JP3264652B2 - Optical circuit - Google Patents

Optical circuit

Info

Publication number
JP3264652B2
JP3264652B2 JP26353598A JP26353598A JP3264652B2 JP 3264652 B2 JP3264652 B2 JP 3264652B2 JP 26353598 A JP26353598 A JP 26353598A JP 26353598 A JP26353598 A JP 26353598A JP 3264652 B2 JP3264652 B2 JP 3264652B2
Authority
JP
Japan
Prior art keywords
optical
optical circuit
waveguide
wavelength
pdl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26353598A
Other languages
Japanese (ja)
Other versions
JP2000098149A (en
Inventor
淳 阿部
明 姫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26353598A priority Critical patent/JP3264652B2/en
Publication of JP2000098149A publication Critical patent/JP2000098149A/en
Application granted granted Critical
Publication of JP3264652B2 publication Critical patent/JP3264652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信、光情報処
理、光計測分野に於いて有用な、平面基板上に光導波路
を配置した光回路、特に波長合分波光回路に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical circuit having an optical waveguide disposed on a flat substrate, and particularly to a wavelength multiplexing / demultiplexing optical circuit, which is useful in the fields of optical communication, optical information processing, and optical measurement.

【0002】[0002]

【従来の技術】石英系光導波路は、損失が低く、また、
石英系の物理的・化学的特性に基づき、安定性、信頼性
が高いという特徴を有する。更に、光通信の伝送路であ
る石英系ファイバとほぼ同一の屈折率値を有するためフ
ァイバとの整合性が良いなどの特徴も持つ。この石英系
光導波路を用いて平面基板上に作製される、光波長合分
波器、光スイッチなどの光回路は、光通信、光情報処
理、光計測などの分野で実用的に有望な導波型光部品と
して研究開発が進められている。
2. Description of the Related Art Quartz optical waveguides have low loss and
It is characterized by high stability and reliability based on the physical and chemical properties of quartz. Further, it has characteristics such as good matching with the fiber because it has almost the same refractive index value as the silica-based fiber which is a transmission line of optical communication. Optical circuits such as optical wavelength multiplexing / demultiplexing devices and optical switches fabricated on a flat substrate using this silica-based optical waveguide are practically promising optical communication, optical information processing, and optical measurement fields. Research and development are progressing as corrugated optical components.

【0003】石英系光導波路は、一般に以下のようにし
て作製される。すなわち、基板上に下部クラッド膜層を
堆積し、コア膜層堆積及びコア部分パターン化加工を行
い、さらに上部クラッド層を堆積して、光導波路を作製
する。この石英系光導波路を用い、光パワースプリッタ
ー、波長合分波器、フィルター、スイッチなど実用的に
有望な様々な光回路に関する研究開発が行われている
(M. Kawachi, "Silica waveguides on silicon and the
ir application to integrated-optic components", Op
t. and Quantum Electron., 22, pp.319-416)。
A quartz optical waveguide is generally manufactured as follows. That is, a lower cladding film layer is deposited on a substrate, a core film layer deposition and a core partial patterning process are performed, and an upper cladding layer is further deposited to produce an optical waveguide. Research and development on various optical circuits that are promising for practical use, such as optical power splitters, wavelength multiplexers / demultiplexers, filters, and switches, using this silica-based optical waveguide are being conducted.
(M. Kawachi, "Silica waveguides on silicon and the
ir application to integrated-optic components ", Op
t. and Quantum Electron., 22, pp. 319-416).

