JP2005338467A - Optical branching device and manufacturing method therefor - Google Patents

Optical branching device and manufacturing method therefor Download PDF

Info

Publication number
JP2005338467A
JP2005338467A JP2004157506A JP2004157506A JP2005338467A JP 2005338467 A JP2005338467 A JP 2005338467A JP 2004157506 A JP2004157506 A JP 2004157506A JP 2004157506 A JP2004157506 A JP 2004157506A JP 2005338467 A JP2005338467 A JP 2005338467A
Authority
JP
Japan
Prior art keywords
light
substrate
region
branching
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004157506A
Other languages
Japanese (ja)
Inventor
Takesuke Terada
雄亮 寺田
Yutaka Natsume
豊 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2004157506A priority Critical patent/JP2005338467A/en
Priority to PCT/JP2005/009780 priority patent/WO2005116705A1/en
Priority to CNB2005800172083A priority patent/CN100470278C/en
Publication of JP2005338467A publication Critical patent/JP2005338467A/en
Priority to US11/601,558 priority patent/US7335875B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical branching device which is high in wavelength uniformity of insertion loss and also low in polarization dependence loss. <P>SOLUTION: The optical branching device1 has on a substrate 10; a light incident part 21 on which light is made incident; optical branching parts 22A to 22G which branch the light made incident on the light incident part by prescribed ratios; light emitting parts 23A to 23H which guide the light branched by the optical branching parts to prescribed positions; and dummy patterns 24A to 24H which are made of the same material as for the light incident part, the optical branching parts and the light emitting parts and which are arranged on an area on the substrate independent of an area where the light incident part 21, the optical branching parts and the light emitting parts are provided so that the occupancy ratio which shows ratio between an area of the substrate from which the area where the light incident part, the optical branching parts and the light emitting parts are provided is eliminated and the area of the substrate becomes larger than 70%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、光通信等の分野に利用可能であって、入力端に入力された光を複数の出力端に出力する光分岐器に関する。   The present invention relates to an optical branching unit that can be used in the field of optical communication and the like, and outputs light input to an input end to a plurality of output ends.

光導波回路部品としてPLC(Planer Light wave Circuit:平板型光導波回路)部品が知られている。このPLC部品の一例として、シリコン基板上に光導波回路のパターンが形成され、この光導波回路が形成された基板上に、部分的に独立したコアパターンを設けた例が報告されている(例えば特許文献1参照)。
特開平11−271545
As an optical waveguide circuit component, a PLC (Planer Light Wave Circuit) component is known. As an example of this PLC component, an example in which an optical waveguide circuit pattern is formed on a silicon substrate and a partially independent core pattern is provided on the substrate on which the optical waveguide circuit is formed has been reported (for example, Patent Document 1).
JP-A-11-271545

しかしながら、特許文献1に開示された提案では、PLC部品である光分岐器に特有の構造上の問題として、光入射側の導波路の数(面積)と光出射側の導波路の数(面積)との差に起因して、例えばドライエッチングにおいて、ローディング効果によりエッチングレートが、基板上で大きく異なることが知られている。結果として、エッチング後の入射側の曲がり導波路の線幅が設計値より細く形成されるため、曲がり導波路の損失が使用波長の長波長側で増大する。その結果、光分岐器の挿入損失の波長における均一性が悪化する問題がある。   However, in the proposal disclosed in Patent Document 1, the number of waveguides on the light incident side (area) and the number of waveguides on the light output side (area) are structural problems peculiar to the optical branching device that is a PLC component. For example, in dry etching, the etching rate is known to vary greatly on the substrate due to the loading effect. As a result, since the line width of the bent waveguide on the incident side after etching is formed narrower than the design value, the loss of the bent waveguide increases on the longer wavelength side of the used wavelength. As a result, there is a problem that the uniformity in wavelength of the insertion loss of the optical branching device deteriorates.

また、エッチング後、エッチングにより形成されたコア部分を含む基板全域にクラッド層を設けることでコア部分でクラッド層が凸状となることにより、リッドガラスを接着剤により固定する際に、コア部分に応力が集中してPDL(Polarization Dependent Loss:偏波依存性損失)が劣化する問題がある。   In addition, after the etching, by providing a clad layer over the entire substrate including the core portion formed by etching, the clad layer becomes convex in the core portion, so that when the lid glass is fixed with an adhesive, There is a problem that PDL (Polarization Dependent Loss) deteriorates due to concentration of stress.

この発明の目的は、挿入損失の波長均一性が高く、かつ偏波依存性損失の低い光分岐器を提供することである。   An object of the present invention is to provide an optical branching device with high wavelength uniformity of insertion loss and low polarization dependent loss.

この発明は、光が入射される光入射部と、この光入射部に入射される光を所定の比率で分岐する光分岐部と、この光分岐部により分岐された光を所定位置に案内する光出射部と、前記光入射部、前記光分岐部及び前記光出射部上に所定厚さに形成される接着剤層と、前記光入射部、前記光分岐部及び前記光出射部を保持する基板と、前記接着剤層を介して前記基板上の前記光入射部、前記光分岐部及び前記光出射部のそれぞれを覆うカバー部材と、前記基板上に、前記光入射部、前記光分岐部及び前記光出射部が設けられる領域と独立に設けられ、前記接着剤層が硬化する際に生じる応力が、前記基板上の前記光入射部、前記光分岐部及び前記光出射部のいずれか、または全域に作用することを抑止する応力均一化部材と、を有することを特徴とする光分岐器を提供するものである。   The present invention is directed to a light incident portion where light is incident, a light branching portion that branches light incident on the light incident portion at a predetermined ratio, and guides the light branched by the light branching portion to a predetermined position. Holds the light emitting part, the light incident part, the light branching part and the adhesive layer formed on the light emitting part with a predetermined thickness, and the light incident part, the light branching part and the light emitting part. A substrate, a cover member that covers each of the light incident portion, the light branching portion, and the light emitting portion on the substrate via the adhesive layer; and the light incident portion, the light branching portion on the substrate. And the stress generated when the adhesive layer is cured is provided independently of the region where the light emitting portion is provided, and the light incident portion, the light branching portion, and the light emitting portion on the substrate, Or a stress equalizing member that suppresses acting on the entire region. There is provided an optical splitter to.

すなわち、上述した光分岐器によれば、カバー部材を接着剤により固定する際に生じる応力の影響が低減される。従って、カバー部材接着後の偏波依存性損失(PDL)の悪化が抑えられる。   That is, according to the optical branching device described above, the influence of stress generated when the cover member is fixed by the adhesive is reduced. Therefore, deterioration of the polarization dependent loss (PDL) after the cover member is bonded can be suppressed.

また、この発明は、基板上に、光が入射される光入射部と、光入射部に入射される光を所定の比率で分岐する光分岐部と、光分岐部により分岐された光を所定位置に案内する光出射部と、基板上の光入射部、光分岐部及び光出射部が設けられる領域と独立に、光入射部、光分岐部及び光出射部と同一の材質により、基板上の光入射部、光分岐部及び光出射部が設けられる領域を除いた領域の割合を示す占有率が70%より大きくなるよう、基板上に設けられた応力均一化部材と、を有することを特徴とする光分岐器を提供するものである。   Further, the present invention provides a light incident portion on which light is incident, a light branching portion that branches light incident on the light incident portion at a predetermined ratio, and light branched by the light branching portion on the substrate. Independently of the light emitting part that guides the position and the light incident part, the light branching part, and the light emitting part on the substrate, the same material as the light incident part, the light branching part, and the light emitting part is provided on the substrate. A stress leveling member provided on the substrate so that an occupation ratio indicating a ratio of a region excluding a region where the light incident portion, the light branching portion, and the light emitting portion are provided is greater than 70%. An optical branching device is provided.

