワー分布の対称
性勿保つこともできるので高い接!効率が得られる。
1. At the connection with the fiber, it is possible to maintain the symmetry of the optical power distribution, so the connection is high! Gain efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の石英系光導波路の製造方法、第2図は本
兄四の石英糸光専波路の製造方法、第3図は本発明の製
造方法により製造した光導波路の屈折率分布、第4図は
不発明の実施例である直膨光導波路の平面図、第5図は
本発明の他の実施例でめゐY分岐回路の平面図、第6図
は不発明の実施例のY分岐回路内での光パワー分布と従
来の方法で作ったY分岐回路でのパワー分布の比較ケ示
す凶である。 l・・・・・・・・石英ガラス基板 2a・・・・・コア用多孔負ガラス微粒子層2b・・・
・・・S10□系ガラスコア層3・・・・・・・・・石
英ガラスクランド層4・・・・・・・・・導波路界面 5・・・・・・・・・ドーパント用金属薄膜5b・・・
・・・ドーパント拡散部 6′・・・・・・・・・光パワー分布中心6.7.8・
・・導波路 9・・・・・・・・・分岐点 特許出願人 日本電領電話公社 第1図    第2図 第3図 (b) (c)  A′ 第4図 b
FIG. 1 shows a conventional method for manufacturing a silica-based optical waveguide, FIG. 2 shows a method for manufacturing a quartz fiber optical waveguide according to the present invention, and FIG. 3 shows a refractive index distribution of an optical waveguide manufactured by the manufacturing method of the present invention. FIG. 4 is a plan view of a direct expansion optical waveguide according to an embodiment of the invention, FIG. 5 is a plan view of a main Y branch circuit according to another embodiment of the invention, and FIG. 6 is a plan view of a main Y branch circuit according to an embodiment of the invention. A comparison of the optical power distribution in the Y branch circuit and the power distribution in the Y branch circuit made by the conventional method shows the problem. l......Quartz glass substrate 2a...Porous negative glass fine particle layer 2b for core...
... S10□-based glass core layer 3 ...... Quartz glass ground layer 4 ...... Waveguide interface 5 ...... Metal thin film for dopant 5b...
. . . Dopant diffusion section 6' . . . Center of optical power distribution 6.7.8.
...Waveguide 9...... Branch point Patent applicant Japan Telecommunications Corporation Figure 1 Figure 2 Figure 3 (b) (c) A' Figure 4 b

Claims (1)

【特許請求の範囲】 (υ ガラス基板上の石英系光導波路VLVいて、該元
尋波路の光人出力都r除く面域の基板との界凹句近に咳
光轡波路Lvも幅の伏い重油[r重層を収すノこことt
付込と1−る石英禾元尋波路。 (2)ガ、ラス基板上tCガ2ス形成原料〃スの熱版化
おるいは火炎加水分解反応VCより多孔負カラス層ケ堆
槓した後、加熱して透明カラス化し、し〃する後エツチ
ングにより )JT望の光回路パターンを形成する石英
糸光導彼路の製造方法VCυいて、多孔質カラスJ偕の
堆積に先7i:′!;I、ドーパント用金m膜ケガラス
基板上に形成し、エツテングによりbr望の該光回路パ
ターンに対応する形状のドーパント用金机1俣パターン
ケ形成してxy (ことr特徴とする石英ホ光専波路の
製造方法。
[Scope of Claims] (υ There is a quartz optical waveguide VLV on a glass substrate, and the optical waveguide Lv also has a width in the vicinity of the boundary with the substrate in a surface area excluding the optical output capacitor r of the original waveguide. heavy oil
Tsukume and 1-ru Quartz Hemoto Jinpaji. (2) After depositing a porous negative glass layer by heat printing or flame hydrolysis reaction of the tC gas forming raw material on the glass substrate, heat it to form a transparent glass, and then dry it. By etching ) How to manufacture a quartz fiber light guide path to form the desired optical circuit pattern VCυ, the porous glass layer is deposited 7i:'! ; I. A gold film for dopant is formed on a glass substrate, and a one-round pattern for dopant is formed in a shape corresponding to the desired optical circuit pattern by etching. Method of manufacturing wave channels.
JP58090100A 1983-05-24 1983-05-24 Quartz system light guide and its manufacture Pending JPS59216106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58090100A JPS59216106A (en) 1983-05-24 1983-05-24 Quartz system light guide and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58090100A JPS59216106A (en) 1983-05-24 1983-05-24 Quartz system light guide and its manufacture