【0004】なかでも、アレイ導波路型波長合分波器
(AWG)などの波長合分波光回路は、近年、波長分割
多重(Wavelength Division Multiplexing:WDM)光通
信システムの実用化の進展に伴い、極めて重要な光デバ
イスとなりつつある。Si基板は、熱伝導率が高いこと
から、一様に基板温度を制御することが容易であり、ま
た高精度に平滑な基板が比較的安価且つ容易に手に入る
という利点を有している。そのため、これらの石英系光
回路の作製に於いて、その基板に、Si基板がしばしば
用いられている。しかし、Si基板上に作製される石英
系導波路は、通常、基板とガラス層の熱膨張係数差に起
因する複屈折を有している。この複屈折は、波長合分波
光回路などに於いて、透過阻止域の偏波依存性をもたら
し、偏波依存性損失(Polarization Dependent Loss: P
DL)の主たる要因となる。PDLは、通信品質を劣化
させる要因となる故、この偏波依存性を低減或いは補償
する努力が従来からなされている。
[0004] In particular, wavelength multiplexing / demultiplexing optical circuits such as an arrayed waveguide type wavelength multiplexing / demultiplexing device (AWG) have recently been developed with the practical use of wavelength division multiplexing (WDM) optical communication systems. It is becoming a very important optical device. Since the Si substrate has high thermal conductivity, it is easy to uniformly control the substrate temperature, and has the advantage that a highly accurate and smooth substrate can be obtained relatively cheaply and easily. . Therefore, in the production of these quartz-based optical circuits, a Si substrate is often used as the substrate. However, a quartz-based waveguide fabricated on a Si substrate usually has birefringence due to a difference in thermal expansion coefficient between the substrate and the glass layer. This birefringence causes polarization dependence of a transmission blocking region in a wavelength multiplexing / demultiplexing optical circuit or the like, and causes polarization-dependent loss (Polarization Dependent Loss: P).
DL). Since PDL causes deterioration of communication quality, efforts have been made to reduce or compensate for this polarization dependence.

【0005】例えば、紫外レーザー光照射により誘起さ
れる屈折率変化Δnの偏波依存性(異方性)を利用して
複屈折を低減する方法(M. ABE, et al.,"Photoinduced
Birefringence Control in Arrayed-waveguide Gratin
g Multi/Demultiplexer",MOC'93, pp.66-69, 1993.)
や、アモルファスシリコン膜装荷により複屈折を制御す
る方法(H. Takahashi, et al., "Polarization-Insensi
tive Arrayed-WaveguideWavelength Multiplexer with
Birefringence Compensating Film", Photon.Technol.
Lett. vol.5, No.6, pp43-45, 1993)などが知られてい
る。また、コア部並びにクラッド部の組成を調整して複
屈折を低減する方法(例えば、S. Suzuki,et al., "Pol
arization-Insensitive Arrayed-Waveguide gratings U
sing Dopant-Rich Silica Based Glass with Thermal E
xpansion Adjustedto Si Substrate", Electron. Lett.
33, 13, pp. 1173-1174, 1997.) が知られている。
[0005] For example, a method of reducing birefringence by utilizing polarization dependence (anisotropic) of refractive index change Δn induced by irradiation of ultraviolet laser light (M. ABE, et al., “Photoinduced
Birefringence Control in Arrayed-waveguide Gratin
g Multi / Demultiplexer ", MOC'93, pp.66-69, 1993.)
And a method to control birefringence by loading amorphous silicon film (H. Takahashi, et al., "Polarization-Insensi
tive Arrayed-WaveguideWavelength Multiplexer with
Birefringence Compensating Film ", Photon.Technol.
Lett. Vol.5, No.6, pp43-45, 1993). Also, a method of adjusting the composition of the core portion and the cladding portion to reduce birefringence (for example, see S. Suzuki, et al., "Pol
arization-Insensitive Arrayed-Waveguide gratings U
sing Dopant-Rich Silica Based Glass with Thermal E
xpansion Adjustedto Si Substrate ", Electron. Lett.
33, 13, pp. 1173-1174, 1997.).

【0006】また、代表的な波長合分波光回路であるア
レイ導波路型波長合分波器(AWG)に対し、そのアレ
イ導波路部分に1/2波長板を挿入してその透過阻止波
長特性の偏波依存性を補償する方法(例えば、Y. Inou
e, et al., "Polarization Mode Converter With Polyi
mide Half Waveplate in Silica-Based Planar Lightwa
ve Circuits", Photon. Technol. Lett. vol.6, No.5,
pp.46-48, 1994.など)も知られており、それぞれ一定
の良好な特性が得られている。
In addition, a half-wave plate is inserted into an array waveguide portion of an array waveguide type wavelength multiplexer / demultiplexer (AWG), which is a typical wavelength multiplexer / demultiplexer optical circuit, and the transmission blocking wavelength characteristic is obtained. (For example, Y. Inou
e, et al., "Polarization Mode Converter With Polyi
mide Half Waveplate in Silica-Based Planar Lightwa
ve Circuits ", Photon. Technol. Lett. vol.6, No.5,
pp. 46-48, 1994.) are also known, and certain good characteristics are obtained.