すなわち、上述した光分岐器によれば、光入射部、光分岐部及び光出射部に用いられる領域をエッチングする際に、基板の全域のエッチングレートが概ね均一化される。これにより、ローディング効果により、光入射部、光分岐部及び光出射部に用いられる領域の太さ(幅)に差が生じることが抑止され、それぞれの領域の幅(太さ)が均一化される。従って、光分岐器の曲がり導波路において、長波長側での過剰損失を低減でき、挿入損失の波長均一性が向上される。   In other words, according to the optical branching device described above, when etching the regions used for the light incident part, the light branching part, and the light emitting part, the etching rate over the entire area of the substrate is made substantially uniform. As a result, the loading effect suppresses a difference in the thickness (width) of the regions used for the light incident portion, the light branching portion, and the light emitting portion, and the width (thickness) of each region is made uniform. The Accordingly, in the bent waveguide of the optical branching unit, excess loss on the long wavelength side can be reduced, and the wavelength uniformity of insertion loss is improved.

また、この発明は、基板に、光導波路として利用可能な基板の屈折率に比較して屈折率の高い光伝達材質層を所定の厚さに堆積し、光伝達材料層に、光信号の伝送に利用される第1の領域と、第1の領域の周囲に所定の間隔をおいて、第1の領域をエッチングする際のエッチングレートを、基板の全域で概ね一定とするための第2の領域を規定し、第1の領域及び第2の領域のそれぞれに、非エッチングパターンを形成して、基板上の残りの領域をエッチングによりパターニングし、パターニングにより残った光伝達材料層及び基板が露出された領域の全域に、光伝達材料層に比較して屈折率が低い材質を所定厚さに設けて第1及び第2の領域とは異なる第3の領域を形成し、第3の領域に、接着剤を介してカバー部材を接着することを特徴とする光分岐器の製造方法である。   Further, according to the present invention, a light transmission material layer having a refractive index higher than that of a substrate that can be used as an optical waveguide is deposited on the substrate to a predetermined thickness, and an optical signal is transmitted to the light transmission material layer. A second region for making the etching rate at the time of etching the first region substantially constant over the entire region with a predetermined interval around the first region used for the first region A region is defined, a non-etched pattern is formed in each of the first region and the second region, and the remaining region on the substrate is patterned by etching, and the light transmission material layer and the substrate remaining by the patterning are exposed. A third region different from the first and second regions is formed over the entire region by providing a material having a refractive index lower than that of the light transmission material layer to a predetermined thickness, and forming a third region in the third region. The cover member is bonded through an adhesive It is a manufacturing method of an optical branching device for.

すなわち、上述した光分岐器の製造方法によれば、カバー部材を接着剤により固定する際に生じる応力の影響が低減される。従って、カバー部材接着後の偏波依存性損失(PDL)の悪化が抑えられる。以上のことから、歩留まりが高められ、光分岐器のコストが低減される。   That is, according to the method for manufacturing an optical branching device described above, the influence of stress generated when the cover member is fixed with an adhesive is reduced. Therefore, deterioration of the polarization dependent loss (PDL) after the cover member is bonded can be suppressed. From the above, the yield is increased and the cost of the optical branching device is reduced.

また、この発明は、光が入射される光入射部と、この光入射部に入射される光を所定の比率で分岐する光分岐部と、この光分岐部により分岐された光を所定位置に案内する光出射部と、前記光入射部、前記光分岐部及び前記光出射部上に所定厚さに形成される接着剤層と、前記光入射部、前記光分岐部及び前記光出射部を保持する基板と、前記基板上に、前記光入射部、前記光分岐部及び前記光出射部が設けられる領域と独立して設けられ、前記基板上の前記光入射部、前記光分岐部及び前記光出射部を形成する際に、前記基板上の前記光入射部、前記光分岐部及び前記光出射部のそれぞれの前記基板の面方向に沿った長さである線幅が不均一となることを低減する非光信号伝送領域と、を有することを特徴とする光分岐器を提供するものである。   The present invention also provides a light incident portion where light is incident, a light branching portion that branches light incident on the light incident portion at a predetermined ratio, and the light branched by the light branching portion at a predetermined position. A light emitting part for guiding; an adhesive layer formed on the light incident part, the light branching part and the light emitting part with a predetermined thickness; the light incident part, the light branching part and the light emitting part; A substrate to be held; and provided on the substrate independently of a region where the light incident portion, the light branching portion, and the light emitting portion are provided, and the light incident portion, the light branching portion, and the When forming the light emitting portion, the line width, which is the length along the surface direction of each of the light incident portion, the light branching portion, and the light emitting portion on the substrate, becomes non-uniform. And a non-optical signal transmission region for reducing an optical splitter. That.

すなわち、上述した光分岐器によれば、光入射部、光分岐部及び光出射部に用いられる領域をエッチングする際に、基板の全域のエッチングレートが概ね均一化される。これにより、ローディング効果により、光入射部、光分岐部及び光出射部に用いられる領域の太さ(幅)に差が生じることが抑止され、それぞれの領域の幅(太さ)が均一化される。従って、光分岐器の曲がり導波路において、長波長側での過剰損失を低減でき、挿入損失の波長均一性が向上される。   In other words, according to the optical branching device described above, when etching the regions used for the light incident part, the light branching part, and the light emitting part, the etching rate over the entire area of the substrate is made substantially uniform. As a result, the loading effect suppresses a difference in the thickness (width) of the regions used for the light incident portion, the light branching portion, and the light emitting portion, and the width (thickness) of each region is made uniform. The Accordingly, in the bent waveguide of the optical branching unit, excess loss on the long wavelength side can be reduced, and the wavelength uniformity of insertion loss is improved.

また、この発明は、基板に、光導波路として利用可能な基板の屈折率に比較して屈折率の高い光伝達材質層を所定の厚さに堆積し、光伝達材料層に、光信号の伝送に利用される第1の領域と、第1の領域の周囲に所定の間隔をおいて、第1の領域をエッチングする際のエッチングレートを、基板の全域で概ね一定とするための第2の領域を規定し、第1の領域及び第2の領域のそれぞれに、非エッチングパターンを形成して、基板上の残りの領域をエッチングによりパターニングし、パターニングにより残った光伝達材料層及び基板が露出された領域の全域に、光伝達材料層に比較して屈折率が低い材質を所定厚さに設けて第1及び第2の領域とは異なる第3の領域を形成することを特徴とする光分岐器の製造方法である。   Further, according to the present invention, a light transmission material layer having a refractive index higher than that of a substrate that can be used as an optical waveguide is deposited on the substrate to a predetermined thickness, and an optical signal is transmitted to the light transmission material layer. A second region for making the etching rate at the time of etching the first region substantially constant over the entire region with a predetermined interval around the first region used for the first region A region is defined, a non-etched pattern is formed in each of the first region and the second region, and the remaining region on the substrate is patterned by etching, and the light transmission material layer and the substrate remaining by the patterning are exposed. A third region different from the first and second regions is formed by providing a predetermined thickness of a material having a refractive index lower than that of the light transmission material layer over the entire region. It is a manufacturing method of a turnout.

すなわち、上述した光分岐器の製造方法によれば、光信号の伝送に利用されるパターンをエッチングする際に、ローディング効果により基板上の位置に応じてエッチングレートが変動してエッチング後の入射側の曲がり導波路の線幅が設計値より細くなることが防止される。これにより、曲がり導波路の損失が使用波長に関わりなく均一化され、光学特性が改善される。   That is, according to the optical branching device manufacturing method described above, when etching a pattern used for transmitting an optical signal, the etching rate varies depending on the position on the substrate due to the loading effect, and the incident side after etching It is prevented that the line width of the bent waveguide becomes narrower than the design value. Thereby, the loss of the bent waveguide is made uniform regardless of the wavelength used, and the optical characteristics are improved.

