JPH0756032A - Glass waveguide and its production - Google Patents

Glass waveguide and its production

Info

Publication number
JPH0756032A
JPH0756032A JP20059093A JP20059093A JPH0756032A JP H0756032 A JPH0756032 A JP H0756032A JP 20059093 A JP20059093 A JP 20059093A JP 20059093 A JP20059093 A JP 20059093A JP H0756032 A JPH0756032 A JP H0756032A
Authority
JP
Japan
Prior art keywords
waveguide
core waveguide
core
glass
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20059093A
Other languages
Japanese (ja)
Inventor
Toshihide Tokunaga
利秀 徳永
Hiroaki Okano
広明 岡野
Toshikazu Kamoshita
敏和 鴨志田
Hideo Otsuki
秀夫 大槻
Keiichi Higuchi
恵一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP20059093A priority Critical patent/JPH0756032A/en
Publication of JPH0756032A publication Critical patent/JPH0756032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a good propagation characteristic with low loss by preventing the deformation of core waveguides to be generated at the time of sintering porous glass. CONSTITUTION:The core waveguide parts 1a which largely vary in the shrinkage rate of the porous glass at the time of sintering between one side and the other side of the core waveguides 1 are provided with dummy core waveguide parts 6 which prevent the deformation of the core waveguide parts 1a near these parts. The dummy waveguide parts 6 are disposed symmetrically with the core waveguide parts 1a and the positrons and sizes thereof are so considered as not to affect the desired propagation characteristics of the glass waveguides. Even if anisotropic force tends to act on the core waveguide parts 1a, this force is blocked by the dummy core waveguide parts 6 and the influence on the core waveguide parts 1a is shut off. The core waveguide parts 1a are, therefore, not subjected to deformation even at the time of forming clad layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガラス導波路及びその製
造方法に係り、特にコア導波路に変形のないガラス導波
路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass waveguide and a method for manufacturing the same, and more particularly to a glass waveguide having no deformation in a core waveguide.

【0002】[0002]

【従来の技術】図4は従来のガラス導波路の断面構造で
ある。このガラス導波路を製造するには、ガラス基板3
上に基板よりも屈折率の高いコアガラス膜を形成し、ホ
トリソグラフィ、反応性イオンエッチングによりコア導
波路1を形成した後、多孔質ガラスを基板3上に堆積さ
せ、焼結により透明なクラッドガラス層2を形成する。
なお、コア導波路1は、通常8×8μm 又は6×6μm
の矩形断面をもつように形成される。
2. Description of the Related Art FIG. 4 shows a cross-sectional structure of a conventional glass waveguide. To manufacture this glass waveguide, the glass substrate 3
A core glass film having a refractive index higher than that of the substrate is formed thereon, and after forming the core waveguide 1 by photolithography and reactive ion etching, porous glass is deposited on the substrate 3 and a transparent clad is formed by sintering. The glass layer 2 is formed.
The core waveguide 1 is usually 8 × 8 μm or 6 × 6 μm
Is formed to have a rectangular cross section.

【0003】ところで、ガラス導波路に形成されるコア
導波路1は、直線状の単純パターンで構成されるより
も、むしろ複雑な回路パターンで構成され、その複雑な
回路パターン上にクラッドガラスが形成されるものが多
い。例えば、図5に示すパターンは、Y分岐構造をもっ
た1×16分岐ガラス導波路パターン4であるが、この
パターン上に約25μm のクラッドガラスが形成され
る。この厚さのクラッドガラスを形成するためには、厚
さ約250〜350μm の多孔質ガラスを堆積させて焼
結する必要がある。
By the way, the core waveguide 1 formed in the glass waveguide is composed of a complicated circuit pattern rather than a linear simple pattern, and a clad glass is formed on the complicated circuit pattern. There are many things that are done. For example, the pattern shown in FIG. 5 is a 1 × 16-branch glass waveguide pattern 4 having a Y-branch structure, and a cladding glass of about 25 μm is formed on this pattern. In order to form a clad glass having this thickness, it is necessary to deposit and sinter porous glass having a thickness of about 250 to 350 μm.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述したよう
に多孔質ガラスを堆積させて焼結すると、多孔質ガラス
の厚さが250〜350と厚いので、多孔質ガラスが基
板の径方向(厚さと直交する方向)と軸方向(厚さ方
向)とに大きく収縮することになる。このとき、特に図
5のa−a′線上にあるY分岐部の根本近くのコア導波
路部5は、その断面を示すと図6のように変形すること
があり、その大きさは内側へ約1°近くも傾斜する場合
がある。その結果、一部の光がコアより漏れて損失増に
なったり、あるいは均等光分配されなかったりして各ポ
ート間の光出力がバラツクという欠点があった。
However, when the porous glass is deposited and sintered as described above, the thickness of the porous glass is as thick as 250 to 350. And a large amount of shrinkage occurs in the axial direction (thickness direction). At this time, in particular, the core waveguide portion 5 near the root of the Y-branch portion on the line aa 'in FIG. 5 may be deformed as shown in FIG. There is a case where it is inclined by about 1 °. As a result, some of the light leaks from the core to increase the loss, or the light is not evenly distributed, and there is a drawback that the optical output between the ports varies.