【0007】しかし、ネットワークの高度化に伴い、A
WGを初めとした波長合分波光回路を、単なる信号光の
波長分割多重に用いるばかりではなく、その信号光の波
長監視制御にも用いることが提案され、その検討が行わ
れている。このような用途では、透過率が比較的平坦
な、透過域中心付近ではなく、透過域の「裾」が利用さ
れている(M. Teshima, et al., "Performance of Mult
iwavelength Simultaneous Monitoring Circuit Employ
ing Arrayed-Waveguide Grating", J. LightwaveTechno
l., Vol.14, No.10, pp.2277-2285., 1996 )。
However, with the advancement of networks, A
It has been proposed that a wavelength multiplexing / demultiplexing optical circuit such as a WG be used not only for simple wavelength division multiplexing of signal light but also for wavelength monitoring and control of the signal light, and studies are underway. In such applications, the "tail" of the transmission region is used instead of the relatively flat transmittance near the center of the transmission region (M. Teshima, et al., "Performance of Mult
iwavelength Simultaneous Monitoring Circuit Employ
ing Arrayed-Waveguide Grating ", J. LightwaveTechno
l., Vol.14, No.10, pp.2277-2285., 1996).

【0008】図1は、AWG光回路の透過スペクトル
と、それに対する監視用光波長との関係を示すグラフで
ある。図中、監視波長に対応する相対光周波数、並びに
第1の出力ポート(port1) 及び第2の出力ポート(port
2) の透過スペクトルに着目して、相対光周波数(GHz)
と透過率(dB)との関係を示す。図に示すような、透
過域の「裾」では、僅かな透過域の差異が、大きなPD
Lとなるため、従来より一層、高精度に偏波依存性を低
減或いは補償を行ったPDLの極めて低い光回路が求め
られている。
FIG. 1 is a graph showing a relationship between a transmission spectrum of an AWG optical circuit and a monitoring light wavelength corresponding thereto. In the figure, the relative optical frequency corresponding to the monitoring wavelength, and the first output port (port 1) and the second output port (port
Focusing on the transmission spectrum of 2), the relative optical frequency (GHz)
And the transmittance (dB). As shown in the figure, in the “foot” of the transmission area, a slight difference in the transmission area shows a large PD.
Therefore, there is a demand for an optical circuit having an extremely low PDL that has reduced or compensated the polarization dependency with higher precision than ever before.

【0009】[0009]

【発明が解決しようとする課題】しかし、導波路組成の
調整に依る複屈折零化の試みは、僅かな比屈折率差
(Δ)の制御に加えて行うため、非常に微妙、且つ困難
な調整が必要であり、光回路作製歩留まりの低下を招
く。一方、単なる波長板挿入による偏波依存性の補償に
は、光回路が、完全に対称である必要がある上、波長板
自身の精度や、波長板挿入位置精度などにより、その補
償能力には限界があり、上述した高精度に偏波依存性を
補償した光回路を、歩留まり良く作製することには、困
難であるという問題がある。
However, since the attempt to nullify the birefringence by adjusting the composition of the waveguide is performed in addition to the control of a small relative refractive index difference (Δ), it is very delicate and difficult. Adjustment is required, which causes a decrease in the yield of optical circuit production. On the other hand, in order to compensate for the polarization dependence by simply inserting a wave plate, the optical circuit must be completely symmetrical, and its compensating ability depends on the accuracy of the wave plate itself and the accuracy of the wave plate insertion position. There is a limit, and there is a problem that it is difficult to manufacture the above-described optical circuit in which the polarization dependency is compensated with high precision with high yield.

【0010】したがって、本発明は、上術した従来技術
に鑑みてなされたものであり、偏波依存性の極めて低い
光回路、特に透過阻止域の偏波依存性、PDLを極めて
低くした波長合分波光回路を提供することを目的とす
る。
Accordingly, the present invention has been made in view of the above-mentioned prior art, and has been made in consideration of an optical circuit having extremely low polarization dependence, particularly, a wavelength dependence in which the polarization dependence of the transmission blocking region and the PDL are extremely low. It is an object to provide a demultiplexing optical circuit.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明に基づく光回路は、平面基板上に、石英を主
たる素材として作製された光が伝播するコア部と、該コ
ア部の周りのコア部より屈折率の低いクラッド部からな
る光導波路により構成された光回路であって、前記平面
基板に対応して前記コア部及びクラッド部の組成を調整
することで、前記光導波路の複屈折の大きさを3x10
-5以下とし、さらに、前記複屈折を補償する1/2波長
板が設けられていることを特徴とする。
In order to solve the above-mentioned problems, an optical circuit according to the present invention comprises a core portion on a flat substrate, on which light made of quartz as a main material propagates, and a core portion of the core portion. An optical circuit composed of an optical waveguide having a cladding portion having a lower refractive index than the surrounding core portion, wherein the composition of the core portion and the cladding portion is adjusted in accordance with the planar substrate, whereby the optical waveguide is formed. 3x10 birefringence
-5 or less, and a half-wave plate for compensating the birefringence is further provided.