本発明によれば、挿入損失の波長均一性が高く、かつカバー部材を接着した後も偏波依存性損失の低い光分岐器が歩留まりよく形成可能となる。   According to the present invention, it is possible to form an optical branching device having high insertion loss wavelength uniformity and low polarization-dependent loss even after the cover member is bonded.

以下、図面を参照して、この発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、この発明の実施の形態が適用される光分岐器の一例を説明する概略図である。   FIG. 1 is a schematic diagram illustrating an example of an optical branching device to which an embodiment of the present invention is applied.

図1に示すように、光分岐器1は、例えば二酸化シリコン(Si0)等を主成分とする基板10と、基板10上に所定形状にパターニングされて形成された光導波路構造20と、を有する。なお、光導波路構造20の周囲は、光導波路構造20をコアとして利用可能とするためのクラッド部材30により覆われている。また、コア部分とクラッド部分との比屈折率差は、0.45%である。 As shown in FIG. 1, the optical splitter 1 is, for example a substrate 10 mainly composed of silicon dioxide (Si0 2) or the like, an optical waveguide structure 20 formed by patterning in a predetermined shape on the substrate 10, the Have. The periphery of the optical waveguide structure 20 is covered with a clad member 30 for making the optical waveguide structure 20 usable as a core. The relative refractive index difference between the core portion and the clad portion is 0.45%.

光導波路構造20は、例えば光ファイバもしくは前段の光分岐器等である図示しない、光伝達部材を介して供給される光(光信号)が入射される入射端21、入射端21に入射された光信号を第1及び第2の比率で分岐する光分岐部22A〜22G、光分岐部22A〜22Gにより(この例では、8に)分岐された光信号を後段に接続される図示しない、例えばシングルモードファイバあるいは後段の光分岐器等に向けて案内する出力端23A〜23Hを含む。   The optical waveguide structure 20 is incident on an incident end 21 where light (optical signal) supplied via an optical transmission member (not shown) such as an optical fiber or an optical splitter in the previous stage is incident. Optical branching units 22A to 22G that branch the optical signal at the first and second ratios, and the optical signal branched by the optical branching units 22A to 22G (in this example, 8) are connected to a subsequent stage (not shown), for example, It includes output ends 23A to 23H for guiding to a single mode fiber or a subsequent optical branching unit.

光導波路構造20の周辺であって、クラッド部材30が堆積される領域には、光導波路構造20と同一の工程で基板10上に堆積されたコア部分として利用される材質と同一の材質が、コア部分(光導波路構造)20をパターニングする際に、所定の形状に残された応力均一化部材(以下、ダミーパターンと呼称する)24A〜24Hが設けられている。すなわち、ダミーパターン24A〜24Hは、基板10上に堆積された光導波路構造20を、例えばドライエッチングによりエッチングしてコア部分20を形成する際に、エッチングされずにそのまま残された領域である。   In the periphery of the optical waveguide structure 20 and in the region where the clad member 30 is deposited, the same material as that used as the core portion deposited on the substrate 10 in the same process as the optical waveguide structure 20 is provided. When patterning the core portion (optical waveguide structure) 20, stress equalizing members (hereinafter referred to as dummy patterns) 24A to 24H left in a predetermined shape are provided. That is, the dummy patterns 24 </ b> A to 24 </ b> H are regions that remain without being etched when the optical waveguide structure 20 deposited on the substrate 10 is etched by, for example, dry etching to form the core portion 20.

光導波路構造(コア部分)20及びダミーパターン24A〜24Hは、例えば基板10上に所定厚さに形成された二酸化シリコンを主成分とするガラス層を、所定形状にパターニングすることにより形成される。なお、光導波路構造20は、例えば、基板10上に、予め所定厚さに図示しないクラッド層部材を堆積させた後、コアすなわち光導波路構造20に相当する部分に、リン(P)、チタン(Ti)、ゲルマニウム(Ge)もしくはアルミニウム(Al)等をドープしても形成可能である。光導波路構造20はまた、例えばコアとして利用可能な屈折率の材料を基板10の全域に所定厚さに堆積させた後、図示しないクラッド層部分に対応する領域にホウ素(B)やフッ素(F)等をドープして屈折率を選択的に低下させることによっても形成できる。また、光導波路構造20は、熱膨張率が、例えば約3.5×10−6以下の任意の成分を含む多成分ガラスとし、コア(すなわち光導波路構造20)に対応する領域を、周知のイオン交換法によってイオン交換して、選択的に屈折率を変化させることによっても形成できる。 The optical waveguide structure (core portion) 20 and the dummy patterns 24A to 24H are formed, for example, by patterning a glass layer mainly composed of silicon dioxide formed on the substrate 10 to a predetermined thickness into a predetermined shape. The optical waveguide structure 20 may be formed by, for example, depositing a clad layer member (not shown) to a predetermined thickness on the substrate 10 in advance, and then forming phosphorus (P), titanium ( It can also be formed by doping Ti), germanium (Ge), aluminum (Al), or the like. The optical waveguide structure 20 also has a refractive index material that can be used as a core, for example, deposited on the entire area of the substrate 10 to a predetermined thickness, and then boron (B) or fluorine (F) in a region corresponding to a clad layer portion (not shown). ) Etc. to selectively lower the refractive index. The optical waveguide structure 20 is a multi-component glass containing an arbitrary component having a thermal expansion coefficient of, for example, about 3.5 × 10 −6 or less, and a region corresponding to the core (that is, the optical waveguide structure 20) is well known. It can also be formed by ion exchange by an ion exchange method and selectively changing the refractive index.

図2は、図1に示した光分岐器を、切断線I−Iで切断した状態を示している。   FIG. 2 shows a state where the optical branching device shown in FIG. 1 is cut along a cutting line II.

図2に示されるように、基板10上には、光導波路構造(コア部分)20並びにダミーパターン24A〜24H(図2は、切断線I−Iによる断面であるから24A〜24Cのみが見える)上には、クラッド層30が所定厚さに堆積され、その上に接着剤層25が、所定の厚さに形成されている。なお、接着剤層25上には、リッドすなわちカバーガラス層40が、接着剤層25によりクラッド層30上に固定されている。また、図1及び図2に示す光分岐器1において、基板10の厚さは概ね1mm、コア部分(光導波路構造)20の厚さ及び基板10に沿う方向の長さは概ね6μm(断面において一辺が概ね6μmの矩形)、ダミーパターン24A〜24Hの厚さは概ね6μm(幅は位置により異なる)、クラッド層30の厚さが概ね25μm、接着剤層25の厚さが概ね25μm、及びリッド40の厚さが概ね1.5mmである。なお、接着剤層25の厚さは、好ましくは概ね10〜50μmの範囲内で、リッド40の接着強度とPDLの悪化を考慮して設定される。   As shown in FIG. 2, an optical waveguide structure (core portion) 20 and dummy patterns 24A to 24H (FIG. 2 is a cross section taken along the cutting line II, so that only 24A to 24C can be seen). On top of this, a cladding layer 30 is deposited with a predetermined thickness, and an adhesive layer 25 is formed thereon with a predetermined thickness. A lid, that is, a cover glass layer 40, is fixed on the clad layer 30 by the adhesive layer 25 on the adhesive layer 25. Further, in the optical branching device 1 shown in FIGS. 1 and 2, the thickness of the substrate 10 is approximately 1 mm, the thickness of the core portion (optical waveguide structure) 20 and the length in the direction along the substrate 10 is approximately 6 μm (in the cross section). A rectangle having a side of approximately 6 μm), the thickness of the dummy patterns 24A to 24H is approximately 6 μm (the width varies depending on the position), the thickness of the cladding layer 30 is approximately 25 μm, the thickness of the adhesive layer 25 is approximately 25 μm, and the lid The thickness of 40 is approximately 1.5 mm. The thickness of the adhesive layer 25 is preferably set within a range of approximately 10 to 50 μm in consideration of the adhesive strength of the lid 40 and the deterioration of PDL.

