JPH0720336A - Structure of optical waveguide and its production - Google Patents

Structure of optical waveguide and its production

Info

Publication number
JPH0720336A
JPH0720336A JP14767193A JP14767193A JPH0720336A JP H0720336 A JPH0720336 A JP H0720336A JP 14767193 A JP14767193 A JP 14767193A JP 14767193 A JP14767193 A JP 14767193A JP H0720336 A JPH0720336 A JP H0720336A
Authority
JP
Japan
Prior art keywords
optical waveguide
groove
substrate
optical
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14767193A
Other languages
Japanese (ja)
Inventor
Yasuhisa Tanizawa
靖久 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14767193A priority Critical patent/JPH0720336A/en
Publication of JPH0720336A publication Critical patent/JPH0720336A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain stable characteristics without receiving the influence of stresses with an external environmental change, such as temp. change by forming an optical waveguide in a groove formed on the surface of a waveguide substrate. CONSTITUTION:The groove 5 is worked by excimer laser on the front surface of the substrate 1 composed of silicone. For example, in he case of forming the clad layer on the upper part and the side face part of the core part 3 as well, a bottom clad part 2 consisting of an SiO2 film is formed by a CVD method over the entire part of the front surface of the substrate 1 including the groove 5. Further, a core part 3 consisting of an SiO2 film doped with germanium is formed in the upper part of the bottom clad part 2 in order to confine light by increasing the refractive index. The core part 3 is patterned by photolithography to such a width at which the guided light attains a single mode with the optical wavelength pattern along the groove 5. The optical waveguide is formed in the groove 5 formed on the substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導波路型光デバイスに
関し、特に基板表面に積層させたコア部とクラッド部か
らなる光導波路の構造と、その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical device, and more particularly to a structure of an optical waveguide comprising a core portion and a cladding portion laminated on the surface of a substrate and a method for manufacturing the same.

【0002】[0002]

【従来の技術】導波路型光デバイスは基板上に光導波路
を形成し、光導波路自体に光スイッチングや光結合、光
変調の機能をもたせたり、あるいは光半導体素子と基板
上で結合させたりできる。このため、電子デバイスなど
の半導体技術と同様に大量生産が可能であると同時に高
集積化、高機能化が可能であり、従来のマイクロオプテ
ィクス型デバイスにない数多くの優れた特長を有してい
る。
2. Description of the Related Art In a waveguide type optical device, an optical waveguide is formed on a substrate, and the optical waveguide itself can be provided with optical switching, optical coupling, and optical modulation functions, or can be coupled with an optical semiconductor element on the substrate. . Therefore, it can be mass-produced as well as semiconductor technology such as electronic devices, and at the same time, it can be highly integrated and highly functional, and has many excellent features that conventional micro-optics type devices do not have. .

【0003】このような光導波路としては、例えば19
90年電子情報通信学会春季全国大会論文集所載の論文
C−189「石英系導波路形広帯域カプラ」(文献1)
記載の構造が知られている。この論文記載の光導波路
は、基板の表面上に火炎堆積法やCVD(Chemic
al Vapor Deposition)法などの手
法を用いて二酸化シリコン膜(SiO2 膜)を堆積さ
せ、光導波路となる部分だけにリンやゲルマニウムなど
の不純物をドープさせてコア部となる屈折率の高い部分
を形成した光導波路であり、石英系光導波路(あるいは
石英光導波路)と呼ばれている。
An example of such an optical waveguide is 19
Paper C-189 "Silica-based Waveguide Broadband Coupler" published in the 90th IEICE Spring National Congress (Reference 1)
The structures described are known. The optical waveguide described in this paper has a flame deposition method and a CVD (Chemic) method on the surface of a substrate.
A silicon dioxide film (SiO 2 film) is deposited by using a method such as al vapor deposition method, and only a portion to be an optical waveguide is doped with impurities such as phosphorus and germanium to form a portion having a high refractive index to be a core portion. The formed optical waveguide is called a silica optical waveguide (or quartz optical waveguide).