【0012】好ましくは、前記クラッド部は、石英系素
材の付加ドーパントとして、少なくとも、硼素(B)、
ゲルマニウム(Ge)、燐(P)、窒素(N)、および
フッ素(F)からなる群より選択される元素を含む。
[0012] Preferably, the cladding part is formed of at least boron (B),
Contains an element selected from the group consisting of germanium (Ge), phosphorus (P), nitrogen (N), and fluorine (F).

【0013】好ましくは、光回路 はアレイ導波路型光
波長合分波器である。
Preferably, the optical circuit is an arrayed waveguide type optical wavelength multiplexer / demultiplexer.

【0014】[0014]

【発明の実施の形態】本発明によれば、石英を主たる素
材として作製されたコア部、並びにクラッド部に、硼素
(B)、ゲルマニウム(Ge)、燐(P)、窒素(N)
などの少なくとも一種類以上のドーパントを付加し、基
板に応じて、組成を調整して作製された、低複屈折光導
波路をもちいて、波長合分波光回路を基板上に構成し、
あらかじめ、その透過阻止域の偏波依存性を低くし、更
に、光回路中に1/2波長板を挿入し、残留した偏波依
存性の補償を行うことにより、PDLの極めて低い波長
合分波光回路を実現することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, boron (B), germanium (Ge), phosphorus (P), and nitrogen (N) are formed on a core portion and a cladding portion made mainly of quartz.
Add at least one or more dopants such as, depending on the substrate, manufactured by adjusting the composition, using a low birefringence optical waveguide, configure a wavelength multiplexing / demultiplexing optical circuit on the substrate,
The polarization dependence of the transmission blocking region is reduced in advance, and a half-wave plate is inserted into the optical circuit to compensate for the remaining polarization dependence, thereby achieving extremely low wavelength coupling of the PDL. A wave light circuit can be realized.

【0015】このため、導波路作製時のドーパント量調
整に於ける精度、並びに、1/2波長板の作製精度、及
び波長板挿入時の実装精度の許容範囲を広くすることが
でき、PDLの極めて低い波長合分波光回路の作製歩留
まりの向上が可能となる。その結果、製造コストが低減
され、光通信、光情報処理分野、とりわけ波長多重(W
DM)通信システムの分野に於いて、主に用いられるP
DLの極めて低い光波長合分波光回路を、実用的なもの
として、安価且つ大量に提供することができる。 以
下、図面を用いて本発明の実施形態を説明する。
[0015] For this reason, the tolerance in the adjustment of the amount of dopant at the time of manufacturing the waveguide, the manufacturing accuracy of the half-wave plate, and the allowable range of the mounting accuracy at the time of inserting the wave plate can be widened. It is possible to improve the production yield of an extremely low wavelength multiplexing / demultiplexing optical circuit. As a result, the manufacturing cost is reduced and the field of optical communication and optical information processing, especially wavelength division multiplexing (W
DM) P which is mainly used in the field of communication systems
An optical wavelength multiplexing / demultiplexing optical circuit having an extremely low DL can be provided as a practical one at low cost and in large quantities. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0016】<実施形態1>図2は、本発明にもとづく
アレイ導波路型波長合分波光回路(Arrayed Waveguide
Grating:AWG)の一実施形態を示す概略的斜視図であ
る。
<Embodiment 1> FIG. 2 shows an arrayed waveguide type wavelength multiplexing / demultiplexing optical circuit (Arrayed Waveguide) according to the present invention.
1 is a schematic perspective view illustrating an embodiment of (Grating: AWG).

【0017】図中、参照符号2−1はSi基板、2−2
および2−3は入出力導波路、2−4および2−5はス
ラブ導波路、2−6はアレイ導波路、さらに2−7は1
/2波長板である。図に示されるように、AWGは長さ
の異なる複数の導波路から構成され、入力および出力導
波路2−1,2−2と2つの扇形スラブ導波路2−4,
2−5とが一緒に基板上に集積されている。
In the drawing, reference numeral 2-1 denotes a Si substrate, 2-2.
And 2-3 are input / output waveguides, 2-4 and 2-5 are slab waveguides, 2-6 are arrayed waveguides, and 2-7 is 1
/ 2 wavelength plate. As shown in the figure, the AWG is composed of a plurality of waveguides having different lengths, and the input and output waveguides 2-1 and 2-2 and the two sector slab waveguides 2-4 and 2-4.
2-5 are integrated together on the substrate.