なお、図2から明らかなように、光導波路構造(20)が所定の幅(基板10の面方向に沿った方向の長さ)にパターニングされて形成されたコア部分20は、その両側(基板10の端部を除く)に、ダミーパターン24A〜24H(上述したとおり、図2では24A〜24Cのみが見える)により区画されている。また、ダミーパターン24A〜24Hとコア部分20との間の間隔は、図4を用いて後段に関連を説明するが、少なくともコア部分20の幅(太さ)と同一か、それ以上に規定される。従って、図1において、出射端23A〜23Hで示されるコア部分(20)の間については、コア部分相互の間隔(分岐数)にも依存するが、ダミーパターン24E〜24Hを省略できる場合がある。   As is apparent from FIG. 2, the core portion 20 formed by patterning the optical waveguide structure (20) to a predetermined width (the length in the direction along the surface direction of the substrate 10) is formed on both sides (substrates). 10 except for 10 end portions), it is partitioned by dummy patterns 24A to 24H (as described above, only 24A to 24C are visible in FIG. 2). Further, the interval between the dummy patterns 24A to 24H and the core portion 20 will be described later with reference to FIG. 4, but is defined to be at least equal to or larger than the width (thickness) of the core portion 20. The Therefore, in FIG. 1, the dummy patterns 24E to 24H may be omitted between the core portions (20) indicated by the emission ends 23A to 23H, depending on the interval (number of branches) between the core portions. .

図3(a)〜図3(f)は、図1及び図2に示した光分岐器を製造する工程(方法)の一例を説明する概略図である。   FIGS. 3A to 3F are schematic views for explaining an example of a process (method) for manufacturing the optical branching device shown in FIGS. 1 and 2.

第1に、図3(a)に示されるように、例えば二酸化シリコンを主成分とするガラス平板が基板10として用意される。続いて、基板10上に、基板10の屈折率に比較して屈折率の大きな光導波路構造20およびダミーパターン24A〜24Hとして利用される材質、例えば二酸化シリコンが、CVD法(chemical vapor deposition method)により、所定厚さに堆積される。なお、光導波路構造20に利用される酸化シリコンの薄層には、屈折率を高めるために、例えばリン(P)、チタン(Ti)、ゲルマニウム(Ge)、もしくはアルミニウム(Al)等が、必要に応じてドープされる。   First, as shown in FIG. 3A, for example, a glass flat plate mainly composed of silicon dioxide is prepared as the substrate 10. Subsequently, a material used as the optical waveguide structure 20 and the dummy patterns 24A to 24H having a higher refractive index than the refractive index of the substrate 10 on the substrate 10, such as silicon dioxide, is a CVD method (chemical vapor deposition method). Thus, a predetermined thickness is deposited. The thin layer of silicon oxide used for the optical waveguide structure 20 requires, for example, phosphorus (P), titanium (Ti), germanium (Ge), or aluminum (Al) to increase the refractive index. Depending on the doping.

次に、図3(b)に示すように、酸化シリコン層(20)上に、例えばタングステンシリサイド(WSi)等の保護膜121が所定の厚さに、堆積される。   Next, as shown in FIG. 3B, a protective film 121 such as tungsten silicide (WSi) is deposited on the silicon oxide layer (20) to a predetermined thickness.

続いて、保護膜121上に、レジスト材(例えば光硬化性樹脂等の耐エッチング材料)122が所定厚さ塗布され、図示しない乾燥工程で硬化された後、図示しない露光工程によりコア部分20とダミーパターン24A〜24Hに相当するパターンが記録(露光)される。以下、図示しない現像工程により、レジスト材が現像されて、図3(c)に示すような、コア部分20及びダミーパターン24A〜24Hの形状に対応するレジストパターン(非エッチングパターンとなった保護膜)123が形成される。   Subsequently, a resist material (e.g., an etching resistant material such as a photo-curing resin) 122 is applied to the protective film 121 to a predetermined thickness, cured after a drying process (not shown), and then exposed to the core portion 20 by an exposure process (not shown). Patterns corresponding to the dummy patterns 24A to 24H are recorded (exposed). Hereinafter, the resist material is developed by a development process (not shown), and a resist pattern corresponding to the shape of the core portion 20 and the dummy patterns 24A to 24H (the protective film that has become an unetched pattern) as shown in FIG. ) 123 is formed.

次に、図3(d)に示すように、例えばエッチング処理により、エッチングすべき領域の保護膜121が除去される。従って、光導波路構造20として先に基板10上に、所定厚さに堆積された高屈折率層(二酸化シリコン)のうち引き続く工程においてエッチングすべき被エッチング部分124が露出される。   Next, as shown in FIG. 3D, the protective film 121 in the region to be etched is removed by, for example, an etching process. Therefore, the portion to be etched 124 to be etched in the subsequent process is exposed in the high refractive index layer (silicon dioxide) deposited to a predetermined thickness on the substrate 10 as the optical waveguide structure 20 first.

以下、図3(e)に示すように、周知のドライエッチングにより、被エッチング部分124が除去され、コア20及びダミーパターン24A〜24H部分(図3(e)では24B,24Cのみが見える)が形成される。   Hereinafter, as shown in FIG. 3E, the etched portion 124 is removed by well-known dry etching, and the core 20 and the dummy patterns 24A to 24H (only 24B and 24C are visible in FIG. 3E). It is formed.

次に、図3(f)に示すように、コア20及びダミーパターン24A〜24H(この図3(f)では24A〜24Cのみが見える)を含む基板10の全域に、クラッド層30として利用される材質、例えば二酸化シリコンが所定の厚さに堆積される。なお、クラッド層30には、屈折率を低下することのできる、例えばホウ素(B)もしくはフッ素(F)がドープされてもよい。   Next, as shown in FIG. 3F, the clad layer 30 is used over the entire area of the substrate 10 including the core 20 and the dummy patterns 24A to 24H (only 24A to 24C are visible in FIG. 3F). A material such as silicon dioxide is deposited to a predetermined thickness. The clad layer 30 may be doped with, for example, boron (B) or fluorine (F) that can lower the refractive index.

コア部分(光導波路構造20)やダミーパターン24A〜24H(光導波路構造20)及びクラッド層30は、CVD法に限らず、例えば火炎堆積法(FHD:Flame Hydrolysis Deposition 法)によって形成されてもよく、その製法は、特に特定の製法に限定されるものではない。   The core portion (optical waveguide structure 20), the dummy patterns 24A to 24H (optical waveguide structure 20), and the cladding layer 30 are not limited to the CVD method, and may be formed by, for example, a flame deposition method (FHD: Flame Hydrolysis Deposition method). The production method is not particularly limited to a specific production method.

続いて、クラッド層30上に、図2により前に説明した接着剤層25が形成され、接着剤層25上に、カバー(ガラス)層すなわちリッド40が固定される。なお、クラッド層30が、コア20及びダミーパターン24A〜24Hに対応する領域で盛り上がる(凸部を呈する)場合には、接着剤層25を形成する前に、図示しないが平滑化(研磨)工程により、その表面の凹凸、特に凸状部が平坦化されてもよい。なお、リッド40を接着剤層25によりクラッド層30上に固定する方法に代えて、クラッド層30の材質を、予め、リッド40の材質と等しい材質か、熱膨張率が所定の範囲内にある材質とし、リッド40をクラッド層30上に配置した後、所定の圧力と熱を加え、リッド40とクラッド層30とを同化させることによっても、リッド40をクラッド層30に固定できる。   Subsequently, the adhesive layer 25 described above with reference to FIG. 2 is formed on the clad layer 30, and the cover (glass) layer, that is, the lid 40 is fixed on the adhesive layer 25. In addition, when the clad layer 30 swells in a region corresponding to the core 20 and the dummy patterns 24A to 24H (presents a convex portion), a smoothing (polishing) step (not shown) is performed before the adhesive layer 25 is formed. Accordingly, the surface irregularities, in particular, the convex portions may be flattened. Instead of the method of fixing the lid 40 on the clad layer 30 with the adhesive layer 25, the material of the clad layer 30 is previously equal to the material of the lid 40 or the thermal expansion coefficient is within a predetermined range. The lid 40 can also be fixed to the cladding layer 30 by using a material and disposing the lid 40 on the cladding layer 30 and then applying a predetermined pressure and heat to assimilate the lid 40 and the cladding layer 30.

図4は、図1及び図2に示した光分岐器において、光導波路構造をエッチングして所定の光信号伝送路すなわちコア部分を形成する際に、コア部分(またはコア部分に相当する領域)の幅が不所望に変化する要因を説明する概略図である。なお、図4においては、横軸をコア部分を形成するための[工程]とし、各工程において、コア部分(相当領域)の幅の変動の分布(3σ)を求めたものである。また、図4において、各曲線は、ダミーパターン24A〜24Hとコア部分20(図1参照)が基板10の面積(同図参照)に占める割合すなわち占有率とコア部分の幅の変動の分布(3σ)との関係を示し、曲線aは占有率90%を、曲線bは同70%を、曲線cは同60%を、曲線bは同30%を、及び曲線eは同5%を、それぞれ、示している。   FIG. 4 shows a core portion (or a region corresponding to the core portion) when the optical waveguide structure shown in FIGS. 1 and 2 is etched to form a predetermined optical signal transmission path, that is, a core portion. It is the schematic explaining the factor by which the width | variety of an undesirably changes. In FIG. 4, the horizontal axis is [Process] for forming the core portion, and the distribution (3σ) of the variation in the width of the core portion (corresponding region) is obtained in each step. Further, in FIG. 4, each curve shows a distribution of the ratio of the dummy patterns 24 </ b> A to 24 </ b> H and the core portion 20 (see FIG. 1) to the area of the substrate 10 (see FIG. 1), that is, the occupation ratio and the width of the core portion ( 3σ), curve a is 90% occupancy, curve b is 70%, curve c is 60%, curve b is 30%, and curve e is 5%. Each is shown.

なお、占有率90%は、コア部分の外側に、コア部分の幅と概ね等しい間隔が残るように、ダミーパターン24A〜24Hの面積を設定した状態に対応する。また、占有率5%は、ダミーパターンが全くない状態に対応する。   Note that the occupation ratio of 90% corresponds to a state in which the areas of the dummy patterns 24A to 24H are set so that an interval substantially equal to the width of the core portion remains outside the core portion. An occupation ratio of 5% corresponds to a state where there is no dummy pattern.

図4から明らかなように、コア部分の幅の変動の分布(3σ)が最も大きくなる工程は、コア部分のエッチング工程であることがわかる。その一方で、占有率を70%以上とすることで、コア部分の幅の変動(3σ)を0.15μm以下に低減できることが認められる。特に、占有率を90%以上とした場合には、同(3σ)を0.1μm以下に低減できる。なお、占有率5%の場合には、図1に区分線Lで示したように、光入射側と光出射側との間でエッチングレートが大きく異なることから、それに起因して、コア部分の幅の変動の分布(3σ)が増大するものと考えることが妥当である。また、出力端23A〜23H(図1参照)においては、分岐(チャンネル)数に応じてコア部分の間隔が狭くなることから、コア部分相互の間隔がコア部分の幅(基板10の面に沿う方向の長さすなわちコアの太さ)の2倍よりも少ない場合には、ダミーパターンは、必ずしも必要ではない。   As is apparent from FIG. 4, it can be seen that the process in which the distribution (3σ) of the fluctuation in the width of the core portion becomes the largest is the etching process of the core portion. On the other hand, it is recognized that the variation (3σ) in the width of the core portion can be reduced to 0.15 μm or less by setting the occupation ratio to 70% or more. In particular, when the occupation ratio is 90% or more, the (3σ) can be reduced to 0.1 μm or less. When the occupation ratio is 5%, as indicated by the dividing line L in FIG. 1, the etching rate is greatly different between the light incident side and the light emitting side. It is reasonable to assume that the distribution of width variation (3σ) increases. Further, at the output ends 23A to 23H (see FIG. 1), the interval between the core portions is reduced according to the number of branches (channels), and therefore the interval between the core portions is the width of the core portion (along the surface of the substrate 10). If the length is less than twice the length of the direction (ie, the thickness of the core), the dummy pattern is not necessarily required.

図5は、リッドガラスを接着した場合のパターン(コア部分とダミーパターンの合計)占有率とPDLとの関係を示す概略図である。なお、図5に示すPDLは、基板10(図1参照)の大きさを、短辺が6インチ(約125mm)の正方形とし、コア部分(光導波路構造)20とダミーパターン24A〜24H(図1参照)の面積の合計を変化させて得たものである。   FIG. 5 is a schematic diagram showing a relationship between the pattern (total of core part and dummy pattern) occupancy and PDL when lid glass is bonded. In the PDL shown in FIG. 5, the size of the substrate 10 (see FIG. 1) is a square having a short side of 6 inches (about 125 mm), and the core portion (optical waveguide structure) 20 and dummy patterns 24A to 24H (see FIG. 5). 1)) and changing the total area.

図5から明らかなように、占有率を90%以上にした(コア部分の外側に、コア部分の幅と概ね等しい間隔が残るようにダミーパターン24A〜24Hの面積を設定した)場合は、PDLは、0.07[dB]まで低減できることが認められた。   As is clear from FIG. 5, when the occupation ratio is 90% or more (the areas of the dummy patterns 24A to 24H are set outside the core portion so that an interval substantially equal to the width of the core portion remains), Was found to be reduced to 0.07 [dB].

また、ダミーパターン24A〜24Hを、占有率が70%以上となるように基板10に設ける(非エッチング対象となる光導波路構造20の所定部分を残存させる)ことにより、エッチング時に、基板10の端部に設けられるコア部分が基板10の中央またはその近傍に設けられるコア部分よりも多くエッチングされる程度も低減されることが確認されている。   Further, by providing the dummy patterns 24A to 24H on the substrate 10 so that the occupation ratio becomes 70% or more (remaining a predetermined portion of the optical waveguide structure 20 to be unetched), the edge of the substrate 10 is etched. It has been confirmed that the degree to which the core portion provided in the portion is etched more than the core portion provided in the center of the substrate 10 or in the vicinity thereof is reduced.

図6は、コア部分及びダミーパターンが基板に占める占有率と過剰損失との関係を説明する概略図である。なお、図6において、曲線aは占有率90%を、曲線bは同70%を、曲線fは同50%を、曲線eは同5%を、それぞれ、示している。   FIG. 6 is a schematic diagram for explaining the relationship between the occupation ratio of the core portion and the dummy pattern in the substrate and excess loss. In FIG. 6, curve a shows 90% occupancy, curve b shows 70%, curve f shows 50%, and curve e shows 5%.

図6に示される通り、占有率が小さいとローディング効果により、入射側の曲がり導波路が、他の部分より細く形成される。このため、曲がり部から光が漏れ、長波長側で損失が大きくなる。占有率を大きくしていくと曲がり導波路の線幅が均一に形成されるため光の漏れが抑えられ、フラットな波長特性が得られる。なお、図4を用いて前に説明したが、占有率を70%以上にすることで、コア部分の幅の変動(3σ)を0.15μm以下にできる。また、占有率を90%以上とすることで、コア部分の幅の変動(3σ)を0.1μm以下にできる。 As shown in FIG. 6, when the occupation ratio is small, the bent waveguide on the incident side is formed narrower than the other part due to the loading effect. For this reason, light leaks from the bent portion, and the loss increases on the long wavelength side. When the occupation ratio is increased, the bent waveguide has a uniform line width, so that light leakage is suppressed and a flat wavelength characteristic is obtained. In addition, although demonstrated previously using FIG. 4, the fluctuation | variation (3 (sigma)) of the width | variety of a core part can be 0.15 micrometer or less by making an occupation rate 70% or more. Further, by setting the occupation ratio to 90% or more, the variation (3σ) in the width of the core portion can be made 0.1 μm or less.

以上説明したように本発明によれば、エッチングレートが基板の全域で概ね均一化されるので、分岐先毎(チャンネル相互間)で、コア部分の幅が大きく変動することが抑止できるため、挿入損失の波長均一性が高く、かつダミーコアの存在によりカバーガラス(リッド)を接着しても、偏波依存性損失の低い光分岐器が得られる。   As described above, according to the present invention, since the etching rate is substantially uniform over the entire area of the substrate, it is possible to prevent the core part width from fluctuating greatly at each branch destination (between channels). Even when the cover glass (lid) is adhered due to the presence of the dummy core, the optical branching unit having a low polarization dependence loss can be obtained.

なお、この発明は、前記各実施の形態に限定されるものではなく、その実施の段階ではその要旨を逸脱しない範囲で種々な変形もしくは変更が可能である。また、各実施の形態は、可能な限り適宜組み合わせて実施されてもよく、その場合、組み合わせによる効果が得られる。例えば、上述した実施の形態においては、主として入力側に入力された光信号を分岐する光分岐器を例に説明したが、入力側が複数で、入力された光信号が順に合波される光合波器や、2つの入力ポートの一方から入力された光信号が2つの出力ポートから出力される1入力2出力光方向性結合器等の、基板上に光導波路構造が形成される光素子に適用されても、同一の効果が得られる。   The present invention is not limited to the above-described embodiments, and various modifications or changes can be made without departing from the scope of the invention when it is implemented. Moreover, each embodiment may be implemented in combination as appropriate as possible, and in that case, the effect of the combination can be obtained. For example, in the above-described embodiments, an optical branching device that mainly branches an optical signal input to the input side has been described as an example. However, there is a plurality of input sides, and optical multiplexing in which the input optical signals are sequentially combined. And optical devices with optical waveguide structure formed on the substrate such as 1-input 2-output optical directional coupler that outputs optical signals input from one of two input ports from two output ports However, the same effect can be obtained.

この発明の実施の形態が適用される光分岐器の一例を説明する概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explaining an example of the optical branching device with which embodiment of this invention is applied. 図1に示した光分岐器をI−I線に沿って切断した状態を示す概略図。Schematic which shows the state which cut | disconnected the optical branching device shown in FIG. 1 along the II line. 図1及び図2に示した光分岐器を製造する工程の一例を説明する概略図。Schematic explaining an example of the process of manufacturing the optical branching device shown in FIG.1 and FIG.2. 図1及び図2に示した光分岐器において、コア部分(またはコア部分に相当する領域)の幅が不所望に変化する要因を説明する概略図。FIG. 3 is a schematic diagram for explaining a factor in which the width of a core portion (or a region corresponding to the core portion) changes undesirably in the optical branching device shown in FIGS. 1 and 2. 占有率[%]とPDL[dB]との関係を説明する概略図。Schematic explaining the relationship between occupancy [%] and PDL [dB]. 占有率[%]と過剰損失[dB]との関係を説明する概略図である。It is the schematic explaining the relationship between an occupation rate [%] and excess loss [dB].

符号の説明Explanation of symbols

1…光分岐器、10…基板、20…光導波路構造(コア)、21…光入射端、22A〜22G…光分岐部、23A〜23H…光出射端、24A〜24H…ダミーパターン、25…接着剤層(接着剤)、30…クラッド層、40…リッド(カバー層)。   DESCRIPTION OF SYMBOLS 1 ... Optical branching device, 10 ... Board | substrate, 20 ... Optical waveguide structure (core), 21 ... Light incident end, 22A-22G ... Optical branching part, 23A-23H ... Light emitting end, 24A-24H ... Dummy pattern, 25 ... Adhesive layer (adhesive), 30 ... cladding layer, 40 ... lid (cover layer).

Claims (13)