【0004】しかし、石英系光導波路において、従来の
ようにコア部とクラッド部を積層させた単純な構造であ
ると、基板材料であるシリコンとの間に1桁以上違う大
きな熱膨張係数差があるため、SiO2 膜を100℃以
上といった高温状態で被膜した場合には、室温に戻した
時に基板と被膜の間にストレスが生じる。また、たとえ
室温状態で所望の特性が得られるように製作工程におけ
る温度変化を考慮して光導波路を形成したとしても、通
常使用状態でデバイスに温度変化を加えると、同じよう
に被膜内部に熱膨張係数差によるストレスが生じてしま
うことになる。被膜内部にストレスが生じると、単純な
直線導波路や導波路曲がり部においても光導波路コア部
の屈折率が変化したり、形状に変化が生じるため、伝搬
損失が増大するという悪い影響を受けることがある。方
向性結合器を用いた光分岐部や光号分波部においては、
光導波路コア近傍のわずかな屈折率や形状変化でも大き
な特性変化を生じさせてしまうことになり、デバイスの
安定した特性を確保することができなくなってしまうと
いう問題点があった。
However, in the case of a silica optical waveguide having a simple structure in which a core portion and a cladding portion are laminated as in the conventional case, a large thermal expansion coefficient difference of one digit or more is generated between the substrate material and silicon. Therefore, when the SiO 2 film is coated at a high temperature of 100 ° C. or higher, stress is generated between the substrate and the coating when the temperature is returned to room temperature. Even if the optical waveguide is formed in consideration of the temperature change in the manufacturing process so that the desired characteristics can be obtained at room temperature, when the temperature change is applied to the device in the normal use state, the inside of the film is similarly heated. Stress will occur due to the difference in expansion coefficient. If stress is generated inside the coating, the refractive index of the optical waveguide core and the shape of the waveguide may change even in a simple straight waveguide or a curved portion of the waveguide, which may adversely affect the propagation loss. There is. In the optical branching section and optical demultiplexing section that use a directional coupler,
Even a slight change in the refractive index or shape near the optical waveguide core causes a large change in characteristics, and there is a problem in that stable characteristics of the device cannot be secured.

【0005】従来、上述した光導波路の被膜内部に生ず
るストレスを除去あるいは低減するために、昭和62年
電子情報通信学会半導体・材料部門全国大会論文集所載
の論文372「ブリッジ構造をもつ石英系光導波路」
(文献2)に示されるように、光導波路コア近傍にスト
レスを除去するための溝を設ける構造が提案されてい
る。
Conventionally, in order to remove or reduce the stress generated inside the film of the above-mentioned optical waveguide, the paper 372 “Quartz-based with bridge structure” published in the National Conference of Semiconductor and Materials Division of the Institute of Electronics, Information and Communication Engineers in 1987. Optical waveguide "
As shown in (Reference 2), a structure has been proposed in which a groove for removing stress is provided near the optical waveguide core.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、文献2
記載の構造は光導波路の近傍に溝のパタンを形成し、エ
ッチング等によるこれを形成しなければならず溝の製造
工程が複雑になる。また、溝形成によりたとえ温度変化
によるストレスを緩和できたとしても、光導波路が中空
に浮いたのに近い状態になるため物理的な強度が低下
し、振動や衝撃などの機械的な外力に弱くなる。さら
に、光方向性結合部ではこうした溝を形成すること自体
が困難であった。
[Patent Document 2]
In the structure described, a groove pattern must be formed near the optical waveguide and must be formed by etching or the like, which complicates the groove manufacturing process. Even if stress due to temperature change can be alleviated by forming the groove, the physical strength is lowered because the optical waveguide is in a state similar to that in which it is hollow, and it is vulnerable to mechanical external forces such as vibration and shock. Become. Further, it has been difficult to form such a groove in the light directional coupling portion.

【0007】本発明の目的は、上述のデバイス周囲の温
度変化により光導波路に生じるストレスによる影響を除
去し安定した特性を得ることができ、しかも生産性がよ
く高集積化が可能な導波路型光デバイスの光導波路構造
を提供することにある。
It is an object of the present invention to remove the influence of the stress generated in the optical waveguide due to the above-mentioned temperature change around the device, to obtain stable characteristics, and to achieve high productivity and high integration. An object is to provide an optical waveguide structure for an optical device.

【0008】[0008]

【課題を解決するための手段】上述の欠点を除去するた
めに、本発明の光導波路構造は、光を導波させるコア部
と、このコア部の少なくとも下部に屈折率の小さいクラ
ッド部を備えた光導波路を基板上に有する導波路型デバ
イスにおいて、光導波路が導波路基板の表面に形成され
た溝の中に形成されていることを特徴としている。
In order to eliminate the above-mentioned drawbacks, the optical waveguide structure of the present invention comprises a core part for guiding light and a clad part having a small refractive index at least under the core part. A waveguide type device having an optical waveguide on a substrate is characterized in that the optical waveguide is formed in a groove formed on the surface of the waveguide substrate.

