JPH09297237A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPH09297237A
JPH09297237A JP11450296A JP11450296A JPH09297237A JP H09297237 A JPH09297237 A JP H09297237A JP 11450296 A JP11450296 A JP 11450296A JP 11450296 A JP11450296 A JP 11450296A JP H09297237 A JPH09297237 A JP H09297237A
Authority
JP
Japan
Prior art keywords
layer
quartz substrate
fine particle
core
particle layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11450296A
Other languages
Japanese (ja)
Inventor
Tetsuya Hattori
哲也 服部
Chizai Hirose
智財 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11450296A priority Critical patent/JPH09297237A/en
Publication of JPH09297237A publication Critical patent/JPH09297237A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To decrease the number of production processes and to shorten a production time by rapidly shaving the surface of a quartz substrate formed with a core to form a clean surface and then forming a waveguide thereon without forming a buffer layer on the quartz substrate. SOLUTION: The surface of a quartz substrate 10 is removed by ICP method (a). SiO2 fine particles with addition of B, P, Ge are produced by flame hydrolysis reaction and are deposited on the quartz substrate 10 (b). The fine particle layer 11' of the core glass deposited is sintered to form a core layer 11 (c). Then a photosensitive resist layer 20 is formed on the core layer 11 (d). Reactive ion mask is carried out by subjecting the photosensitive resist layer 20 to an etching mask to form a columnar core member 11a on the quartz substrate 10 (e). SiO2 fine particles with addition of B, P are produced by flame hydrolysis and deposited (f). The deposited fine particle layer 12' for an overclad layer is sintered to form an overclad layer 12 (g).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信システムに
使用される光導波路の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing an optical waveguide used in an optical communication system.

【0002】[0002]

【従来の技術】高度情報か時代への発展にともない広範
囲の光通信技術の利用が期待されており、この実現のた
めに、光信号を処理、制御する機能を持つ光受動部品の
低コストで容易に製作できる技術が望まれている。この
分野に共通に使用される部品として基板の上に光スイッ
チ、光カプラ等を形成した光導波路がある。
2. Description of the Related Art The use of a wide range of optical communication technology is expected with the development of advanced information or the era, and in order to realize this, it is possible to reduce the cost of optical passive components having the functions of processing and controlling optical signals. A technique that can be easily manufactured is desired. As a component commonly used in this field, there is an optical waveguide in which an optical switch, an optical coupler and the like are formed on a substrate.

【0003】これらの光導波路を製造する典型的な方法
のフローを図5に示す。先ず、火炎堆積法により、石英
やシリコン等の基板101上にガラス微粒子102'を
堆積させ(同図(a))、次いでこれを1200℃以上
の温度で加熱し、堆積したガラス微粒子層を透明ガラス
化してバッファ層102を形成する(同図(b)/ガラ
ス組成:SiO2−B2O3−P2O5)。次に、火炎堆積
法により、バッファ層102上にコア用のガラス微粒子
層103'を堆積させ(同図(c))、この後、再び1
200℃以上の温度で加熱し、このガラス微粒子層10
3'を透明ガラス化してコア層103を形成する(同図
(d)/ガラス組成:SiO2−B2O3−P2O5−Ge
O2)。次に、フォトリソグラフィ技術により、コア層
103上にマスクパターンを形成した後、これをマスク
としてエッチングを行い、所望のパターンの光導波路1
03aを形成する(同図(e))。そして、この上に再
び火炎堆積法でガラス微粒子層104'を堆積した後
(同図(f))、透明ガラス化してオーバクラッド層1
04を形成する(同図(g)/ガラス組成:SiO2−
B2O3−P2O5)。
The flow of a typical method for manufacturing these optical waveguides is shown in FIG. First, glass particles 102 ′ are deposited on a substrate 101 such as quartz or silicon by a flame deposition method (FIG. 10A), and then heated at a temperature of 1200 ° C. or higher to make the deposited glass particle layer transparent. Vitrification is performed to form the buffer layer 102 (FIG. 2B / glass composition: SiO2-B2O3-P2O5). Next, the glass fine particle layer 103 'for core is deposited on the buffer layer 102 by the flame deposition method (FIG. 7C), and then 1 again.
This glass fine particle layer 10 is heated at a temperature of 200 ° C. or higher.
3'is made into a transparent glass to form the core layer 103 ((d) in the figure / glass composition: SiO2-B2O3-P2O5-Ge).
O2). Next, after forming a mask pattern on the core layer 103 by photolithography, etching is performed using this as a mask to form the optical waveguide 1 having a desired pattern.
03a is formed ((e) in the figure). Then, a glass fine particle layer 104 'is again deposited thereon by the flame deposition method ((f) in the same figure), and then made into a transparent glass to form the overclad layer 1
No. 04 is formed ((g) in the figure / glass composition: SiO2-
B2O3-P2O5).