【0018】つぎ図3を参照しながらAWGの作製方法
の概略を説明する(詳しくは、M. Kawachi, "Silica wa
veguides on silicon and their application to integ
rated-optic components", Opt. and Quantum Electro
n., 22, pp.319-416 を参照せよ) 。
Next, an outline of an AWG manufacturing method will be described with reference to FIG. 3 (for details, see M. Kawachi, "Silica wa
veguides on silicon and their application to integ
rated-optic components ", Opt. and Quantum Electro
n., 22, pp. 319-416).

【0019】先ず、シリコン基板(Si基板)3−1上
に、火炎堆積(Flame Hydrolisis Deposition: FHD)
法により、石英(SiO2 )系ガラス膜を堆積する。す
なわち、約30μm厚の下部クラッドガラス層3−2
と、光が伝播するためのクラッドガラス層よりも屈折率
を高めた約6μm厚のコアガラス層3−3とを形成す
る。このとき主成分である石英(SiO2 )へのドーパ
ントとして硼素(B)、ゲルマニウム(Ge)、燐
(P)並びに窒素(N)を用い、最終的に導波路複屈折
がほぼゼロになるよう調整する(図3(1))。
First, flame deposition (FHD) is performed on a silicon substrate (Si substrate) 3-1.
A quartz (SiO 2 ) -based glass film is deposited by the method. That is, the lower clad glass layer 3-2 having a thickness of about 30 μm.
And a core glass layer 3-3 having a refractive index higher than that of the clad glass layer for transmitting light and having a thickness of about 6 μm. At this time, boron (B), germanium (Ge), phosphorus (P), and nitrogen (N) are used as dopants for quartz (SiO 2 ), which is a main component, so that the waveguide birefringence becomes almost zero finally. Adjust (FIG. 3 (1)).

【0020】次に、反応性イオンエッチング(RIE)
を用いて、所望の光導波路形状にパターン化加工を行
う。図では、パターン化加工されたコアガラス層が断面
凸状に図示されている(図3(2))。
Next, reactive ion etching (RIE)
Is used to perform patterning into a desired optical waveguide shape. In the figure, the patterned core glass layer is shown in a convex cross section (FIG. 3 (2)).

【0021】続いて、再びFHD法を用いて、下部クラ
ッドガラス層3−2と等しい屈折率を有する上部クラッ
ドガラス層3−4の堆積を行い、光導波路を作製する。
このとき主成分である石英(SiO2 )へのドーパント
として硼素(B)、ゲルマニウム(Ge)、燐(P)並
びに窒素(N)を用い、最終的に導波路複屈折がほぼゼ
ロになるよう調整する。また、この実施形態例では光導
波路の比屈折率差Δの値は、0.7%となるように調整
する(図3(3))。
Subsequently, the upper clad glass layer 3-4 having the same refractive index as that of the lower clad glass layer 3-2 is deposited again by using the FHD method, thereby producing an optical waveguide.
At this time, boron (B), germanium (Ge), phosphorus (P), and nitrogen (N) are used as dopants for quartz (SiO 2 ), which is a main component, so that the waveguide birefringence becomes almost zero finally. adjust. Further, in this embodiment, the value of the relative refractive index difference Δ of the optical waveguide is adjusted to be 0.7% (FIG. 3 (3)).

【0022】本実施形態例では、ガラス層作製にあたっ
て、FHD法を用いるが、もちろんこれに限定されるこ
となく、CVD法,スパッタ法といった別のガラス膜合
成方法を一部、または全てに渡って用いることも可能で
ある。光導波路作製後、ダイシングソーを用いて、アレ
イ導波路部のちょうど光路長を2等分する位置に、約2
0μm幅の溝を作製し、ポリイミド波長板を挿入し、そ
れを接着剤を用いて固定する。
In this embodiment, the glass layer is formed by the FHD method. However, the present invention is not limited to the FHD method, and other glass film synthesizing methods such as a CVD method and a sputtering method may be partially or entirely used. It is also possible to use. After preparing the optical waveguide, a dicing saw is used to move the optical waveguide length to about 2 equally in the arrayed waveguide section.
A groove having a width of 0 μm is formed, a polyimide wave plate is inserted, and the groove is fixed using an adhesive.