【0009】本発明はまた、上記コア部の下部のみなら
ず側面、さらには上面にもクラッド部を備えた光導波路
を基板上に有する導波路型光デバイスをも対象としてお
り、上述の基板表面に形成された溝の中にこれら光導波
路が形成されていることを特徴としている。ここで、光
導波路のコア部の下部にあるクラッド部は基板表面の溝
の底面に接して形成され、この上にコア部が形成されて
おり、基板の溝の幅はコア部の幅よりも少なくとも3倍
の幅を有し、かつコア部の底面は基板の溝が形成されて
いない領域の表面よりも低い位置に形成されていること
を特徴としている。
The present invention is also directed to a waveguide type optical device having an optical waveguide on the substrate, which has not only the lower portion of the core portion but also the side surface and the upper surface of the core portion. It is characterized in that these optical waveguides are formed in the groove formed in. Here, the clad part under the core part of the optical waveguide is formed in contact with the bottom surface of the groove on the substrate surface, and the core part is formed on this, and the width of the groove of the substrate is smaller than the width of the core part. It has a width of at least three times, and is characterized in that the bottom surface of the core portion is formed at a position lower than the surface of the region of the substrate where the groove is not formed.

【0010】また、基板表面への溝形成の方法として、
エキシマレーザによるアブレーション加工を用いた方法
によることを特徴としている。
As a method of forming a groove on the surface of the substrate,
It is characterized by a method using ablation processing by an excimer laser.

【0011】本発明は、特に石英系光導波路に代表され
るようなコア部とクラッド部を基板上に積層させ形成し
た光導波路を用いた導波路型光デバイスを対象としてい
る。これは、従来と異なりコア部とクラッド部をあらか
じめ基板表面に形成した溝内部に形成することを特徴と
している。このような構造にすることにより、たとえデ
バイス周囲に温度変化が生じても、基板と被膜の熱膨張
係数差に起因して基板がそってしまうということはなく
光導波路近傍の光導波路を構成する被膜にストレスが生
じにくくなり安定したデバイス特性を得ることが可能に
なる。
The present invention is particularly directed to a waveguide type optical device using an optical waveguide formed by laminating a core portion and a clad portion on a substrate as typified by a quartz optical waveguide. This is different from the conventional technique in that the core portion and the clad portion are formed inside the groove formed in advance on the substrate surface. With such a structure, even if a temperature change occurs around the device, the substrate is not warped due to the difference in the thermal expansion coefficient between the substrate and the film, and an optical waveguide near the optical waveguide is configured. Stress is less likely to occur in the coating, and stable device characteristics can be obtained.

【0012】また、上述の光導波路構造を有する導波路
型光デバイスの溝の加工を効率よく、しかも正確に実施
できる具体的手段として、エキシマレーザにより溝加工
をすることを特徴としている。シリコン基板への溝加工
の手段としては従来はシリコンの異方性を利用した科学
的エッチングがV溝(本発明に記載の光導波路を形成す
るための溝ではなく、光ファイバを配列するための溝)
形成手段として一般的に用いられていた。ところが、導
波路型光デバイスを形成するためにはなめらかな曲がり
部や分岐部も必要となるため、上記の溝を化学的エッチ
ングによって形成するのは困難であった。そこで、本発
明のエキシマレーザで加工する手段を用いることによ
り、光導波路を構築する上記溝を光導波路のパタンに合
わせて任意のパタンに容易に形成することが可能にな
る。
Further, as a concrete means capable of efficiently and accurately performing the groove processing of the waveguide type optical device having the above-mentioned optical waveguide structure, the groove processing is characterized by excimer laser processing. As a method for forming a groove on a silicon substrate, conventionally, a chemical etching utilizing the anisotropy of silicon has been used as a V groove (not a groove for forming an optical waveguide described in the present invention, but an optical fiber for arranging optical fibers). groove)
It was generally used as a forming means. However, it is difficult to form the above-mentioned groove by chemical etching because a smooth bent portion or a branched portion is also required to form a waveguide type optical device. Therefore, by using the excimer laser processing means of the present invention, it becomes possible to easily form the above-mentioned groove for constructing the optical waveguide in an arbitrary pattern in accordance with the pattern of the optical waveguide.

【0013】[0013]

【実施例】次に図面を用いて本発明の一実施例を説明す
る。図1は本発明の光導波路の断面図である。図におい
て、シリコンから構成された基板1の表面に、エキシマ
レーザにより溝5が加工されている。溝5を含めた基板
1の表面全体には、SiO2 膜からなる底部クラッド部
2がCVD(Chemical Vapor Depo
sition)法により形成されている。さらに、底部
クラッド部2の上部に、屈折率を高くして光を閉じこめ
るためゲルマニウムがドープされたSiO2膜からなる
コア部3が形成されている。コア部3はフォトリソグラ
フィーにより、溝5に沿った光導波路パターンで、かつ
導波光がシングルモードとなるような幅にパターニング
されている。図1に示す一実施例は、本願発明のなかで
コア部の上部および側面部にもクラッド層が形成された
例を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of the optical waveguide of the present invention. In the figure, a groove 5 is processed by an excimer laser on the surface of a substrate 1 made of silicon. A bottom clad portion 2 made of a SiO 2 film is formed on the entire surface of the substrate 1 including the groove 5 by CVD (Chemical Vapor Depo).
It is formed by the method). Further, a core portion 3 made of a SiO 2 film doped with germanium for increasing the refractive index and confining light is formed above the bottom clad portion 2. The core portion 3 is patterned by photolithography so as to have an optical waveguide pattern along the groove 5 and a width such that the guided light has a single mode. The embodiment shown in FIG. 1 shows an example in which a clad layer is formed on the upper portion and the side surface portion of the core portion in the present invention.