【0005】また、このことは何も光分岐結合器だけの
問題ではなく、マッハツェンダー形や図7に示すような
ガラス導波路で構成される光合分波器にも当てはまる。
すなわち、コア導波路1間の接近部(b−b′線上)
が、光分岐結合器の場合と同様に図6のように変形する
ことがある。この変形により、例えば波長1.3μm と
1.55μm 光の合分波特性において、中心波長に±2
0nmと大きなズレが生じ、波長1.3μm の光出射側に
波長1.55μm の光が大きく洩れ込むという問題があ
った。
This is not limited to the optical branching / coupling device, but also applies to the Mach-Zehnder type and the optical multiplexer / demultiplexer composed of the glass waveguide shown in FIG.
That is, the approaching portion between the core waveguides 1 (on the line bb ')
However, it may be modified as shown in FIG. 6 as in the case of the optical branching / coupling device. As a result of this modification, for example, in the multiplexing / demultiplexing characteristics of the wavelengths of 1.3 μm and 1.55 μm, the center wavelength is
There was a problem that a large deviation of 0 nm occurred and a light of wavelength 1.55 μm greatly leaked to the light emission side of wavelength 1.3 μm.

【0006】このようにコア導波路間が接近している部
分のコア導波路は、クラッドガラス形成時に変形を受け
るため、クラッドガラス形成時においてもコア導波路が
変形しない技術の開発が望まれていた。
As described above, since the core waveguide in the portion where the core waveguides are close to each other is deformed during the formation of the clad glass, it is desired to develop a technique in which the core waveguide is not deformed even during the formation of the clad glass. It was

【0007】本発明の目的は、前記した従来技術の欠点
を解消し、低損失で、伝搬特性の良好なガラス導波路及
びその製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a glass waveguide having a low loss and good propagation characteristics, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明のガラス導波路
は、コア導波路とこれを覆うクラッド層とを基板上に形
成したガラス導波路において、コア導波路の近傍に、ク
ラッド層の形成時に該コア導波路の変形を防止するダミ
ーコア導波路を有しているものである。
The glass waveguide of the present invention is a glass waveguide in which a core waveguide and a cladding layer covering the core waveguide are formed on a substrate, and when the cladding layer is formed in the vicinity of the core waveguide. It has a dummy core waveguide for preventing deformation of the core waveguide.

【0009】この場合において、ダミーコア導波路がコ
ア導波路に対して対称に設けられていたり、基板が石英
ガラス基板または表面に石英系ガラス膜を設けたシリコ
ン基板であることが好ましい。
In this case, it is preferable that the dummy core waveguide is provided symmetrically with respect to the core waveguide, or the substrate is a quartz glass substrate or a silicon substrate having a quartz glass film on the surface.