光が入射される光入射部と、
この光入射部に入射される光を所定の比率で分岐する光分岐部と、
この光分岐部により分岐された光を所定位置に案内する光出射部と、
前記光入射部、前記光分岐部及び前記光出射部上に所定厚さに形成される接着剤層と、
前記光入射部、前記光分岐部及び前記光出射部を保持する基板と、
前記接着剤層を介して前記基板上の前記光入射部、前記光分岐部及び前記光出射部のそれぞれを覆うカバー部材と、
前記基板上に、前記光入射部、前記光分岐部及び前記光出射部が設けられる領域と独立に設けられ、前記接着剤層が硬化する際に生じる応力が、前記基板上の前記光入射部、前記光分岐部及び前記光出射部のいずれか、または全域に作用することを抑止する応力均一化部材と、
を有することを特徴とする光分岐器。
A light incident part where light is incident;
A light branching portion that branches the light incident on the light incident portion at a predetermined ratio;
A light emitting portion for guiding the light branched by the light branching portion to a predetermined position;
An adhesive layer formed in a predetermined thickness on the light incident part, the light branching part and the light emitting part;
A substrate for holding the light incident part, the light branching part and the light emitting part;
A cover member covering each of the light incident part, the light branching part and the light emitting part on the substrate via the adhesive layer;
A stress generated when the adhesive layer is cured is provided on the substrate independently of a region where the light incident portion, the light branching portion, and the light emitting portion are provided. , A stress leveling member that suppresses acting on any of the light branching portion and the light emitting portion, or the entire region,
An optical branching device comprising:
前記応力均一化部材は、前記基板の面積に対する前記基板上に設けられる前記光入射部、前記光分岐部及び前記光出射部の面積と前記応力均一化部材の面積との合計の面積の比である占有率が70%より大きくなるような面積に規定されていることを特徴とする請求項1記載の光分岐器。   The stress equalizing member is a ratio of the total area of the areas of the light incident part, the light branching part and the light emitting part provided on the substrate to the area of the substrate and the area of the stress uniformizing member. 2. The optical branching device according to claim 1, wherein the optical branching device is defined to have an area in which a certain occupation ratio is larger than 70%. 前記応力均一化部材は、前記占有率が90%より大きくなるような面積に規定されていることを特徴とする請求項2記載の光分岐器。   The optical branching device according to claim 2, wherein the stress uniformizing member is defined to have an area where the occupation ratio is larger than 90%. 前記応力均一化部材は、前記光入射部、前記光分岐部及び前記光出射部と同一の材質により形成されることを特徴とする請求項1ないし3のいずれかに記載の光分岐器。   The optical branching device according to any one of claims 1 to 3, wherein the stress uniformizing member is formed of the same material as the light incident portion, the light branching portion, and the light emitting portion. 前記応力均一化部材は、前記光入射部、前記光分岐部及び前記光出射部と同一の工程において形成されることを特徴とする請求項1ないし3のいずれかに記載の光分岐器。   The optical branching device according to any one of claims 1 to 3, wherein the stress uniformizing member is formed in the same process as the light incident portion, the light branching portion, and the light emitting portion. 基板上に、光が入射される光入射部と、光入射部に入射される光を所定の比率で分岐する光分岐部と、光分岐部により分岐された光を所定位置に案内する光出射部と、基板上の光入射部、光分岐部及び光出射部が設けられる領域と独立に、光入射部、光分岐部及び光出射部と同一の材質により、基板上の光入射部、光分岐部及び光出射部が設けられる領域を除いた領域の割合を示す占有率が70%より大きくなるよう、基板上に設けられた応力均一化部材と、を有することを特徴とする光分岐器。   A light incident portion on which light is incident on a substrate, a light branching portion that branches light incident on the light incident portion at a predetermined ratio, and a light emission that guides the light branched by the light branching portion to a predetermined position And the light incident portion, light branching portion, and light emitting portion on the substrate are made of the same material as the light incident portion, light branching portion, and light emitting portion. And a stress leveling member provided on the substrate so that an occupation ratio indicating a ratio of a region excluding a region where the branching portion and the light emitting portion are provided is larger than 70%. . 前記応力均一化部材は、前記占有率が90%より大きくなるような面積に規定されていることを特徴とする請求項6記載の光分岐器。   The optical branching device according to claim 6, wherein the stress equalizing member is defined to have an area where the occupation ratio is larger than 90%. 前記応力均一化部材は、前記光入射部、前記光分岐部及び前記光出射部と同一の工程において形成されることを特徴とする請求項7記載の光分岐器。   The optical branching device according to claim 7, wherein the stress uniformizing member is formed in the same process as the light incident portion, the light branching portion, and the light emitting portion. 基板に、光導波路として利用可能な基板の屈折率に比較して屈折率の高い光伝達材質層を所定の厚さに堆積し、
光伝達材料層に、光信号の伝送に利用される第1の領域と、第1の領域の周囲に所定の間隔をおいて、第1の領域をエッチングする際のエッチングレートを、基板の全域で概ね一定とするための第2の領域を規定し、
第1の領域及び第2の領域のそれぞれに、非エッチングパターンを形成して、基板上の残りの領域をエッチングによりパターニングし、
パターニングにより残った光伝達材料層及び基板が露出された領域の全域に、光伝達材料層に比較して屈折率が低い材質を所定厚さに設けて第1及び第2の領域とは異なる第3の領域を形成し、
第3の領域に、接着剤を介してカバー部材を接着する
ことを特徴とする光分岐器の製造方法。
On the substrate, a light transmission material layer having a higher refractive index than that of the substrate that can be used as an optical waveguide is deposited to a predetermined thickness
The optical transmission material layer has a first region used for transmitting an optical signal and a predetermined interval around the first region, and an etching rate for etching the first region is set to the entire area of the substrate. To define a second region to be generally constant,
Forming a non-etched pattern in each of the first region and the second region, and patterning the remaining region on the substrate by etching;
A material having a refractive index lower than that of the light transmission material layer is provided in a predetermined thickness over the entire region where the light transmission material layer and the substrate remaining after the patterning are exposed, and are different from the first and second regions. 3 regions are formed,
A cover member is bonded to the third region via an adhesive.
A method of manufacturing an optical branching device.
第1の領域と第2の領域の面積の合計を基板の面積でわり算した占有率が70%より大きくなるよう、第2の領域の面積が設定されることを特徴とする請求項9記載の光分岐器の製造方法。   The area of the second region is set so that an occupation ratio obtained by dividing the total area of the first region and the second region by the area of the substrate is larger than 70%. Manufacturing method of optical branching device. 第2の領域の面積は、カバー層が接着される際に生じる応力が、第1の領域に及ぼす影響を緩和できる面積であることを特徴とする請求項9記載の光分岐器の製造方法。   10. The method of manufacturing an optical branching device according to claim 9, wherein the area of the second region is an area that can reduce the influence of the stress generated when the cover layer is bonded to the first region. 光が入射される光入射部と、
この光入射部に入射される光を所定の比率で分岐する光分岐部と、
この光分岐部により分岐された光を所定位置に案内する光出射部と、
前記光入射部、前記光分岐部及び前記光出射部上に所定厚さに形成される接着剤層と、
前記光入射部、前記光分岐部及び前記光出射部を保持する基板と、
前記基板上に、前記光入射部、前記光分岐部及び前記光出射部が設けられる領域と独立して設けられ、前記基板上の前記光入射部、前記光分岐部及び前記光出射部を形成する際に、前記基板上の前記光入射部、前記光分岐部及び前記光出射部のそれぞれの前記基板の面方向に沿った長さである線幅が不均一となることを低減する非光信号伝送領域と、
を有することを特徴とする光分岐器。
A light incident part where light is incident;
A light branching portion that branches the light incident on the light incident portion at a predetermined ratio;
A light emitting portion for guiding the light branched by the light branching portion to a predetermined position;
An adhesive layer formed in a predetermined thickness on the light incident part, the light branching part and the light emitting part;
A substrate for holding the light incident part, the light branching part and the light emitting part;
On the substrate, the light incident portion, the light branching portion, and the light emitting portion are provided independently of the region where the light incident portion, the light branching portion, and the light emitting portion are provided, and the light incident portion, the light branching portion, and the light emitting portion on the substrate are formed. Non-light that reduces the non-uniformity of the line width, which is the length of each of the light incident portion, the light branching portion, and the light emitting portion on the substrate along the surface direction of the substrate. A signal transmission area;
An optical branching device comprising:
基板に、光導波路として利用可能な基板の屈折率に比較して屈折率の高い光伝達材質層を所定の厚さに堆積し、
光伝達材料層に、光信号の伝送に利用される第1の領域と、第1の領域の周囲に所定の間隔をおいて、第1の領域をエッチングする際のエッチングレートを、基板の全域で概ね一定とするための第2の領域を規定し、
第1の領域及び第2の領域のそれぞれに、非エッチングパターンを形成して、基板上の残りの領域をエッチングによりパターニングし、
パターニングにより残った光伝達材料層及び基板が露出された領域の全域に、光伝達材料層に比較して屈折率が低い材質を所定厚さに設けて第1及び第2の領域とは異なる第3の領域を形成する
ことを特徴とする光分岐器の製造方法。
On the substrate, a light transmission material layer having a higher refractive index than that of the substrate that can be used as an optical waveguide is deposited to a predetermined thickness
The optical transmission material layer has a first region used for transmitting an optical signal and a predetermined interval around the first region, and an etching rate for etching the first region is set to the entire area of the substrate. To define a second region to be generally constant,
Forming a non-etched pattern in each of the first region and the second region, and patterning the remaining region on the substrate by etching;
A material having a lower refractive index than that of the light transmission material layer is provided in a predetermined thickness over the entire region where the light transmission material layer and the substrate remaining after the patterning are exposed, and are different from the first and second regions. 3 areas are formed
A method of manufacturing an optical branching device.
JP2004157506A 2004-05-27 2004-05-27 Optical branching device and manufacturing method therefor Pending JP2005338467A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004157506A JP2005338467A (en) 2004-05-27 2004-05-27 Optical branching device and manufacturing method therefor
PCT/JP2005/009780 WO2005116705A1 (en) 2004-05-27 2005-05-27 Optical divider and manufacturing method thereof
CNB2005800172083A CN100470278C (en) 2004-05-27 2005-05-27 Optical branching unit, and method of manufacturing the same
US11/601,558 US7335875B2 (en) 2004-05-27 2006-11-17 Optical branching unit, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157506A JP2005338467A (en) 2004-05-27 2004-05-27 Optical branching device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005338467A true JP2005338467A (en) 2005-12-08

Family

ID=35451013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157506A Pending JP2005338467A (en) 2004-05-27 2004-05-27 Optical branching device and manufacturing method therefor

Country Status (4)

Country Link
US (1) US7335875B2 (en)
JP (1) JP2005338467A (en)
CN (1) CN100470278C (en)
WO (1) WO2005116705A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090319111A1 (en) * 2008-06-20 2009-12-24 Yu-Ta Tu Digital Input/Output Control Device for Electric Vehicles
WO2011078033A1 (en) * 2009-12-22 2011-06-30 Nttエレクトロニクス株式会社 Planar lightwave circuit and production method for planar lightwave circuit
CN106353858A (en) * 2016-10-21 2017-01-25 上海光芯集成光学股份有限公司 PLC (Programmable Logic Controller) light back plate
JP2018106191A (en) * 2013-12-18 2018-07-05 日本電気株式会社 Optical waveguide and method for manufacturing optical waveguide
CN112698445A (en) * 2020-03-31 2021-04-23 江苏南耳智造通信科技有限公司 Polarization-independent Y-branch type light splitting/combining device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406023B2 (en) * 2007-08-24 2010-01-27 富士通株式会社 Optical integrated device
CN106125198A (en) * 2014-02-21 2016-11-16 杭州天野通信设备有限公司 For full communication wave band being carried out light shunt structure and the preparation method of light splitting optimization
JP6428146B2 (en) * 2014-10-22 2018-11-28 日本電気株式会社 Optical waveguide device and manufacturing method thereof
EP3431918B1 (en) * 2017-07-20 2021-03-31 Fogale Nanotech Multichannel confocal sensor and related method for inspecting a sample

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265802A (en) * 1990-03-16 1991-11-26 Nippon Telegr & Teleph Corp <Ntt> Embedded type quartz optical waveguide and production thereof
JPH05323136A (en) * 1991-09-06 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Embedded quartz optical waveguide and its production
JPH10308555A (en) * 1997-05-01 1998-11-17 Nippon Telegr & Teleph Corp <Ntt> Hybrid waveguide optical circuit and its manufacture
JP2000147293A (en) * 1998-11-12 2000-05-26 Hitachi Cable Ltd Substrate type optical waveguide and its manufacture
JP2003222747A (en) * 2002-01-30 2003-08-08 Kyocera Corp Optical circuit board
JP2003315573A (en) * 2002-04-26 2003-11-06 Central Glass Co Ltd Resin optical waveguide and method for manufacturing the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012515A (en) * 1983-07-02 1985-01-22 Agency Of Ind Science & Technol Manufacture of optical waveguide circuit
JP3447056B2 (en) * 1992-10-28 2003-09-16 富士通株式会社 Method for manufacturing optical waveguide device
JPH0756032A (en) * 1993-08-12 1995-03-03 Hitachi Cable Ltd Glass waveguide and its production
JPH07244223A (en) * 1994-03-08 1995-09-19 Fujitsu Ltd Production of optical multiplexer/demultiplexer
JPH0815540A (en) * 1994-06-29 1996-01-19 Sumitomo Electric Ind Ltd Optical waveguide and its production
JPH08286064A (en) * 1995-04-19 1996-11-01 Nippon Telegr & Teleph Corp <Ntt> Production of high-polymer optical waveguide
JPH09230155A (en) * 1996-02-27 1997-09-05 Nippon Telegr & Teleph Corp <Ntt> Production of optical waveguide
JPH09329720A (en) * 1996-06-10 1997-12-22 Mitsubishi Gas Chem Co Inc Itegrated optical waveguide and its production
JPH11271545A (en) 1998-03-19 1999-10-08 Hitachi Cable Ltd Y-branch optical waveguide
DE19831719A1 (en) * 1998-07-15 2000-01-20 Alcatel Sa Process for the production of planar waveguide structures and waveguide structure
US6605228B1 (en) * 1998-10-19 2003-08-12 Nhk Spring Co., Ltd. Method for fabricating planar optical waveguide devices
JP2001116940A (en) * 1999-10-21 2001-04-27 Fujitsu Ltd Optical device
JP2001255426A (en) * 2000-03-08 2001-09-21 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide
JP2002006153A (en) * 2000-06-21 2002-01-09 Hitachi Cable Ltd Optical wavelength multiplexing-branching filter
JP4776082B2 (en) * 2001-01-31 2011-09-21 古河電気工業株式会社 Planar optical waveguide type Mach-Zehnder circuit, planar optical waveguide circuit and optical multiplexer / demultiplexer using the planar optical waveguide type Mach-Zehnder circuit
JP2003149491A (en) * 2001-11-15 2003-05-21 Furukawa Electric Co Ltd:The Optical waveguide circuit module
JP2003240990A (en) * 2002-02-14 2003-08-27 Fujitsu Ltd Planar optical waveguide device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265802A (en) * 1990-03-16 1991-11-26 Nippon Telegr & Teleph Corp <Ntt> Embedded type quartz optical waveguide and production thereof
JPH05323136A (en) * 1991-09-06 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Embedded quartz optical waveguide and its production
JPH10308555A (en) * 1997-05-01 1998-11-17 Nippon Telegr & Teleph Corp <Ntt> Hybrid waveguide optical circuit and its manufacture
JP2000147293A (en) * 1998-11-12 2000-05-26 Hitachi Cable Ltd Substrate type optical waveguide and its manufacture
JP2003222747A (en) * 2002-01-30 2003-08-08 Kyocera Corp Optical circuit board
JP2003315573A (en) * 2002-04-26 2003-11-06 Central Glass Co Ltd Resin optical waveguide and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090319111A1 (en) * 2008-06-20 2009-12-24 Yu-Ta Tu Digital Input/Output Control Device for Electric Vehicles
WO2011078033A1 (en) * 2009-12-22 2011-06-30 Nttエレクトロニクス株式会社 Planar lightwave circuit and production method for planar lightwave circuit
JP2018106191A (en) * 2013-12-18 2018-07-05 日本電気株式会社 Optical waveguide and method for manufacturing optical waveguide
US10324257B2 (en) 2013-12-18 2019-06-18 Nec Corporation Semiconductor optical waveguide, method for manufacturing the same, and optical communication device using the same
CN106353858A (en) * 2016-10-21 2017-01-25 上海光芯集成光学股份有限公司 PLC (Programmable Logic Controller) light back plate
CN112698445A (en) * 2020-03-31 2021-04-23 江苏南耳智造通信科技有限公司 Polarization-independent Y-branch type light splitting/combining device

Also Published As

Publication number Publication date
US7335875B2 (en) 2008-02-26
US20070086711A1 (en) 2007-04-19
CN100470278C (en) 2009-03-18
CN1981225A (en) 2007-06-13
WO2005116705A1 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US6442311B1 (en) Optical device having modified transmission characteristics by localized thermal treatment
US7335875B2 (en) Optical branching unit, and method of manufacturing the same
KR100450935B1 (en) Method for fabricating tapered waveguide
JP4385168B2 (en) Diffraction grating and dispersion compensation circuit
JP2004037769A (en) Optical waveguide coupler circuit device
US6732550B2 (en) Method for performing a deep trench etch for a planar lightwave circuit
JP2007163825A (en) Waveguide type thermo-optical circuit
JP2002062444A (en) Array waveguide type optical wavelength multiplexer/ demultiplexer and its manufacturing method
KR100563489B1 (en) Optical device employing the silica?polymer hybrid optical waveguide
US9618694B2 (en) Optical waveguide and arrayed waveguide grating
JPH1068833A (en) Optical waveguide and its production as well as output circuit
US20030016938A1 (en) Planar lightwave circuit type variable optical attenuator
KR100901917B1 (en) Optical branching unit, and method of manufacturing the same
JP5244085B2 (en) Planar lightwave circuit and method for manufacturing planar lightwave circuit
KR20010022120A (en) Method of fabricating an optical component and optical component made thereby
JP2000147283A (en) Optical waveguide circuit
JP3228233B2 (en) Optical waveguide device
JPH0720336A (en) Structure of optical waveguide and its production
JPH10197737A (en) Production of optical waveguide circuit
JP3137165B2 (en) Manufacturing method of optical waveguide circuit
JP2009053425A (en) Method for forming optical waveguide wavelength filter and optical waveguide wavelength filter
JP3679037B2 (en) Waveguide type optical circuit
JP3264652B2 (en) Optical circuit
JPH11352343A (en) Array waveguide grating
JPH1048460A (en) Plane type optical waveguide

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323