【0014】次に、本願発明の光導波路構造を用いた光
導波路の特性評価結果について説明する。
Next, the evaluation results of the characteristics of the optical waveguide using the optical waveguide structure of the present invention will be described.

【0015】まず最初に、本発明の光導波路構造と従来
のリッジ型光導波路の伝搬特性を比較評価するため、半
径20mm、角度90度の曲がりパタンを有する光導波
路をそれぞれ作製した。
First, in order to compare and evaluate the propagation characteristics of the optical waveguide structure of the present invention and the conventional ridge type optical waveguide, optical waveguides each having a radius of 20 mm and a bending pattern of an angle of 90 degrees were manufactured.

【0016】本願発明の光導波路構造の溝加工では、ま
ず基板1の表面にエキシマレーザのアブレーション加工
により幅約30μm、深さ約20μmの溝5を所望の光
導波路パタンになるように加工した。図2に示すよう
に、エキシマレーザを用いたアブレーション加工による
溝加工では、レーザビームを照射エネルギ密度約10J
/cm2 になるようにレンズで絞り込んだ状態で基板に
一定時間照射しながら加工することとし、基板を設置し
たXYステージを所望の光導波路パタンに設定したプロ
グラムに従って動かしながら加工した。なお、エネルギ
密度はこれより低くても可能であり、低くする方が一度
に加工できる加工領域を大きくすることができるが溝の
深さ方向の加工速度が低下するためこの値のエネルギ密
度とした。
In the groove processing of the optical waveguide structure of the present invention, first, a groove 5 having a width of about 30 μm and a depth of about 20 μm is processed on the surface of the substrate 1 by an excimer laser ablation processing so as to have a desired optical waveguide pattern. As shown in FIG. 2, in the groove processing by the ablation processing using the excimer laser, the laser beam irradiation energy density is about 10 J.
Processing was performed while irradiating the substrate for a certain time in a state of being narrowed down by a lens so as to be / cm 2 , and processing was performed while moving the XY stage on which the substrate was installed according to a program set to a desired optical waveguide pattern. The energy density can be lower than this, and the lower the energy density, the larger the processing area that can be machined at one time, but the machining speed in the depth direction of the groove decreases, so the energy density is set to this value. .

【0017】次に、基板1の表面に堆積させた膜につい
ては、底部クラッド部5としてCVD法によりSiO2
膜を約10μm堆積させた。さらに、コア部3としてゲ
ルマニウムがドープされたSiO2 膜を約8μm堆積さ
せた。基板1の表面全体に上部クラッド部4として堆積
されたSiO2 膜の膜厚も約10μmとした。なお、コ
ア部3の幅は導波光をシングルモードとするため8μm
とした。
Next, for the film deposited on the surface of the substrate 1, the bottom clad portion 5 is formed by SiO 2 by the CVD method.
The film was deposited about 10 μm. Further, as the core portion 3, a SiO 2 film doped with germanium was deposited to a thickness of about 8 μm. The film thickness of the SiO 2 film deposited as the upper clad portion 4 on the entire surface of the substrate 1 was also about 10 μm. The width of the core portion 3 is 8 μm in order to make the guided light a single mode.
And

【0018】最初に形成した溝5の幅は、その底面に均
一にSiO2 膜が付着しコア部3を形成後、この側面に
上部クラッド部4が確実に付着するようコア部3の幅よ
りも3倍以上の30μmとした。溝の幅がコア部の幅に
比べ、概ね3倍以下であると、コア部となる層を成膜し
たときに逆に溝があることによって膜内にストレスを生
じたり、コア部となる部分の膜表面にくぼみを生じ矩形
断面のコア部を形成しにくいなどの不備が生じることが
ある。溝5の幅をコア部3の幅よりの3倍以上としたの
は、これらを防ぐためである。なお、フォトリソグラフ
ィーの工程では、基板表面上に溝による段差があるた
め、すべて露光にはマスクを基板に接触させないで行え
るステッパを用いた。
The width of the groove 5 formed first is larger than the width of the core portion 3 so that the upper clad portion 4 is surely attached to this side surface after the SiO 2 film is evenly attached to the bottom surface to form the core portion 3. Also, it is set to 30 μm, which is three times or more. When the width of the groove is about 3 times or less as large as the width of the core portion, stress is generated in the film due to the presence of the groove when the layer to be the core portion is formed, or a portion to be the core portion There may be defects such as the formation of a depression on the surface of the film and difficulty in forming a core portion having a rectangular cross section. The width of the groove 5 is set to be three times or more than the width of the core portion 3 in order to prevent these. In the photolithography process, since there is a step due to the groove on the surface of the substrate, a stepper that can be used without exposing the mask to the substrate was used for all exposure.