【0010】また、本発明のガラス導波路の製造方法
は、基板上にコア導波路を形成すると共に、その近傍に
多孔質ガラスの焼結時にコア導波路の変形を防止するダ
ミーコア導波路を形成し、これらコア導波路及びダミー
コア導波路を形成した基板上に多孔質ガラスを形成し、
これを焼結して透明なクラッド層を形成するようにした
ものである。
Further, according to the method of manufacturing a glass waveguide of the present invention, the core waveguide is formed on the substrate, and the dummy core waveguide for preventing the deformation of the core waveguide during the sintering of the porous glass is formed in the vicinity thereof. Then, a porous glass is formed on the substrate on which the core waveguide and the dummy core waveguide are formed,
This is sintered to form a transparent clad layer.

【0011】[0011]

【作用】コア導波路の形成後、クラッド層を形成するた
めに多孔質ガラスをコア導波路上に堆積させて多孔質ガ
ラスを焼結ガラス化させる場合、基板上に堆積するガラ
スの堆積量がコア導波路の一側と他側とで異なっている
と、ガラス化による収縮量が異なり、コア導波路の堆積
量の少ない側よりも堆積量の多い側の収縮量が大きくな
って、コア導波路に異方的な力が働き、それによりコア
導波路の変形が生じるものと推定される。
After the core waveguide is formed, when the porous glass is deposited on the core waveguide to form the clad layer and the porous glass is sintered and vitrified, the deposition amount of the glass deposited on the substrate is If the one side and the other side of the core waveguide are different, the amount of shrinkage due to vitrification will be different, and the amount of shrinkage on the side of the core waveguide with a large amount of deposition will be larger than that on the side of the core waveguide with a smaller amount of deposition. It is presumed that an anisotropic force acts on the waveguide, which causes deformation of the core waveguide.

【0012】本発明では、ガラス化による収縮量が大き
く異なるような、コア導波路間の間隔の狭い部分のコア
導波路の近傍にダミーコア導波路を設けてあるので、コ
ア導波路に異方的な力が働こうとしても、その力はダミ
ーコア導波路によって阻止され、コア導波路への影響が
断たれる。このためクラッド層形成時においてもコア導
波路は変形を受けない。
In the present invention, since the dummy core waveguide is provided in the vicinity of the core waveguide in the portion where the interval between the core waveguides is narrow such that the amount of shrinkage due to vitrification greatly differs, the core waveguide is anisotropic. Even if any force is exerted, the force is blocked by the dummy core waveguide and the influence on the core waveguide is cut off. Therefore, the core waveguide is not deformed even when the clad layer is formed.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1はY分岐構造をもった1×16分岐ガラス導波
路であり、図2は図1のc−c′線断面図である。この
ガラス導波路は、石英ガラス基板3上にコア導波路1が
形成され、その上にコア導波路1を覆うクラッド層2を
ガラス焼結により形成してある。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a 1 × 16 branch glass waveguide having a Y-branch structure, and FIG. 2 is a sectional view taken along the line cc ′ of FIG. In this glass waveguide, a core waveguide 1 is formed on a quartz glass substrate 3, and a clad layer 2 covering the core waveguide 1 is formed on the core waveguide 1 by glass sintering.

【0014】この基板3上に形成されたコア導波路1の
うち、Y分岐部の根本のコア導波路部1aにクラッド層
のガラス焼結時にコア導波路部1aに働く力によりコア
導波路部1aが変形するのを防止するダミーコア導波路
6を設けている。
In the core waveguide 1 formed on the substrate 3, the core waveguide portion 1a at the base of the Y branch portion is subjected to the force exerted on the core waveguide portion 1a during the glass sintering of the clad layer to form the core waveguide portion. A dummy core waveguide 6 is provided to prevent the deformation of 1a.

【0015】このダミーコア導波路6は、図示例では入
力段の1×2分岐部のコア導波路部1aでは、その両外
側にコア導波路部1aに対して対称に設けてある。ま
た、その後段の1×4分岐部では、これを構成する各1
×2分岐部の片外側に設けている。なお、片外側に設け
たダミーコア導波路6は、各1×2分岐部のコア導波路
部1aに対しては非対称に設けられることになるが、1
×4分岐部全体からみれば対称に設けられていることに
なる。
In the illustrated example, the dummy core waveguide 6 is provided symmetrically with respect to the core waveguide portion 1a on both sides of the core waveguide portion 1a of the 1 × 2 branch portion of the input stage. In the 1 × 4 branch section at the subsequent stage, each 1
It is provided on the outside of one of the × 2 branches. It should be noted that the dummy core waveguide 6 provided on one outer side is provided asymmetrically with respect to the core waveguide portion 1a of each 1 × 2 branch portion.
Seen from the entire × 4 branch portion, they are provided symmetrically.