【0023】図4は、本実施形態例にもとづいて作製し
たAWG波長合分波光回路の、波長1.55μm近傍に
於ける透過スペクトルの測定結果の一例を示す図であ
る。損失約4dBで、消光比30dB以上の良好な透過
特性を有するAWG波長合分波光回路が作製されたこと
がわかる。
FIG. 4 is a diagram showing an example of the measurement result of the transmission spectrum of the AWG wavelength multiplexing / demultiplexing optical circuit manufactured based on the present embodiment at a wavelength of about 1.55 μm. It can be seen that an AWG wavelength multiplexing / demultiplexing optical circuit having a loss of about 4 dB and excellent transmission characteristics with an extinction ratio of 30 dB or more was manufactured.

【0024】図5は、このAWG波長合分波光回路の波
長1.55μm近傍に於けるPDLスペクトルの測定結
果を示す。PDL測定にあたっては、光源に外部共振器
波長可変レーザーを用い、JDS社製PDL測定器によ
って測定した。
FIG. 5 shows the result of measuring the PDL spectrum of this AWG wavelength multiplexing / demultiplexing optical circuit in the vicinity of a wavelength of 1.55 μm. In the PDL measurement, an external cavity wavelength-variable laser was used as a light source, and the measurement was performed by a PDL measuring device manufactured by JDS.

【0025】図6は、このAWGのPDLの値を損失
(Loss)に対して示してある。参考として、従来型
AWGのPDL値の一例も合わせて示してある。従来型
AWGに比べ、PDL値が低く抑えられていることがわ
かる。例えば、損失10dB時でのPDL値を比較する
と、従来型AWGでは、PDL〜0.8dBであるのに
対し、本実施形態例にもとづいて作製したAWGでは、
PDL〜0.3dBとなっている(以下、このような低
いPDL値を示す本実施形態例にもとづいて作製したA
WGを極低PDL新型AWGと称す)。
FIG. 6 shows the value of the PDL of the AWG with respect to loss. For reference, an example of the PDL value of the conventional AWG is also shown. It can be seen that the PDL value is kept low as compared with the conventional AWG. For example, comparing the PDL values at a loss of 10 dB, the conventional AWG has a PDL of 0.8 dB, whereas the AWG manufactured based on the present embodiment has
PDL to 0.3 dB (hereinafter referred to as A manufactured based on the present embodiment showing such a low PDL value).
WG is referred to as a very low PDL new AWG).

【0026】次に、作製歩留まりを評価するために、極
低PDL新型AWGと従来型AWGとを、それぞれ15
サンプル用意し、損失10dBである波長に於けるPD
Lを評価した。そのPDL値の分布を図7に示す。
Next, in order to evaluate the production yield, a very low PDL new type AWG and a conventional type
Sample prepared, PD at wavelength with loss 10dB
L was evaluated. FIG. 7 shows the distribution of the PDL value.

【0027】極低PDL新型AWGは、概ね、PDL=
0.4dB以下という良好な特性のものが得られてお
り、従来型に比較し、歩留まりよく、極低PDL波長合
分波光回路を作製できることがわかる。
The very low PDL new AWG generally has a PDL =
Good characteristics of 0.4 dB or less are obtained, and it can be seen that an extremely low PDL wavelength multiplexing / demultiplexing optical circuit can be manufactured with a higher yield than the conventional type.

【0028】[0028]

【発明の効果】以上説明したとおり、コア部分及びクラ
ッド部の素材組成を低複屈折となるように調整して作製
した光導波路により光回路を構成し、且つ、1/2波長
板を用いて、光回路の偏波依存特性を補償することによ
り、偏波依存性損失(PDL)の極めて低い波長合分波
光回路を実現することができた。また、本光回路の作製
歩留まりは、従来の光回路に比べ、良好なものであっ
た。従って、PDLの極めて低い波長合分波光回路を大
量に生産、供給するに当たってコストの面に於いても有
利である。
As described above, an optical circuit is constituted by an optical waveguide manufactured by adjusting the material composition of the core portion and the clad portion so as to have low birefringence, and using a half-wave plate. By compensating for the polarization dependence of the optical circuit, a wavelength multiplexing / demultiplexing optical circuit with extremely low polarization dependent loss (PDL) was realized. The production yield of the present optical circuit was better than that of the conventional optical circuit. Therefore, it is advantageous in terms of cost in producing and supplying a large number of wavelength multiplexing / demultiplexing optical circuits having a very low PDL.