【0004】[0004]

【発明が解決しようとする課題】しかし、光導波路をこ
のような多くの工程を経て形成されるのでは製造時間な
らびに製造コストの点から好ましくない。一方、石英基
板を用いると基板の表面近傍をクラッドとしての機能を
持たせることが出来るので、バッファ層102の製造工
程を省くことが出来る。しかしながら、石英基板上に直
接コア層を形成したのでは基板の表面近傍に存在する不
純物によって導波損失が増大する問題があった。そこで
本発明の目的は、コアを形成する石英基板の表面を速や
かに削除して清浄な面を形成し、その上に導波路を形成
する低損失光導波路の製造方法を提供するものである。
However, it is not preferable to form the optical waveguide through such many steps in terms of manufacturing time and manufacturing cost. On the other hand, when a quartz substrate is used, the vicinity of the surface of the substrate can be made to have a function as a clad, so that the manufacturing process of the buffer layer 102 can be omitted. However, if the core layer is formed directly on the quartz substrate, there is a problem that the waveguide loss increases due to impurities existing near the surface of the substrate. Therefore, an object of the present invention is to provide a method for manufacturing a low-loss optical waveguide in which the surface of a quartz substrate forming a core is promptly removed to form a clean surface and a waveguide is formed thereon.

【0005】[0005]

【課題を解決するための手段】本発明に係わる光導波路
の製造方法は、石英基板上に光導波路を製造する方法で
あって、石英基板の表面を除去する第1工程と、ガラス
の屈折率を高める添加物を火炎バーナに供給し、除去さ
れた基板の表面上に、コア用の第1ガラス微粒子層を堆
積させる第2工程と、前記第1ガラス微粒子層を焼結し
て透明ガラス化する第3工程と、透明ガラス化した前記
第1ガラス微粒子層を所定のコア形状にパターニングす
る第4工程と、パターニングされた前記第1ガラス微粒
子層上に、オーバクラッド用の第2ガラス微粒子層を堆
積させる第5工程と、堆積された前記第2ガラス微粒子
層を焼結して透明ガラス化する第6工程とを備え、前記
第1工程は、CF4ガスを用いたドライエッチングによ
って基板の表面を1〜50μm除去し、かつドライエッ
チングのプラズマ電子密度はICP法によって1010/
cm3以上であることを特徴とする。
A method of manufacturing an optical waveguide according to the present invention is a method of manufacturing an optical waveguide on a quartz substrate, which comprises a first step of removing the surface of the quartz substrate and a refractive index of glass. A second step of supplying a flame burner with an additive that enhances the temperature, and depositing a first glass fine particle layer for the core on the surface of the removed substrate; and sintering the first glass fine particle layer to form a transparent glass. And a fourth step of patterning the transparent vitrified first glass fine particle layer into a predetermined core shape, and a second glass fine particle layer for overcladding on the patterned first glass fine particle layer. And a sixth step of sintering the deposited second glass fine particle layer into a transparent vitrification, the first step comprising dry etching using CF4 gas on the surface of the substrate. 1 ˜50 μm is removed, and the plasma electron density of dry etching is 10 10 /
It is characterized by being at least cm3.

【0006】[0006]

【発明の実施の形態】以下、添付図面を参照しながら本
発明の実施の形態を詳細に説明する。図1は本実施形態
の光導波路の製造工程を示す図である。まず、表面が平
坦に処理された厚さ1mmの石英基板10を用意し、ア
セトン液の中で表面を超音波洗浄した(図示せず)。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing a manufacturing process of the optical waveguide of the present embodiment. First, a 1 mm thick quartz substrate 10 having a flat surface was prepared, and the surface was ultrasonically cleaned in an acetone solution (not shown).

【0007】一方、本発明者は各種石英基板について、
それらの表面をエッチングし、エッチングの深さとその
上に形成した導波路の導波損失との関係から不純物の影
響について検討した。その結果、図2に示すように1〜
50μm、好ましくは10〜50μmエッチングすると
導波損失は実用上影響を及ぼさないことが分かった。
On the other hand, the inventor of the present invention, regarding various quartz substrates,
The surfaces were etched, and the influence of impurities was examined from the relationship between the etching depth and the waveguide loss of the waveguide formed on the surface. As a result, as shown in FIG.
It was found that the waveguide loss has no practical effect when etched by 50 μm, preferably 10-50 μm.

【0008】次いで、この基板10の表面をICP(I
nductive Coupling Plasma)
法によって除去した(図1(a))。ICP法は図3に
示すように、外周にコイル4が設けられた真空チャンバ
6内に石英基板10が配置され、チャンバ6内にCF4
ガスを吹き込んで石英基板10の表面をエッチングし
た。エッチング用ガス2の流量は200(sccm)、
圧力は1.0(Pa)、コイル4の印加電力は2kW以
下で行なった。その結果、1010/cm3のプラズマ電
子密度を安定に発生することが出来た。この条件によっ
て基板10の表面を50μmエッチングするために要し
た時間は50分であった。一方、従来の反応性イオンエ
ッチング(RIE)法で発生させることの出来た最大の
プラズマ電子密度は109/cm3であった。エッチング
速度は図4に示すように、プラズマ電子密度に依存し、
特に1010/cm3近傍で大きく変化することが分かっ
た。
Next, the surface of the substrate 10 is covered with ICP (I
(Nuditive Coupling Plasma)
It was removed by the method (FIG. 1 (a)). In the ICP method, as shown in FIG. 3, a quartz substrate 10 is placed in a vacuum chamber 6 in which a coil 4 is provided on the outer periphery, and CF 4 is placed in the chamber 6.
The surface of the quartz substrate 10 was etched by blowing gas. The flow rate of the etching gas 2 is 200 (sccm),
The pressure was 1.0 (Pa) and the power applied to the coil 4 was 2 kW or less. As a result, a plasma electron density of 1010 / cm3 could be stably generated. Under this condition, the time required to etch the surface of the substrate 10 by 50 μm was 50 minutes. On the other hand, the maximum plasma electron density that could be generated by the conventional reactive ion etching (RIE) method was 10 9 / cm 3. The etching rate depends on the plasma electron density, as shown in FIG.
In particular, it was found that there was a large change near 10 10 / cm 3.

【0009】次に、表面を平坦にエッチングした基板1
0を用いて光導波路を形成した。酸水素火炎中に、原料
ガスとしてSiCl4、BCl3、GeCl4を導入し、
火炎加水分解反応によりB、P、Geが添加されたSi
O2微粒子を発生させて石英基板10上に堆積した(図
1(b))。堆積したコアガラスの微粒子層11’を1
500℃で4時間焼結して厚さ8μmのコア層11を形
成した(図1(c))。
Next, the substrate 1 whose surface is flatly etched
0 was used to form an optical waveguide. Introducing SiCl4, BCl3, and GeCl4 as source gases into the oxyhydrogen flame,
Si with B, P and Ge added by flame hydrolysis reaction
O2 fine particles were generated and deposited on the quartz substrate 10 (FIG. 1 (b)). 1 for the deposited core glass particle layer 11 '
The core layer 11 having a thickness of 8 μm was formed by sintering at 500 ° C. for 4 hours (FIG. 1C).

【0010】次に、コア層11上に厚さ1μmの感光性
レジスト層20を形成する(図1(d))。レジスト層
20は帯状をなし、その幅はコアの寸法と等しく選択し
た。
Next, a photosensitive resist layer 20 having a thickness of 1 μm is formed on the core layer 11 (FIG. 1 (d)). The resist layer 20 was strip-shaped and its width was chosen to be equal to the dimensions of the core.

【0011】次いで、レジスト層20をエッチングマス
クとして反応性イオンエッチングを行い、コア層11の
露出部分を基板10の上面が露出するまで除去した。こ
れにより、石英基板10上に柱状のコア部材11aが形
成された(図1(e))。
Then, reactive ion etching was performed using the resist layer 20 as an etching mask to remove the exposed portion of the core layer 11 until the upper surface of the substrate 10 was exposed. As a result, the columnar core member 11a was formed on the quartz substrate 10 (FIG. 1E).

【0012】次に、酸水素火炎中に、原料ガスとしてS
iCl4、BCl3、POCl3を導入し、火炎加水分解
反応によりB、Pが添加されたSiO2微粒子を発生さ
せて堆積した(図1(f))。堆積したオーバクラッド
層の微粒子層12’を1200℃で4時間焼結して厚さ
30μmのオーバクラッド層12を得た(図1
(g))。導波路の構造は、コア断面形状が8μm×8
μm、比屈折率差が0.3%となるように合成した。石
英基板10とオーバクラッド層12は一体となって一つ
のクラッド層を構成しており、導波路はこのクラッド層
内に埋め込まれた状態で固定される。以上の工程を経て
作製した直線光導波路の導波損失は、0.06±0.0
3dB/cmであった。
Next, in the oxyhydrogen flame, S is used as a raw material gas.
iCl4, BCl3, and POCl3 were introduced, and flame hydrolysis reaction was performed to generate and deposit SiO2 particles to which B and P were added (FIG. 1 (f)). The deposited overclad particle layer 12 'was sintered at 1200 ° C. for 4 hours to obtain an overclad layer 12 having a thickness of 30 μm (FIG. 1).
(G)). The waveguide structure has a core cross-sectional shape of 8 μm × 8.
μm and the relative refractive index difference was 0.3%. The quartz substrate 10 and the over clad layer 12 are integrated to form a clad layer, and the waveguide is fixed while being embedded in the clad layer. The waveguide loss of the linear optical waveguide manufactured through the above steps is 0.06 ± 0.0
It was 3 dB / cm.

【0013】〈 比較例 1 〉石英基板10の表面を除
去せずに直接図1に示した工程に従ってコア層11、オ
ーバクラッド層12を形成した。作製された直線光導波
路の導波損失は、0.6±0.1dB/cmであり、低
損失の光導波路は得られなかった。
Comparative Example 1 The core layer 11 and the overclad layer 12 were formed directly according to the process shown in FIG. 1 without removing the surface of the quartz substrate 10. The waveguide loss of the produced linear optical waveguide was 0.6 ± 0.1 dB / cm, and an optical waveguide with low loss could not be obtained.

【0014】〈 比較例 2 〉また、ICP法の替わり
にコンデンサを用いた従来のRIE法によって石英基板
10の表面を除去したが、プラズマ電子密度は109/
cm3以上増加することが出来ず、50μmエッチング
するために10時間を費やし、低コストで生産する目的
に合致しなかった。
Comparative Example 2 Further, the surface of the quartz substrate 10 was removed by the conventional RIE method using a capacitor instead of the ICP method, but the plasma electron density was 10 9 /
Since it could not be increased by more than 3 cm3, it took 10 hours to etch 50 μm, which was not suitable for the purpose of low cost production.

【0015】[0015]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。
The present invention is embodied in the form described above and has the following effects.

【0016】石英基板上にバッファ層を設けないので製
造工程が少なく、製造時間が短縮される。
Since no buffer layer is provided on the quartz substrate, the number of manufacturing steps is small and the manufacturing time is shortened.

【0017】高密度プラズマを発生させてドライエッチ
ングすると、エッチング速度が著しく増大し、製造時間
が短縮される。
When high density plasma is generated and dry etching is performed, the etching rate is remarkably increased and the manufacturing time is shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施形態に係わる光導波路の製造工程を示す
図である。
FIG. 1 is a diagram showing a manufacturing process of an optical waveguide according to the present embodiment.

【図2】エッチングの深さと導波損失の関係を示す図で
ある。
FIG. 2 is a diagram showing a relationship between etching depth and waveguide loss.

【図3】ICP法によるエッチングの構成を示す図であ
る。
FIG. 3 is a diagram showing a configuration of etching by an ICP method.

【図4】エッチング速度とプラズマ電子密度の関係を示
す図である。
FIG. 4 is a diagram showing a relationship between an etching rate and plasma electron density.

【図5】従来の光導波路の製造工程を示す図である。FIG. 5 is a diagram showing a manufacturing process of a conventional optical waveguide.

【符号の説明】[Explanation of symbols]

1:ドライエッチングの方向 11、12・・:エッチングの面 2:ドライエッチング用ガス 3:排気ガス 4:コイル 5:加速用電源 6:真空チャンバ 10:基板 11:コア層 11’:コア部のガラス微粒子層 12:オーバクラッド層 12’:オーバクラッド部のガラス微粒子層 13:バッファ層 13’:バッファ部のガラス微粒子層 20:感光性レジスト層 1: Direction of dry etching 11, 12 ...: Etching surface 2: Dry etching gas 3: Exhaust gas 4: Coil 5: Accelerating power supply 6: Vacuum chamber 10: Substrate 11: Core layer 11 ': Core part Glass fine particle layer 12: Overclad layer 12 ': Glass fine particle layer in overclad portion 13: Buffer layer 13': Glass fine particle layer in buffer portion 20: Photosensitive resist layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 石英基板上に光導波路を製造する方法で
あって、 石英基板の表面を除去する第1工程と、 ガラスの屈折率を高める添加物を火炎バーナに供給し、
除去された基板の表面上に、コア用の第1ガラス微粒子
層を堆積させる第2工程と、 前記第1ガラス微粒子層を焼結して透明ガラス化する第
3工程と、 透明ガラス化した前記第1ガラス微粒子層を所定のコア
形状にパターニングする第4工程と、 パターニングされた前記第1ガラス微粒子層上に、オー
バクラッド用の第2ガラス微粒子層を堆積させる第5工
程と、 堆積された前記第2ガラス微粒子層を焼結して透明ガラ
ス化する第6工程とを備え、 前記第1工程は、CF4ガスを用いたドライエッチング
によって基板の表面を1〜50μm除去し、かつドライ
エッチングのプラズマ電子密度はICP法によって10
10/cm3以上であることを特徴とする光導波路の製造
方法。
1. A method of manufacturing an optical waveguide on a quartz substrate, comprising: a first step of removing the surface of the quartz substrate; and an additive for increasing the refractive index of glass is supplied to a flame burner,
A second step of depositing a first glass fine particle layer for a core on the surface of the removed substrate, a third step of sintering the first glass fine particle layer to make it a transparent vitrification, and the transparent vitrification A fourth step of patterning the first glass fine particle layer into a predetermined core shape, and a fifth step of depositing a second glass fine particle layer for overcladding on the patterned first glass fine particle layer, A sixth step of sintering the second glass fine particle layer to obtain a transparent vitrification, the first step removing the surface of the substrate by 1 to 50 μm by dry etching using CF 4 gas, and Plasma electron density is 10 by ICP method
A method for manufacturing an optical waveguide, which is 10 / cm3 or more.
JP11450296A 1996-05-09 1996-05-09 Production of optical waveguide Pending JPH09297237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11450296A JPH09297237A (en) 1996-05-09 1996-05-09 Production of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11450296A JPH09297237A (en) 1996-05-09 1996-05-09 Production of optical waveguide

Publications (1)

Publication Number Publication Date
JPH09297237A true JPH09297237A (en) 1997-11-18

Family

ID=14639365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11450296A Pending JPH09297237A (en) 1996-05-09 1996-05-09 Production of optical waveguide

Country Status (1)

Country Link
JP (1) JPH09297237A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010073495A (en) * 2000-01-15 2001-08-01 이형종 Fabrication method of Planar Silica Thin Film Using Wide Flame Hydrolysis Deposition method and Liquid Vaporizing system for Optical Devices in High Temperature atmosphere
US7106937B2 (en) 2004-01-27 2006-09-12 Tdk Corporation Optical waveguide and method of fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010073495A (en) * 2000-01-15 2001-08-01 이형종 Fabrication method of Planar Silica Thin Film Using Wide Flame Hydrolysis Deposition method and Liquid Vaporizing system for Optical Devices in High Temperature atmosphere
US7106937B2 (en) 2004-01-27 2006-09-12 Tdk Corporation Optical waveguide and method of fabricating the same

Similar Documents

Publication Publication Date Title
JPH09297237A (en) Production of optical waveguide
JP3070018B2 (en) Quartz optical waveguide and method of manufacturing the same
JPH05181031A (en) Optical waveguide and its production
KR100219715B1 (en) Rare earth ion doped optical waveguide manufacturing method
JP3196797B2 (en) Manufacturing method of laminated quartz optical waveguide
JP2000121859A (en) Production of buried optical fiber
JPH09297238A (en) Production of optical waveguide
KR100461874B1 (en) Fabrication of planar waveguide with photosensitivity during FHD process
KR100352645B1 (en) Planar silica optical waveguide manufactural method using the High Temperature Substrate and Flame Hydrolysis Deposition method
JP2738121B2 (en) Method for manufacturing silica-based optical waveguide
JPH09243846A (en) Production of high specific refractive index difference optical waveguide
KR100443591B1 (en) Method of fabricating planar optical waveguide
KR20010047296A (en) Planar optic waveguide using aerosol process and method for manufacturing the same
KR20040011138A (en) Method for fabricating optical waveguide on fused silica substrates using inductively coupled plasma etcher
JP2953173B2 (en) Optical waveguide
JPH08136754A (en) Production of optical waveguide
KR100377929B1 (en) Optical waveguide device and manufacturing method thereof
KR20020089871A (en) An optical waveguide device and fabrication method therefor
JP3097698B2 (en) Manufacturing method of optical waveguide
JPH0875940A (en) Production of optical waveguide
JP2001066444A (en) Optical waveguide
JPS58100801A (en) Production of quartz optical waveguide
JPH11194221A (en) Forming method of optical waveguide and optical waveguide element
KR100328132B1 (en) Planar optical amplifier and its fabrication method
JP2001056415A (en) Quartz based optical waveguide and its production