【0016】これらのダミーコア導波路6は、ガラス導
波路の目的とする伝搬特性に影響のない場所、大きさに
設ける。すなわち、ダミーコア導波路の設置場所は、コ
ア導波路の一側と他側とでガラス堆積量が大きく異なっ
て変形を受けやすいY分岐部の根本のコア導波路部1a
の近傍が最適である。また、ダミーコア導波路の大きさ
は、コア導波路部1aの矩形断面8×8μm 又は6×6
μm と同じ大きさでもよいが、好ましくは幅、高さ共に
コア導波路部1aよりは大きな断面で構成して、それ自
体で変形に耐えられるようにする。特に、幅をコア導波
路部1aの幅の1.5倍以上とすることにより変形をほ
ぼ完全に抑えることができる。
These dummy core waveguides 6 are provided at locations and sizes that do not affect the intended propagation characteristics of the glass waveguide. That is, the installation location of the dummy core waveguide is such that the amount of glass deposited on one side of the core waveguide is greatly different from that on the other side, and the core waveguide portion 1a at the base of the Y-branch portion is susceptible to deformation.
The optimum is near. Also, the size of the dummy core waveguide is 8 × 8 μm or 6 × 6 rectangular cross section of the core waveguide portion 1a.
The size may be the same as μm, but preferably, the width and the height are formed to have a cross section larger than that of the core waveguide portion 1a, so that the core itself can withstand deformation. In particular, the deformation can be almost completely suppressed by setting the width to be 1.5 times or more the width of the core waveguide portion 1a.

【0017】このようなダミーコア導波路6を持つY分
岐ガラス導波路のc−c′線断面を図2に示す。ダミー
コア導波路6を近傍に有すると、コア導波路部1aに異
方的な力が働こうとしても、その力はダミーコア導波路
6によって阻止され、コア導波路1への影響が断たれ
る。このためクラッド層2の形成時においてもコア導波
路は変形を受けず、クラッド2層の形成後でもコア導波
路1aの形状は保たれる。
FIG. 2 shows a cross section taken along the line cc 'of the Y-branch glass waveguide having the dummy core waveguide 6 as described above. When the dummy core waveguide 6 is provided in the vicinity, even if an anisotropic force acts on the core waveguide portion 1a, the force is blocked by the dummy core waveguide 6 and the influence on the core waveguide 1 is cut off. Therefore, the core waveguide is not deformed even when the cladding layer 2 is formed, and the shape of the core waveguide 1a is maintained even after the cladding 2 layer is formed.

【0018】次に、上述したダミーコア導波路6を設け
たガラス導波路の製造方法を具体的に説明する。3イン
チ径で1mm厚の石英ガラス基板の上に、電子ビーム蒸着
法でTiO2 −SiO2 コアガラス膜を8μm 形成し
た。ホトリソグラフィ、反応性イオンエッチングで8×
8μm 断面を持ち、かつ図1に示すような1×16分岐
をもつコア導波路パターンを形成した。この時、併せて
ダミーコア導波路6も形成した。ダミーコア導波路6は
16×8μm 断面を持ち、各コア導波路部1aから20
μm 離した。その後、火炎堆積法で多孔質ガラスを30
0μm 形成し、1300℃で焼結し、24μm 厚のP2
5 −B2 3 −SiO2 クラッドガラスを形成して、
1×16分岐ガラス導波路を試作した。比較のため、上
記と同じ条件でダミーコア導波路のないガラス導波路も
製作した。
Next, a method of manufacturing the glass waveguide provided with the above-mentioned dummy core waveguide 6 will be specifically described. A TiO 2 —SiO 2 core glass film of 8 μm was formed on a quartz glass substrate having a diameter of 3 inches and a thickness of 1 mm by an electron beam evaporation method. 8 × by photolithography and reactive ion etching
A core waveguide pattern having an 8 μm cross section and having 1 × 16 branches as shown in FIG. 1 was formed. At this time, the dummy core waveguide 6 was also formed together. The dummy core waveguide 6 has a 16 × 8 μm cross section, and each core waveguide portion 1a to 20
It was separated by μm. After that, 30 pieces of porous glass is formed by the flame deposition method.
0 μm thick, sintered at 1300 ° C., 24 μm thick P 2
O 5 -B 2 O 3 to form -SiO 2 cladding glass,
A 1 × 16-branch glass waveguide was prototyped. For comparison, a glass waveguide without a dummy core waveguide was also manufactured under the same conditions as above.

【0019】作った両1×16分岐ガラス導波路におい
て、ダミーコア導波路のあるものは、1入力ポートから
16出力ポートへの伝送損失は13.5dB±0.3dBと
良好であった。これに対してダミーコア導波路のないも
のは、14.5dB±1.0dBと損失値及びバラツキとも
に大きかった。
In both of the prepared 1 × 16 branched glass waveguides, one having a dummy core waveguide had a good transmission loss from 1 input port to 16 output ports of 13.5 dB ± 0.3 dB. On the other hand, the one without the dummy core waveguide had a large loss value and variation of 14.5 dB ± 1.0 dB.

【0020】また、図3に示す双方向用光合分波器にお
いても、コア導波路1が接近しているコア導波路部1a
の両側近傍にダミーコア導波路6を設けるようにした。
このようにすると、ガラス焼結時、接近部分のコア導波
路部1aは図2と同様に変形しなかった。この光合分波
器の中心波長は±5nm以内で設計値と一致した。その結
果、波長1.3μm と1.55μm 光の合分波特性にお
いて、波長1.3μmの光出射側に波長1.55μm の
光が洩れ込むのを有効に防止できた。
Also, in the bidirectional optical multiplexer / demultiplexer shown in FIG. 3, the core waveguide portion 1a in which the core waveguide 1 is close to the core waveguide portion 1a.
The dummy core waveguides 6 are provided near both sides of the.
By doing so, the core waveguide portion 1a at the approaching portion was not deformed during glass sintering, as in FIG. The center wavelength of this optical multiplexer / demultiplexer was within ± 5 nm, which coincided with the design value. As a result, in the multiplexing / demultiplexing characteristics of the wavelengths of 1.3 μm and 1.55 μm, it was possible to effectively prevent the light of 1.55 μm from leaking to the light emitting side of 1.3 μm.

【0021】[0021]

【発明の効果】【The invention's effect】

(1)請求項1または3に記載の発明によれば、ダミー
コア導波路をコア導波路の近傍に有するので、低損失
で、良好な伝搬特性が得られる。
(1) According to the invention described in claim 1 or 3, since the dummy core waveguide is provided in the vicinity of the core waveguide, it is possible to obtain good propagation characteristics with low loss.

【0022】(2)請求項2に記載の発明によれば、ダ
ミーコア導波路を対称に設けるようにしたので、集積化
したガラス導波路素子の安定化が図れる。
(2) According to the invention described in claim 2, since the dummy core waveguides are symmetrically provided, the integrated glass waveguide device can be stabilized.

【0023】(3)請求項4に記載の発明によれば、ダ
ミーコア導波路をコア導波路の近傍に形成することによ
り、クラッド層形成時においてもコア導波路は変形を受
けず、低損失でしかも光回路のもつ機能を十分に満足す
るガラス導波路を再現性よく製造できる。
(3) According to the invention described in claim 4, by forming the dummy core waveguide near the core waveguide, the core waveguide is not deformed even when the cladding layer is formed, and the loss is low. Moreover, it is possible to reproducibly manufacture the glass waveguide that sufficiently satisfies the function of the optical circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガラス導波路の実施例を示す1×16
分岐ガラス導波路の平面図である。
FIG. 1 is a 1 × 16 showing an embodiment of a glass waveguide of the present invention.
It is a top view of a branch glass waveguide.

【図2】図1のc−c′断面図である。FIG. 2 is a sectional view taken along line cc ′ of FIG.