【0019】上述の光導波路構造をもつ光導波路曲がり
部の損失の温度異存性を測定した結果を図3に示す。図
3より明らかなように、文献1に記載の従来の光導波路
構造による曲がり部においては室温で損失が約0.2d
Bと小さくできても、65℃の高温あるいは0℃の低温
状態になると0.6dB以上と損失は増大してしまう。
これは、温度変化があるとシリコン基板1と光導波路材
料であるSiO2 の間の熱膨張係数差により光導波路近
傍にストレスが集中し、この結果、光導波路の光閉じ込
め状態が弱くなり一部が放射されてしまうことによると
考えられる。一方、本発明の光導波路構造を用いた曲が
り部における損失評価結果では温度変化があっても、光
導波路部にストレスが集中しない構造となっているた
め、温度変化に対する損失変動はほとんどなく安定して
いる。
FIG. 3 shows the result of measuring the temperature dissimilarity of the loss in the bent portion of the optical waveguide having the above-mentioned optical waveguide structure. As is clear from FIG. 3, the loss due to the conventional optical waveguide structure described in Document 1 is about 0.2d at room temperature.
Even if it can be made as small as B, the loss increases to 0.6 dB or more at a high temperature of 65 ° C. or a low temperature of 0 ° C.
This is because when there is a change in temperature, stress is concentrated near the optical waveguide due to the difference in thermal expansion coefficient between the silicon substrate 1 and SiO 2 which is the optical waveguide material, and as a result, the optical confinement state of the optical waveguide weakens. It is thought that this is due to the fact that is emitted. On the other hand, in the loss evaluation result in the bent portion using the optical waveguide structure of the present invention, even if there is a temperature change, the stress is not concentrated in the optical waveguide portion, so there is almost no loss fluctuation with respect to temperature change and it is stable. ing.

【0020】次に、本発明の光導波路構造と文献1に記
載の従来の光導波路構造のそれぞれの構造を用いた方向
性結合型光合分波器の合分波特性の温度に対する安定性
を比較評価した。本発明の光導波路構造による方向性結
合型光合分波器の断面構造を図4に示す。それぞれの光
合分波器の分岐特性(分岐比の波長依存性)を示したグ
ラフをそれぞれ図5および図6に示す。分岐特性は室温
と65℃の各温度でそれぞれ評価したが、従来の光導波
路構造のものは高温で分岐特性が図6に示されるように
初期(室温)の状態から変化していることがわかる。こ
れに対して本発明の光導波路構造によるものは温度変化
が生じてもほとんど変化がなく安定していることがわか
る。本評価における結果の違いについても上述の曲がり
部における損失評価結果をもたらす原因と同じくストレ
スによる影響の違いによるものと考えられる。
Next, the stability of the wavelength division multiplexing / demultiplexing characteristics of the directional coupling type optical multiplexer / demultiplexer using the optical waveguide structure of the present invention and the conventional optical waveguide structure described in Document 1 will be described. Comparative evaluation was performed. FIG. 4 shows a sectional structure of a directional coupling type optical multiplexer / demultiplexer having the optical waveguide structure of the present invention. Graphs showing branching characteristics (wavelength dependence of branching ratio) of the respective optical multiplexers / demultiplexers are shown in FIGS. 5 and 6, respectively. The branching characteristics were evaluated at room temperature and 65 ° C., respectively. It can be seen that the branching characteristics of the conventional optical waveguide structure change from the initial (room temperature) state at high temperature as shown in FIG. . On the other hand, it can be seen that the optical waveguide structure of the present invention is stable with almost no change even if the temperature changes. It is considered that the difference in the result of this evaluation is due to the difference in the effect of stress as well as the cause of the above-described loss evaluation result in the curved portion.

【0021】上記実施例では溝5の深さを20μmと
し、コア部3全体が基板1の溝が形成されていない領域
の表面よりも低くなるようにしたが、この溝の深さが浅
いと基板と膜の熱膨張係数差によるストレスを十分緩
和、除去できない。すなわち、ストレスを十分緩和する
ためには、下部スラッド部4が溝と5と溝が形成されて
いない領域でほぼ完全に分離されている必要があり、下
部クラッド部4の表面すなわち少なくともコア部3の底
面が基板1の表面よりも下になるように溝5の深さを決
める方がよい。逆に、溝が深すぎると溝加工に時間がか
かるのみならず、コア部3のパターニングも困難にな
る。従って、本実施例のような厚さ10μmの下部クラ
ッド部4と厚さ8μmのコア部3を有するような光導波
路では、溝深さは概ね15〜20μmとするのがよい。
In the above-mentioned embodiment, the depth of the groove 5 is set to 20 μm so that the whole core portion 3 is lower than the surface of the region of the substrate 1 where the groove is not formed. The stress due to the difference in thermal expansion coefficient between the substrate and the film cannot be sufficiently relaxed and removed. That is, in order to sufficiently relax the stress, it is necessary that the lower slad portion 4 is almost completely separated from the groove 5 and the region where the groove is not formed, and the surface of the lower clad portion 4, that is, at least the core portion 3 is separated. It is better to determine the depth of the groove 5 so that the bottom surface of the groove is lower than the surface of the substrate 1. On the contrary, if the groove is too deep, not only it takes time to process the groove, but also the patterning of the core portion 3 becomes difficult. Therefore, in the optical waveguide having the lower clad portion 4 having a thickness of 10 μm and the core portion 3 having a thickness of 8 μm as in this embodiment, the groove depth is preferably about 15 to 20 μm.

【0022】また、コア部の上下部および側面部にクラ
ッド部が形成された光導波路について説明したが、コア
部の下部のみにクラッド部が形成された光導波路、ある
いは下部と側面部にのみクラッド部が形成された光導波
路についても本発明の構造がストレス緩和、除去効果を
有し、適用可能であることは言うまでもない。
Further, the optical waveguide having the clad formed on the upper and lower portions and the side surface of the core portion has been described. However, the optical waveguide having the clad portion formed only on the lower portion of the core portion, or the clad only on the lower portion and the side surface portion. It goes without saying that the structure of the present invention can be applied to the optical waveguide in which the portion is formed, because it has stress relieving and removing effects.

【0023】溝5を形成する以外の上記工程は従来の光
導波路製造法と特に変わりない。溝形成においてはエキ
シマレーザのアブレーション加工による方法を用いた
が、従来のシリコン基板の異方性を利用した科学的エッ
チングによる方法では、溝深さとしては概ね10μm以
上であるため多大な時間(通常数十分)を要してしま
う。しかも溝結晶方位に対してある定まった方向にしか
きれいな溝を形成することができず、光導波路パタンは
通常曲線を含む任意のパタンを有している。また、方向
性結合器の結合部分では溝幅を変える必要があり、この
点でも本発明の光導波路構造の溝加工方法としては必ず
しも適していない。さらに、化学的エッチングによる溝
加工方法は、昭和62年電子情報通信学会半導体・材料
部門全国大会論文集の論文番号373に記載の「サファ
イヤ基板上の石英系光導波路」に示されているようなシ
リコン以外を基板材料とする光導波路に適用することが
できない。一方、エキシマレーザによる加工は基板材料
が紫外線を吸収する材料であれば、あるいは紫外線を吸
収するようにすれば石英ガラスなどのシリコン以外の加
工も可能であり、本発明の光導波路の構造を適用するこ
とができる。
The above steps other than forming the groove 5 are not particularly different from those of the conventional optical waveguide manufacturing method. The method using excimer laser ablation processing was used to form the groove. However, with the conventional method using scientific etching that utilizes the anisotropy of the silicon substrate, the groove depth is approximately 10 μm or more, which is extremely long (usually Tens of minutes) will be required. Moreover, a clean groove can be formed only in a certain direction with respect to the groove crystal orientation, and the optical waveguide pattern usually has an arbitrary pattern including a curve. Further, it is necessary to change the groove width at the coupling portion of the directional coupler, and this point is not necessarily suitable for the groove processing method of the optical waveguide structure of the present invention. Further, the method of forming a groove by chemical etching is as shown in “Quartz-based optical waveguide on sapphire substrate” described in article number 373 of the National Conference on Semiconductor and Materials Division of the Institute of Electronics, Information and Communication Engineers in 1987. It cannot be applied to an optical waveguide using a substrate material other than silicon. On the other hand, the processing by the excimer laser can be processing other than silicon such as quartz glass if the substrate material is a material that absorbs ultraviolet rays, or if it absorbs ultraviolet rays, the structure of the optical waveguide of the present invention is applied. can do.

【0024】[0024]

【発明の効果】以上述べたように、本発明の導波路型光
デバイスの光導波路構造を用いることにより、デバイス
周囲の温度変化があっても光導波路近傍にストレスが生
じることなく安定した特性をもつ導波路型光デバイスを
生産性よく作製することが可能になる。しかも、ストレ
スを緩和、除去するために光導波路近傍に広い幅の溝を
設ける必要はないため高集積化にも支障をきたさないと
いう特長もある。また、本発明の光導波路を構造の作製
に必要となる基板表面の溝はエキシマレーザで加工する
ことにより、任意パタンの溝を容易に加工することがで
き、Y分岐や方向性結合器などの種々のパタンにも対応
できる。
As described above, by using the optical waveguide structure of the waveguide type optical device of the present invention, stable characteristics can be obtained without stress in the vicinity of the optical waveguide even when the temperature around the device changes. It becomes possible to fabricate a waveguide type optical device having the same with high productivity. Moreover, since it is not necessary to provide a groove having a wide width in the vicinity of the optical waveguide in order to relieve or remove stress, there is also a feature that high integration is not hindered. Further, by processing the groove on the surface of the substrate, which is necessary for manufacturing the structure of the optical waveguide of the present invention, with an excimer laser, the groove of an arbitrary pattern can be easily processed, and a Y-branch or a directional coupler can be formed. It can also be used for various patterns.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の導波路型光デバイスの光導波路構造を
断面図により示した図。
FIG. 1 is a sectional view showing an optical waveguide structure of a waveguide type optical device of the present invention.

【図2】エキシマレーザによる光導波路基板の加工状態
を示す斜視図。
FIG. 2 is a perspective view showing a processed state of an optical waveguide substrate with an excimer laser.

【図3】半径20mm、角度90℃の曲がり部の光導波
路の温度変化に対する損失変動の評価結果を表す図。
FIG. 3 is a diagram showing an evaluation result of loss fluctuation with respect to temperature change of an optical waveguide in a bent portion having a radius of 20 mm and an angle of 90 ° C.

【図4】本発明の光導波路構造を用いた方向性結合型光
合分波器の断面構造。
FIG. 4 is a sectional structure of a directional coupling type optical multiplexer / demultiplexer using the optical waveguide structure of the present invention.

【図5】図5の光合分波器の温度変化に対する分岐比変
動を表す図。
5 is a diagram showing a change in branching ratio with respect to a temperature change in the optical multiplexer / demultiplexer shown in FIG.

【図6】従来の光導波路構造による光合分波器の温度変
化に対する分岐比変動を表す図。
FIG. 6 is a diagram showing a change in branching ratio with respect to a temperature change in an optical multiplexer / demultiplexer having a conventional optical waveguide structure.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 底部クラッド部 3 コア部 4 上部クラッド部 5 溝 1 Silicon substrate 2 Bottom clad part 3 Core part 4 Upper clad part 5 Groove

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光を導波させるコア部と少なくとも前記
コア部の下部に該コア部より屈折率の小さいクラッド部
を備えた光導波路を基板上に有する導波路型光デバイス
の光導波路の構造において、 前記光導波路が、前記基板の表面に形成された溝の中
に、前記クラッド部を前記溝の底面に接して形成されて
いることを特徴とする光導波路の構造。
1. A structure of an optical waveguide of a waveguide type optical device having a core part for guiding light and an optical waveguide having a clad part having a refractive index smaller than that of the core part at least under the core part on a substrate. 2. The optical waveguide structure according to claim 1, wherein the optical waveguide is formed in a groove formed on the surface of the substrate, with the clad portion being in contact with the bottom surface of the groove.
【請求項2】 前記光導波路は前記コア部の下部と側面
部に該コア部より屈折率の小さいクラッド部を備えたこ
とを特徴とする請求項1の光導波路の構造。
2. The structure of the optical waveguide according to claim 1, wherein the optical waveguide is provided with a clad portion having a refractive index smaller than that of the core portion on a lower portion and a side surface portion of the core portion.
【請求項3】 前記光導波路は前記コア部の上下部と側
面部に該コア部より屈折率の小さいクラッド部を備えた
ことを特徴とする請求項1の光導波路の構造。
3. The structure of the optical waveguide according to claim 1, wherein the optical waveguide includes clad portions having a smaller refractive index than the core portion at upper and lower portions and side surface portions of the core portion.
【請求項4】 前記基板の溝は、前記コア部よりも少な
くとも3倍以上の幅を有していることを特徴とする請求
項2または請求項3の光導波路の構造。
4. The structure of the optical waveguide according to claim 2, wherein the groove of the substrate has a width that is at least three times as large as that of the core portion.
【請求項5】 前記コア部の底面が、前記基板の溝が形
成されていない領域の表面よりも下に位置することを特
徴とする請求項1の光導波路の構造。
5. The structure of the optical waveguide according to claim 1, wherein a bottom surface of the core portion is located below a surface of a region of the substrate where the groove is not formed.
【請求項6】 前記基板の表面の溝をエキシマレーザに
よるアブレーション加工により形成することを特徴とす
る請求項1の光導波路の製造方法。
6. The method of manufacturing an optical waveguide according to claim 1, wherein the groove on the surface of the substrate is formed by ablation processing using an excimer laser.
JP14767193A 1993-06-18 1993-06-18 Structure of optical waveguide and its production Pending JPH0720336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14767193A JPH0720336A (en) 1993-06-18 1993-06-18 Structure of optical waveguide and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14767193A JPH0720336A (en) 1993-06-18 1993-06-18 Structure of optical waveguide and its production