【図面の簡単な説明】[Brief description of the drawings]

【図1】AWG光回路の透過スペクトルと、それに対す
る監視用光波長との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a transmission spectrum of an AWG optical circuit and a monitoring light wavelength corresponding thereto.

【図2】本発明にもとづくアレイ導波路型波長合分波光
回路の一実施形態を示す概略的斜視図である。
FIG. 2 is a schematic perspective view showing an embodiment of an arrayed waveguide type wavelength multiplexing / demultiplexing optical circuit according to the present invention.

【図3】本発明にもとづくアレイ導波路型波長合分波光
回路の製造方法を説明するための断面図であって、
(1)〜(3)は各々の工程に対応する。
FIG. 3 is a cross-sectional view for explaining a method of manufacturing an arrayed waveguide wavelength multiplexing / demultiplexing optical circuit according to the present invention;
(1) to (3) correspond to each step.

【図4】本発明にもとづくアレイ導波路型波長合分波光
回路の波長1.55μm近傍に於ける透過スペクトル特
性を示すグラフである。
FIG. 4 is a graph showing transmission spectrum characteristics of an arrayed waveguide type wavelength multiplexing / demultiplexing optical circuit according to the present invention in the vicinity of a wavelength of 1.55 μm.

【図5】本発明にもとづくアレイ導波路型波長合分波光
回路の波長1.55μm近傍に於ける損失及びPDLの
波長特性を示すグラフである。
FIG. 5 is a graph showing the loss and PDL wavelength characteristics near the wavelength of 1.55 μm of the arrayed waveguide type wavelength multiplexing / demultiplexing optical circuit according to the present invention.

【図6】本発明にもとづくアレイ導波路型波長合分波光
回路および従来のアレイ導波路型波長合分波光回路につ
いて、それぞれの波長1.55μm近傍に於けるPDL
の損失に対する特性を比較するためのグラフである。
FIG. 6 shows the PDL of the arrayed waveguide type wavelength multiplexing / demultiplexing optical circuit according to the present invention and the conventional arrayed waveguide type wavelength multiplexing / demultiplexing optical circuit at a wavelength around 1.55 μm.
6 is a graph for comparing characteristics with respect to the loss of the semiconductor device.

【図7】本発明にもとづくアレイ導波路型波長合分波光
回路および従来のアレイ導波路型波長合分波光回路につ
いて、それぞれの波長1.55μm近傍損失10dB時
でのPDL値の分布を示すグラフである。
FIG. 7 is a graph showing the distribution of PDL values of an arrayed waveguide type wavelength multiplexing / demultiplexing optical circuit based on the present invention and a conventional arrayed waveguide type wavelength multiplexing / demultiplexing optical circuit at a loss of 10 dB near a wavelength of 1.55 μm. It is.

【符号の説明】[Explanation of symbols]

2−1 Si基板 2−2 入出力導波路 2−3 入出力導波路 2−4 スラブ導波路 2−5 スラブ導波路 2−6 アレイ導波路 2−7 1/2波長板 2-1 Si substrate 2-2 Input / output waveguide 2-3 Input / output waveguide 2-4 Slab waveguide 2-5 Slab waveguide 2-6 Array waveguide 2-7 1/2 wavelength plate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−241304(JP,A) 特開 平8−62441(JP,A) 特開 平8−334637(JP,A) 特開 平9−15434(JP,A) 特開 平6−27342(JP,A) 特開 平11−174246(JP,A) 特開 平7−92326(JP,A) Electronics Lette rs,Vol.33 No.13(19th June 1997)pp.1173−1174, S.Suzuki et.al., IEEE Photonics Te chnology Letters,V ol.6 No.5(May 1994)p p.626−628,Y.Inoue et. al., (58)調査した分野(Int.Cl.7,DB名) G02B 6/12 - 6/14 G02B 6/28 - 6/293 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-241304 (JP, A) JP-A-8-62441 (JP, A) JP-A 8-334637 (JP, A) JP-A 9-204 15434 (JP, A) JP-A-6-27342 (JP, A) JP-A-11-174246 (JP, A) JP-A-7-92326 (JP, A) Electronics Letters, Vol. 33 No. 13 (19th June 1997) pp. 1173-1174, S.M. Suzuki et. al. , IEEE Photonics Technology Letters, Vol. 6 No. 5 (May 1994) p.p. 626-628, Y. Inoue et. Al. , (58) Fields surveyed (Int. Cl. 7 , DB name) G02B 6/12-6/14 G02B 6/28-6/293