【図3】本発明ガラス導波路の他の実施例を示す光合分
波ガラス導波路の平面図である。
FIG. 3 is a plan view of an optical multiplexing / demultiplexing glass waveguide showing another embodiment of the glass waveguide of the present invention.

【図4】コア導波路に変形のないガラス導波路の断面図
である。
FIG. 4 is a cross-sectional view of a glass waveguide in which the core waveguide has no deformation.

【図5】従来の1×16分岐ガラス導波路の平面図であ
る。
FIG. 5 is a plan view of a conventional 1 × 16 branch glass waveguide.

【図6】図5のa−a′断面図である。6 is a cross-sectional view taken along the line aa ′ of FIG.

【図7】従来の合分波ガラス導波路の平面図である。FIG. 7 is a plan view of a conventional multiplexing / demultiplexing glass waveguide.

【符号の説明】[Explanation of symbols]

1 コア導波路 1a コア導波路部 2 クラッド層 3 石英ガラス基板 4 コア導波路パターン 5 変形したコア導波路部 6 ダミーコア導波路 1 core waveguide 1a core waveguide part 2 clad layer 3 silica glass substrate 4 core waveguide pattern 5 deformed core waveguide part 6 dummy core waveguide

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大槻 秀夫 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 (72)発明者 樋口 恵一 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hideo Otsuki 5-1-1 Hidakacho, Hitachi City, Ibaraki Prefecture, Hitachi, Ltd., within the Optro System Laboratory, Hitachi Cable, Ltd. (72) Keiichi Higuchi, Hidaka Town, Hitachi City, Ibaraki Prefecture 5-1-1, Hitachi Cable Ltd., Optoro System Laboratories

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】コア導波路とこれを覆うクラッド層とを基
板上に形成したガラス導波路において、上記コア導波路
の近傍に、クラッド層の形成時に該コア導波路の変形を
防止するダミーコア導波路を有していることを特徴とす
るガラス導波路。
1. A glass waveguide in which a core waveguide and a cladding layer covering the core waveguide are formed on a substrate, and a dummy core conductor for preventing deformation of the core waveguide when the cladding layer is formed near the core waveguide. A glass waveguide having a waveguide.
【請求項2】上記ダミーコア導波路がコア導波路に対し
て対称に設けられていることを特徴とする請求項1に記
載のガラス導波路。
2. The glass waveguide according to claim 1, wherein the dummy core waveguide is provided symmetrically with respect to the core waveguide.
【請求項3】上記基板が石英ガラス基板または表面に石
英系ガラス膜を設けたシリコン基板であることを特徴と
する請求項1または2に記載のガラス導波路。
3. The glass waveguide according to claim 1, wherein the substrate is a quartz glass substrate or a silicon substrate having a quartz glass film provided on the surface thereof.
【請求項4】基板上にコア導波路を形成すると共に、そ
の近傍に該コア導波路の変形を防止するダミーコア導波
路を形成し、 これらコア導波路及びダミーコア導波路を形成した基板
上に多孔質ガラスを形成し、これを焼結して透明なクラ
ッド層を形成することを特徴とするガラス導波路の製造
方法。
4. A core waveguide is formed on a substrate, a dummy core waveguide for preventing deformation of the core waveguide is formed in the vicinity of the core waveguide, and the core waveguide and the substrate on which the dummy core waveguide is formed are porous. 1. A method for manufacturing a glass waveguide, which comprises forming a high quality glass and sintering the high quality glass to form a transparent clad layer.
JP20059093A 1993-08-12 1993-08-12 Glass waveguide and its production Pending JPH0756032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20059093A JPH0756032A (en) 1993-08-12 1993-08-12 Glass waveguide and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20059093A JPH0756032A (en) 1993-08-12 1993-08-12 Glass waveguide and its production

Publications (1)

Publication Number Publication Date
JPH0756032A true JPH0756032A (en) 1995-03-03

Family

ID=16426883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20059093A Pending JPH0756032A (en) 1993-08-12 1993-08-12 Glass waveguide and its production

Country Status (1)

Country Link
JP (1) JPH0756032A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221925A (en) * 2000-02-08 2001-08-17 Nippon Telegr & Teleph Corp <Ntt> Light spot size transforming unit and its manufacturing method
WO2005116705A1 (en) * 2004-05-27 2005-12-08 Omron Corporation Optical divider and manufacturing method thereof
US7103252B2 (en) * 2001-10-25 2006-09-05 Fujitsu Limited Optical waveguide and fabricating method thereof
KR100810304B1 (en) * 2006-01-12 2008-03-06 삼성전자주식회사 Plannar light waveguide
JP2010164858A (en) * 2009-01-16 2010-07-29 Furukawa Electric Co Ltd:The Waveguide type optical circuit
JP2012022273A (en) * 2010-07-16 2012-02-02 Furukawa Electric Co Ltd:The Waveguide type optical circuit
US8380023B2 (en) 2010-07-14 2013-02-19 Furukawa Electric Co., Ltd. Waveguide-type optical circuit
JP2018106191A (en) * 2013-12-18 2018-07-05 日本電気株式会社 Optical waveguide and method for manufacturing optical waveguide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221925A (en) * 2000-02-08 2001-08-17 Nippon Telegr & Teleph Corp <Ntt> Light spot size transforming unit and its manufacturing method
US7103252B2 (en) * 2001-10-25 2006-09-05 Fujitsu Limited Optical waveguide and fabricating method thereof
WO2005116705A1 (en) * 2004-05-27 2005-12-08 Omron Corporation Optical divider and manufacturing method thereof
US7335875B2 (en) 2004-05-27 2008-02-26 Omron Corporation Optical branching unit, and method of manufacturing the same
KR100810304B1 (en) * 2006-01-12 2008-03-06 삼성전자주식회사 Plannar light waveguide
JP2010164858A (en) * 2009-01-16 2010-07-29 Furukawa Electric Co Ltd:The Waveguide type optical circuit
US8380023B2 (en) 2010-07-14 2013-02-19 Furukawa Electric Co., Ltd. Waveguide-type optical circuit
JP2012022273A (en) * 2010-07-16 2012-02-02 Furukawa Electric Co Ltd:The Waveguide type optical circuit
JP2018106191A (en) * 2013-12-18 2018-07-05 日本電気株式会社 Optical waveguide and method for manufacturing optical waveguide
US10324257B2 (en) 2013-12-18 2019-06-18 Nec Corporation Semiconductor optical waveguide, method for manufacturing the same, and optical communication device using the same

Similar Documents

Publication Publication Date Title
JP2809517B2 (en) Branch and multiplex optical waveguide circuit
EP1378772A2 (en) Method of manufacturing tapered optical waveguide
CN1167963C (en) Method for fabricating low-loss optically active device
US6775454B2 (en) Silica-based optical waveguide circuit and fabrication method thereof
JPH0756032A (en) Glass waveguide and its production
US5291575A (en) Manufacturing method for waveguide-type optical components
JP2009527802A (en) Low loss funnel-type PLC optical splitter with input cladding mode absorption structure and / or output segmented taper structure
KR100679229B1 (en) Planar optical waveguide and a method for fabricating the same
US6483964B1 (en) Method of fabricating an optical component
JPH10227930A (en) Temperature-independent optical waveguide and its manufacture
JPH095549A (en) Optical circuit and method for manufacturing the same
JPH1068833A (en) Optical waveguide and its production as well as output circuit
US20020034372A1 (en) Method of simultaneously fabricating waveguides and intersecting etch features
JP2000147283A (en) Optical waveguide circuit
KR100416999B1 (en) Planar waveguide circuit type optical amplifier
JPH0720336A (en) Structure of optical waveguide and its production
JP4313772B2 (en) Manufacturing method of optical waveguide
JPH0627334A (en) Optical waveguide
WO2024089892A1 (en) Optical circuit and method for producing optical circuit
JPH0646245B2 (en) Single-mode optical waveguide with groove for stress relief
JP3214544B2 (en) Planar optical waveguide
JP2927597B2 (en) Manufacturing method of glass waveguide
JP2570822B2 (en) Manufacturing method of optical waveguide
JP2001159718A (en) Array waveguide type wavelength multiplexing/ demultiplexing circuit
JP3537247B2 (en) Board for waveguide chip of optical branch circuit and method of manufacturing waveguide chip