JPH07120632A - Manufacture of glass waveguide - Google Patents

Manufacture of glass waveguide

Info

Publication number
JPH07120632A
JPH07120632A JP26480593A JP26480593A JPH07120632A JP H07120632 A JPH07120632 A JP H07120632A JP 26480593 A JP26480593 A JP 26480593A JP 26480593 A JP26480593 A JP 26480593A JP H07120632 A JPH07120632 A JP H07120632A
Authority
JP
Japan
Prior art keywords
glass
porous glass
substrate
burner
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26480593A
Other languages
Japanese (ja)
Inventor
Toshihide Tokunaga
利秀 徳永
Fujio Kikuchi
不二男 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP26480593A priority Critical patent/JPH07120632A/en
Publication of JPH07120632A publication Critical patent/JPH07120632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To suppress the shrinkage of a porous glass at sintering treatment at minimum and prevent the deformation of a base, in a method for manufacturing a glass waveguide by accumulating the porous glass on the base by flame accumulation, then sintering it to form a transparent glass film on the base, and working the transparent glass film. CONSTITUTION:An oxyhydrogen quartz burner 4 different from a porous glass forming quartz burner 3 is arranged, facing the base placing face of a turn table rotated with a base 2 placed thereon, and a porous glass is accumulated on the base 2 by use of the porous glass forming quartz burner 3, and the base 2 is then thermally treated by the oxyhydrogen flame of the oxyhydrogen quartz burner 4. Thus, the bulk density of the porous glass accumulated on the base 2 is improved, and the shrinkage of the porous glass at glassing by the following sintering treatment can be suppressed to the minimum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の技術分野】本発明は、ガラス導波路の製造方
法に係り、特に火炎堆積法により多孔質ガラス膜を形成
する工程を含むガラス導波路の製造方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a method for manufacturing a glass waveguide, and more particularly to a method for manufacturing a glass waveguide including a step of forming a porous glass film by a flame deposition method.

【0002】[0002]

【従来の技術】この種の技術として、石英ガラス基板ま
たはSiO2 膜付シリコン基板上に火炎堆積法によって
多孔質ガラスを形成した後、堆積させた多孔質ガラスを
焼結させて透明ガラス膜を形成し、その透明ガラス膜を
フォトリソグラフィ及びイオンエッチングにより断面矩
形状のコアに加工してガラス導波路を形成する方法が知
られている。
2. Description of the Related Art As a technique of this kind, a porous glass is formed by a flame deposition method on a quartz glass substrate or a silicon substrate with a SiO 2 film, and then the deposited porous glass is sintered to form a transparent glass film. A method is known in which a transparent glass film is formed and processed into a core having a rectangular cross section by photolithography and ion etching to form a glass waveguide.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述した従
来の製造方法では、多孔質ガラスは密度が通常のガラス
の1/8 程度であり、焼結により透明ガラス化する際にか
なり収縮するため、基板に反りやうねりが生じやすい。
そのため、マスクアライナーでコアパターンを転写する
際、基板表面で焦点の不一致が生じ、微細なコアパター
ンの寸法変動要因となる。また、イオンエッチングで形
成したコア導波路上にクラッド用多孔質ガラスを堆積し
た場合も、クラッド用多孔質ガラスのガラス化時の収縮
でコア形状が変形し、所期の合分波特性を示さないこと
がある。
By the way, in the above-mentioned conventional manufacturing method, the density of the porous glass is about 1/8 of that of ordinary glass, and the glass shrinks considerably when it is made into a transparent glass by sintering. The board tends to warp or swell.
Therefore, when the core pattern is transferred by the mask aligner, a focus mismatch occurs on the surface of the substrate, which causes a dimensional variation of the fine core pattern. Also, when the porous glass for cladding is deposited on the core waveguide formed by ion etching, the core shape is deformed due to the contraction of the porous glass for cladding during vitrification, and the desired multiplexing / demultiplexing characteristics are obtained. May not be shown.

【0004】また,基板やコア形状の変形の影響で、多
心の光ファイバと結合させる際に各ポートの接続損失の
ばらつきが大きくなり、低損失なガラス導波路型光デバ
イスが製造できない。
Further, due to the influence of the deformation of the substrate and the core shape, the dispersion of the connection loss of each port becomes large when coupling with a multi-core optical fiber, and a low loss glass waveguide type optical device cannot be manufactured.