Publications (1)

Publication Number Publication Date
JPH0720336A true JPH0720336A (en) 1995-01-24

Family

ID=15435647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14767193A Pending JPH0720336A (en) 1993-06-18 1993-06-18 Structure of optical waveguide and its production

Country Status (1)

Country Link
JP (1) JPH0720336A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104795A (en) * 2006-10-27 2008-05-08 Heiwa Corp Game machine
JP2008242366A (en) * 2007-03-29 2008-10-09 Nec Corp Optical communication module and semiconductor laser output control method
CN116520462A (en) * 2023-06-20 2023-08-01 杭州海康微影传感科技有限公司 Optical window, manufacturing method thereof, infrared sensor and optical window wafer
US11873616B2 (en) 2018-12-07 2024-01-16 Ssab Technology Ab Bucket for an earth-working or materials-handling machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176005A (en) * 1981-04-23 1982-10-29 Nippon Sheet Glass Co Ltd Manufacture of optical waveguide circuit
JPS62143004A (en) * 1985-12-18 1987-06-26 Sumitomo Electric Ind Ltd Optical wavelength and its manufacture
JPH05224055A (en) * 1992-02-12 1993-09-03 Sumitomo Electric Ind Ltd Method for forming waveguide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176005A (en) * 1981-04-23 1982-10-29 Nippon Sheet Glass Co Ltd Manufacture of optical waveguide circuit
JPS62143004A (en) * 1985-12-18 1987-06-26 Sumitomo Electric Ind Ltd Optical wavelength and its manufacture
JPH05224055A (en) * 1992-02-12 1993-09-03 Sumitomo Electric Ind Ltd Method for forming waveguide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104795A (en) * 2006-10-27 2008-05-08 Heiwa Corp Game machine
JP2008242366A (en) * 2007-03-29 2008-10-09 Nec Corp Optical communication module and semiconductor laser output control method
US11873616B2 (en) 2018-12-07 2024-01-16 Ssab Technology Ab Bucket for an earth-working or materials-handling machine
CN116520462A (en) * 2023-06-20 2023-08-01 杭州海康微影传感科技有限公司 Optical window, manufacturing method thereof, infrared sensor and optical window wafer
CN116520462B (en) * 2023-06-20 2024-01-05 杭州海康微影传感科技有限公司 Optical window, manufacturing method thereof, infrared sensor and optical window wafer

Similar Documents

Publication Publication Date Title
US5612171A (en) Planar optical waveguides with planar optical elements
JP3703013B2 (en) Interferometer optical circuit and manufacturing method thereof
JP2001042148A (en) Optical device and method for correcting its prescribed light-transmissive characteristic
US5064266A (en) Circular channel waveguides and lenses formed from rectangular channel waveguides
JPH11174246A (en) Planar type optical waveguide
JPH1184156A (en) Production of tapered waveguide
JP2002323633A (en) Optical waveguide device and method for manufacturing the same
JPH09318826A (en) Optical waveguide type filter and its production
JP2005531030A (en) Optical waveguide
JP2002098850A (en) Non-birefringent passive optical structural element
KR20020092209A (en) Optical waveguide apparatus and method of producing the same
JPH0720336A (en) Structure of optical waveguide and its production
US6483964B1 (en) Method of fabricating an optical component
JP3090293B2 (en) Optical circuit and manufacturing method thereof
JP2005338467A (en) Optical branching device and manufacturing method therefor
JPH1068833A (en) Optical waveguide and its production as well as output circuit
KR100563489B1 (en) Optical device employing the silica?polymer hybrid optical waveguide
JP2004258610A (en) Spot-size converter element, its manufacture method and waveguide-embedding optical circuit using spot-size converter element
JPH0756032A (en) Glass waveguide and its production
JP2000147293A (en) Substrate type optical waveguide and its manufacture
JPH0980246A (en) Production of quartz-glass waveguide
JP2004295043A (en) Optical waveguide
JP2005017761A (en) Optical waveguide and method for manufacturing optical waveguide
JPH05257021A (en) Production of optical waveguide
JP2002221631A (en) Method for manufacturing interference device optical circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970114