Publications (1)

Publication Number Publication Date
JPS59216106A true JPS59216106A (en) 1984-12-06

Family

ID=13989098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58090100A Pending JPS59216106A (en) 1983-05-24 1983-05-24 Quartz system light guide and its manufacture

Country Status (1)

Country Link
JP (1) JPS59216106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111214A (en) * 1985-11-11 1987-05-22 Hitachi Cable Ltd Production of optical waveguide consisting of glass film with optical fiber
EP0476688A2 (en) * 1990-09-20 1992-03-25 Sumitomo Electric Industries, Limited Quartz optical waveguide and method for producing the same
EP1589359A1 (en) * 2003-01-30 2005-10-26 Sony Corporation Optical waveguide and optical transmitting/receiving module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211103A (en) * 1981-06-23 1982-12-24 Nippon Telegr & Teleph Corp <Ntt> Production for optical waveguide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211103A (en) * 1981-06-23 1982-12-24 Nippon Telegr & Teleph Corp <Ntt> Production for optical waveguide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111214A (en) * 1985-11-11 1987-05-22 Hitachi Cable Ltd Production of optical waveguide consisting of glass film with optical fiber
EP0476688A2 (en) * 1990-09-20 1992-03-25 Sumitomo Electric Industries, Limited Quartz optical waveguide and method for producing the same
EP1589359A1 (en) * 2003-01-30 2005-10-26 Sony Corporation Optical waveguide and optical transmitting/receiving module
EP1589359A4 (en) * 2003-01-30 2007-11-14 Sony Corp Optical waveguide and optical transmitting/receiving module

Similar Documents

Publication Publication Date Title
JP5124666B2 (en) Method and apparatus for high density coupling of optical fiber and planar optical waveguide
JP2809517B2 (en) Branch and multiplex optical waveguide circuit
JP3184426B2 (en) Optical waveguide circuit
US8380023B2 (en) Waveguide-type optical circuit
JPS59216106A (en) Quartz system light guide and its manufacture
JPH04128704A (en) Quartz optical waveguide and production thereof
WO2012063562A1 (en) Optical waveguide and arrayed waveguide grating
JPH0527132A (en) Production of waveguide type optical parts
JP5327897B2 (en) Optical waveguide and arrayed waveguide diffraction grating
JPH095549A (en) Optical circuit and method for manufacturing the same
WO2011148777A1 (en) Optical waveguide and arrayed waveguide grating
JP4732806B2 (en) Quartz-based Y-branch optical circuit and manufacturing method thereof
JPH0756032A (en) Glass waveguide and its production
JPH09297235A (en) Optical waveguide and its production as well as optical waveguide module using the same
JPH0720336A (en) Structure of optical waveguide and its production
JPH0511130A (en) Y-branch optical waveguide path
WO2023243018A1 (en) Silicon photonic circuit and method for manufacturing silicon photonic circuit
JP2001033642A (en) Optical waveguide structure
JP5053301B2 (en) Waveguide type optical circuit
JP2004240064A (en) Spot size converting optical waveguide, optical module and waveguide type optical circuit
JP5019649B2 (en) Waveguide type optical circuit
JPH04179905A (en) Waveguide type optical branching element
JPH0618734A (en) Waveguide type optical branch coupler
KR100936345B1 (en) Optical splitter and method for manufacturing optical splitter
JP2001228349A (en) Mode field diameter conversion optical waveguide and its manufacturing method