【0005】本発明の目的は、前記した問題点を解消
し、焼結処理の際の多孔質ガラスの収縮に伴うコア形状
及び基板の変形を小さく抑えることができるガラス導波
路の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a glass waveguide which solves the above-mentioned problems and can suppress the deformation of the core shape and the substrate due to the shrinkage of the porous glass during the sintering process. To do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明のガラス導波路の製造方法は、石英ガラス基板
またはSiO2 膜付シリコン基板上に火炎堆積法により
多孔質ガラスを堆積させた後これを焼結処理して基板上
に透明ガラス膜を形成する工程を含むガラス導波路の製
造方法を前提とし、ガラス原料ガスを酸水素火炎中で反
応させて基板上に多孔質ガラスを堆積させる多孔質ガラ
ス形成用バーナの隣にガラス原料ガスを供給しない別の
酸水素バーナを配置し、多孔質ガラス形成用バーナを用
いて基板上に堆積させた多孔質ガラスを、上記別のバー
ナの火炎で熱処理することを特徴とする。
In order to achieve the above object, in the method for producing a glass waveguide of the present invention, porous glass is deposited on a quartz glass substrate or a silicon substrate with a SiO 2 film by a flame deposition method. After that, assuming a glass waveguide manufacturing method that includes the step of sintering this to form a transparent glass film on the substrate, the glass raw material gas is reacted in an oxyhydrogen flame to deposit porous glass on the substrate. Place another oxyhydrogen burner that does not supply the glass raw material gas next to the porous glass forming burner to be, the porous glass deposited on the substrate using the porous glass forming burner, of the other burner Characterized by heat treatment with a flame.

【0007】また、本発明のガラス導波路の製造方法に
おいて、上記基板をターンテーブル上に載置すると共に
上記多孔質ガラス形成用バーナと上記別のバーナとをタ
ーンテーブルの基板載置面に臨ませて配置し、上記多孔
質ガラス形成用石英バーナを用いて基板上に多孔質ガラ
スを堆積させる工程と上記別のバーナを用いて熱処理す
る工程とを繰り返し行うことが望ましい。
In the glass waveguide manufacturing method of the present invention, the substrate is placed on a turntable, and the porous glass forming burner and the other burner are placed on the substrate placement surface of the turntable. It is desirable that the step of depositing the porous glass and the step of depositing the porous glass on the substrate using the quartz burner for forming the porous glass and the step of heat-treating using the other burner be repeated.

【0008】[0008]

【作用】本発明の製造方法によれば、多孔質ガラス形成
用の酸水素バーナの隣にガラス原料ガスを供給しない別
の酸水素バーナを配置し、多孔質ガラス形成用バーナを
用いて基板上に堆積させた多孔質ガラスを、上記別の石
英バーナで熱処理することにより、基板上に堆積した多
孔質ガラスのかさ密度が向上し、その後の焼結処理によ
る透明ガラス化の際の収縮が最小限に抑えられる。
According to the manufacturing method of the present invention, another oxyhydrogen burner that does not supply the glass source gas is arranged next to the oxyhydrogen burner for forming the porous glass, and the burner for forming the porous glass is used on the substrate. By heat-treating the porous glass deposited on the substrate with another quartz burner described above, the bulk density of the porous glass deposited on the substrate is improved, and the shrinkage during the subsequent vitrification into transparent glass is minimized. It can be suppressed to the limit.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面を用いて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1に、本発明の方法でガラス導波路を製
造するための火炎堆積装置の概略図を示す。同図におい
て、1は火炎堆積装置のターンテーブルであり、このタ
ーンテーブル1はその周縁部近傍に複数の基板2を載せ
て所定の回転速度で回転するようになっている。ターン
テーブル1の周縁部上方には、多孔質ガラス形成用の石
英バーナ3、酸水素火炎用の石英バーナ4及び排気管5
が配置され、また、下面近傍にはヒータ6が配置されて
いる。多孔質ガラス形成用の石英バーナ3は、酸水素火
炎の中にPCl3 、BCl3 及びSiCl4 の原料ガス
等を導入できる4重管構造になっており、原料を火炎加
水分解させてP2 5 −B2 3 −SiO2 系の微粒子
を生成し、これを基板2上に堆積させるようになってい
る。酸水素火炎用の石英バーナ4はガラス原料ガスを含
まない酸水素火炎を発生するためのバーナであり、多孔
質ガラス形成用の石英バーナ3の直ぐ隣に配置されてい
る。この場合、基板2上に多孔質ガラスを堆積させた後
にその基板2表面を酸水素火炎用の石英バーナ4で加熱
処理する必要があるため、酸水素火炎用の石英バーナ4
は、ターンテーブル1の回転方向(図面の矢印Aの方
向)に関して多孔質ガラス形成用の石英バーナ3の下流
側となる位置に配置されている。排気管5は、多孔質ガ
ラス形成用の石英バーナ3と対向する位置に設けられ、
石英バーナ3から基板2へ供給された後の酸水素火炎中
のガラス微粒子を吸引し排気できるようになっている。
ヒータ6はターンテーブル1を加熱し、処理中の基板2
の温度を所定の温度に保つためのものである。なお、タ
ーンテーブル1を回転させているだけでは多孔質ガラス
が基板2の特定の領域にだけしか堆積されないため、タ
ーンテーブル1が回転する毎にターンテーブル1を水平
方向(図面の矢印B方向)に往復運動させて、多孔質ガ
ラスを基板2の全表面に堆積させる。
FIG. 1 shows a schematic diagram of a flame deposition apparatus for producing a glass waveguide by the method of the present invention. In the figure, reference numeral 1 is a turntable of the flame deposition apparatus, and the turntable 1 is arranged so that a plurality of substrates 2 are placed in the vicinity of its peripheral portion and rotated at a predetermined rotation speed. Above the peripheral edge of the turntable 1, a quartz burner 3 for forming porous glass, a quartz burner 4 for oxyhydrogen flame, and an exhaust pipe 5 are provided.
Is arranged, and the heater 6 is arranged near the lower surface. The quartz burner 3 for forming porous glass has a quadruple tube structure capable of introducing raw material gases such as PCl 3 , BCl 3 and SiCl 4 into an oxyhydrogen flame, and flame-hydrolyzes the raw material to produce P 2 O 5 -B 2 O 3 -SiO 2 -based fine particles are generated and deposited on the substrate 2. The quartz burner 4 for the oxyhydrogen flame is a burner for generating an oxyhydrogen flame that does not contain the glass raw material gas, and is arranged immediately adjacent to the quartz burner 3 for forming the porous glass. In this case, since it is necessary to heat the surface of the substrate 2 with the quartz burner 4 for the oxyhydrogen flame after depositing the porous glass on the substrate 2, the quartz burner 4 for the oxyhydrogen flame 4 is required.
Is arranged at a position on the downstream side of the quartz burner 3 for forming porous glass with respect to the rotation direction of the turntable 1 (direction of arrow A in the drawing). The exhaust pipe 5 is provided at a position facing the quartz burner 3 for forming porous glass,
The glass particles in the oxyhydrogen flame after being supplied from the quartz burner 3 to the substrate 2 can be sucked and exhausted.
The heater 6 heats the turntable 1 and the substrate 2 being processed.
This is for keeping the temperature of a predetermined temperature. Since the porous glass is deposited only on a specific region of the substrate 2 only by rotating the turntable 1, the turntable 1 is rotated in the horizontal direction (arrow B direction in the drawing) every time the turntable 1 is rotated. The porous glass is deposited on the entire surface of the substrate 2 by reciprocating.

【0011】以下に、この火炎堆積装置で厚さ1mm、
直径3インチの石英ガラス基板上に多孔質ガラスを形成
する場合を例にとり説明する。その場合、前工程とし
て、基板2上に電子ビーム蒸着法でTiO2 −SiO2
ガラス膜を8μmの厚さに形成し、次いで、ホトリソグ
ラフィ工程及びイオンエッチング工程を経て8μm巾の
コアパターンを形成しておく。そして、基板2をそのコ
アパターンが形成された面を上にして、500 ℃に加熱し
たターンテーブル1上に載置する。そして、ターンテー
ブル1を所定の回転速度例えば10rpmで回転させつ
つ、多孔質ガラス形成用の石英バーナ3及び酸水素火炎
用の石英バーナ4を同時に使用して、基板2上への火炎
堆積及び熱処理を行う。その際、各基板2は、先ず多孔
質ガラス形成用の石英バーナ3の火炎に晒されて、その
表面に厚さ200μmのP2 5 −B2 3 −SiO2
系多孔質ガラスが形成された後、ターンテーブル1の回
転によって酸水素火炎用の石英バーナ4側に移動し、酸
水素火炎に晒される。したがって、各基板2の多孔質ガ
ラスは、堆積後ほぼ同時に酸水素火炎によって熱処理さ
れ、そのかさ密度が向上することになる。この実施例の
条件において、酸水素火炎による熱処理後の多孔質ガラ
スのかさ密度は0.7g/cm3 であった。これに対
し、酸水素火炎のみの石英バーナ4を用いない従来法で
は、0.2g/cm3 と小さい。このようにして、基板
2上に多孔質ガラスを堆積させた後、電気炉内で焼結処
理した結果、本発明の方法によって処理したガラス基板
では反り量がわずか2μmであり、従来法による場合の
10μmに対して大巾に改善されていることが確認され
た。
The thickness of this flame deposition apparatus is 1 mm,
An example will be described in which porous glass is formed on a quartz glass substrate having a diameter of 3 inches. In that case, as a previous step, TiO 2 —SiO 2 is formed on the substrate 2 by an electron beam evaporation method.
A glass film is formed to a thickness of 8 μm, and then a core pattern having a width of 8 μm is formed through a photolithography process and an ion etching process. Then, the substrate 2 is placed on the turntable 1 heated to 500 ° C. with the surface on which the core pattern is formed facing up. Then, while the turntable 1 is rotated at a predetermined rotation speed, for example, 10 rpm, the quartz burner 3 for forming the porous glass and the quartz burner 4 for the oxyhydrogen flame are simultaneously used to deposit the flame on the substrate 2 and perform the heat treatment. I do. At that time, each substrate 2 was first exposed to the flame of the quartz burner 3 for forming the porous glass, and the surface thereof had a thickness of 200 μm of P 2 O 5 —B 2 O 3 —SiO 2 —.
After the porous glass is formed, the turntable 1 rotates to move to the oxyhydrogen flame quartz burner 4 side and is exposed to the oxyhydrogen flame. Therefore, the porous glass of each substrate 2 is heat-treated by the oxyhydrogen flame almost at the same time after deposition, and its bulk density is improved. Under the conditions of this example, the bulk density of the porous glass after the heat treatment with the oxyhydrogen flame was 0.7 g / cm 3 . On the other hand, in the conventional method which does not use the quartz burner 4 having only the oxyhydrogen flame, it is as small as 0.2 g / cm 3 . In this way, after the porous glass was deposited on the substrate 2 and sintered in an electric furnace, the glass substrate treated by the method of the present invention had a warpage amount of only 2 μm. It was confirmed that it was significantly improved with respect to 10 μm.

【0012】[0012]

【発明の効果】以上要するに本発明のガラス導波路の製
造方法によれば、多孔質ガラス形成用バーナを用いて基
板上に堆積させた多孔質ガラスを、ガラス原料を供給し
ない別の酸水素バーナの火炎で熱処理することにより、
基板上に堆積された多孔質ガラスのかさ密度を向上さ
せ、その後の焼結処理による多孔質ガラスの透明ガラス
化の際の収縮を最小限に抑えることができるので、多孔
質ガラスの収縮に伴うコア形状及び基板の変形の小さい
ガラス導波路を製造することができる。
In summary, according to the method for manufacturing a glass waveguide of the present invention, the porous glass deposited on the substrate using the porous glass forming burner is used as another oxyhydrogen burner which does not supply the glass raw material. By heat treatment with the flame of
Since the bulk density of the porous glass deposited on the substrate can be improved and the shrinkage during the subsequent vitrification of the porous glass into the transparent vitrification can be minimized, the shrinkage of the porous glass It is possible to manufacture a glass waveguide in which the core shape and the deformation of the substrate are small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法でガラス導波路を製造する際に使
用する火炎堆積装置の一実施例を示す概略図である。
FIG. 1 is a schematic view showing an example of a flame deposition apparatus used when manufacturing a glass waveguide by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 ターンテーブル 2 基板 3 多孔質ガラス形成用の石英バーナ 4 酸水素火炎用の石英バーナ 5 排気管 1 Turntable 2 Substrate 3 Quartz burner for forming porous glass 4 Quartz burner for oxyhydrogen flame 5 Exhaust pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 石英ガラス基板またはSiO2 膜付シリ
コン基板上に火炎堆積法により多孔質ガラスを堆積させ
た後これを焼結処理して基板上に透明ガラス膜を形成す
る工程を含むガラス導波路の製造方法において、ガラス
原料ガスを酸水素火炎中で反応させて基板上に多孔質ガ
ラスを堆積させる多孔質ガラス形成用バーナの隣にガラ
ス原料ガスを供給しない別の酸水素バーナを配置し、多
孔質ガラス形成用バーナを用いて基板上に堆積させた多
孔質ガラスを、上記別のバーナの火炎で熱処理すること
を特徴とするガラス導波路の製造方法。
1. A glass conductor including a step of depositing porous glass on a quartz glass substrate or a silicon substrate with a SiO 2 film by a flame deposition method and then sintering the porous glass to form a transparent glass film on the substrate. In the method for manufacturing a waveguide, another oxyhydrogen burner that does not supply the glass raw material gas is arranged next to the burner for forming the porous glass that causes the glass raw material gas to react in the oxyhydrogen flame to deposit the porous glass on the substrate. A method for manufacturing a glass waveguide, characterized in that a porous glass deposited on a substrate using a porous glass forming burner is heat-treated with a flame of another burner.
【請求項2】 上記基板をターンテーブル上に載置する
と共に上記多孔質ガラス形成用バーナと上記別のバーナ
とをターンテーブルの基板載置面に臨ませて配置し、上
記多孔質ガラス形成用石英バーナを用いて基板上に多孔
質ガラスを堆積させる工程と上記別のバーナを用いて熱
処理する工程とを繰り返し行うようにした請求項1記載
のガラス導波路の製造方法。
2. The substrate is placed on a turntable, and the porous glass forming burner and the other burner are arranged so as to face a substrate placing surface of the turntable to form the porous glass. The method of manufacturing a glass waveguide according to claim 1, wherein the step of depositing the porous glass on the substrate by using a quartz burner and the step of heat-treating by using the other burner are repeated.
JP26480593A 1993-10-22 1993-10-22 Manufacture of glass waveguide Pending JPH07120632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26480593A JPH07120632A (en) 1993-10-22 1993-10-22 Manufacture of glass waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26480593A JPH07120632A (en) 1993-10-22 1993-10-22 Manufacture of glass waveguide

Publications (1)

Publication Number Publication Date
JPH07120632A true JPH07120632A (en) 1995-05-12

Family

ID=17408466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26480593A Pending JPH07120632A (en) 1993-10-22 1993-10-22 Manufacture of glass waveguide

Country Status (1)

Country Link
JP (1) JPH07120632A (en)

Similar Documents

Publication Publication Date Title
KR0180921B1 (en) Optical waveguide and method of fabricating the same
US5800860A (en) Method of manufacturing planar optical waveguides
US6690872B2 (en) Silica based optical waveguide and production method therefor
JPH10123345A (en) Method for forming substantially flat plane type optical circuit
JPH07120632A (en) Manufacture of glass waveguide
JPH05215929A (en) Manufacture of glass waveguide
JPH05181031A (en) Optical waveguide and its production
JP2000147293A (en) Substrate type optical waveguide and its manufacture
JP3697155B2 (en) Silicon dioxide film generation method and optical waveguide generation method
JPH08136754A (en) Production of optical waveguide
JPH0829634A (en) Production of optical waveguide
US6402973B1 (en) Preparation of silicon substrate
JPH11209131A (en) Formation of glass thin film
KR100443591B1 (en) Method of fabricating planar optical waveguide
JPH07333452A (en) Production of optical waveguide
JP2002162526A (en) Optical waveguide and method for producing the same
JPH09297237A (en) Production of optical waveguide
JPH09243846A (en) Production of high specific refractive index difference optical waveguide
JPH095551A (en) Production of quartz glass waveguide element
JPH10231133A (en) Apparatus for producing oxide glass membrane
JPH09297238A (en) Production of optical waveguide
JPH07104139A (en) Production of glass waveguide and its apparatus for production
JPH05241035A (en) Optical waveguide and production thereof
JPH0875941A (en) Production of optical waveguide
JPH07318739A (en) Quartz-base optical waveguide and its production