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平面基板上に、石英を主たる素材として
作製された光が伝播するコア部と、該コア部の周りのコ
ア部より屈折率の低いクラッド部からなる光導波路によ
り構成された光回路であって、前記平面基板に対応して
前記コア部及びクラッド部の組成を調整することで、前
記光導波路の複屈折の大きさを3x10-5以下とし、さ
らに、前記複屈折を補償する1/2波長板が設けられて
いることを特徴とする光回路。
1. A light constituted by an optical waveguide composed of a core portion formed of quartz as a main material through which light propagates, and a cladding portion having a lower refractive index than the core portion around the core portion. A circuit, wherein the size of the birefringence of the optical waveguide is adjusted to 3 × 10 −5 or less by adjusting the composition of the core portion and the cladding portion corresponding to the planar substrate, and further, the birefringence is compensated. An optical circuit comprising a half-wave plate.
【請求項2】 前記クラッド部は、石英系素材の付加ド
ーパントとして、少なくとも、硼素(B)、ゲルマニウ
ム(Ge)、燐(P)、窒素(N)、およびフッ素
(F)からなる群より選択される元素を含むことを特徴
とする請求項1に記載の光回路。
2. The cladding part is selected from the group consisting of at least boron (B), germanium (Ge), phosphorus (P), nitrogen (N), and fluorine (F) as an additional dopant of a quartz-based material. The optical circuit according to claim 1, further comprising an element to be used.
【請求項3】 アレイ導波路型光波長合分波器であるこ
とを特徴とする請求項1または2に記載の光回路。
3. The optical circuit according to claim 1, wherein the optical circuit is an arrayed waveguide type optical wavelength multiplexer / demultiplexer.
JP26353598A 1998-09-17 1998-09-17 Optical circuit Expired - Fee Related JP3264652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26353598A JP3264652B2 (en) 1998-09-17 1998-09-17 Optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26353598A JP3264652B2 (en) 1998-09-17 1998-09-17 Optical circuit

Publications (2)

Publication Number Publication Date
JP2000098149A JP2000098149A (en) 2000-04-07
JP3264652B2 true JP3264652B2 (en) 2002-03-11

Family

ID=17390899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26353598A Expired - Fee Related JP3264652B2 (en) 1998-09-17 1998-09-17 Optical circuit

Country Status (1)

Country Link
JP (1) JP3264652B2 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Electronics Letters,Vol.33 No.13(19th June 1997)pp.1173−1174,S.Suzuki et.al.,
IEEE Photonics Technology Letters,Vol.6 No.5(May 1994)pp.626−628,Y.Inoue et.al.,

Also Published As

Publication number Publication date
JP2000098149A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
JP4102792B2 (en) Waveguide type optical interferometer
EP0907090B1 (en) Integrated optical waveguide and method of manufacturing
JP2005010805A6 (en) Waveguide type optical interferometer
Nadler et al. Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules
US20020181857A1 (en) Optical wavelength multiplexer/demultiplexer
Henry Silicon optical bench waveguide technology
US6625370B2 (en) Optical waveguide and fabricating method thereof, and optical waveguide circuit
JP2001194541A (en) Optical waveguide circuit
CN102103229B (en) Array waveguide grating insensitive to temperature and polarization
Inoue et al. Novel birefringence compensating AWG design
US6539158B2 (en) Optical waveguide circuit
JP3264652B2 (en) Optical circuit
JPH1068833A (en) Optical waveguide and its production as well as output circuit
JP3963255B2 (en) Optical waveguide
JP3266632B2 (en) Waveguide diffraction grating
WO1999021038A1 (en) Phased array wavelength multiplexer
JP3228233B2 (en) Optical waveguide device
Janz et al. Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits
JP3224087B2 (en) Manufacturing method of optical waveguide
JPH10197737A (en) Production of optical waveguide circuit
JP3746776B2 (en) Waveguide type optical wavelength multiplexer / demultiplexer
JP3137165B2 (en) Manufacturing method of optical waveguide circuit
JP3423297B2 (en) Optical waveguide, method of manufacturing the same, and optical waveguide circuit
Grant Glass integrated optical devices on silicon for optical communications
JP3223959B2 (en) Optical path length trimming method and apparatus in waveguide type optical circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees