JPH0779052B2 - 軟磁性多層膜の形成方法 - Google Patents
軟磁性多層膜の形成方法Info
- Publication number
- JPH0779052B2 JPH0779052B2 JP3271421A JP27142191A JPH0779052B2 JP H0779052 B2 JPH0779052 B2 JP H0779052B2 JP 3271421 A JP3271421 A JP 3271421A JP 27142191 A JP27142191 A JP 27142191A JP H0779052 B2 JPH0779052 B2 JP H0779052B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- soft magnetic
- film
- magnetic
- multilayer film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Thin Magnetic Films (AREA)
Description
【0001】
【産業上の利用分野】本発明は、軟磁性多層膜の形成方
法に関し、特に薄膜ヘッド、MIGヘッド、薄膜トラン
ス、薄膜インダクタ等に適した軟磁性多層膜の形成方法
に係わる。
法に関し、特に薄膜ヘッド、MIGヘッド、薄膜トラン
ス、薄膜インダクタ等に適した軟磁性多層膜の形成方法
に係わる。
【0002】
【従来の技術および課題】近年、薄膜磁気ヘッド用材料
や薄膜トランス、薄膜インダクタに利用可能な高飽和磁
束密度軟磁性薄膜に関する研究・開発が盛んに行われて
いる。これらの磁性薄膜材料の中でも、Feを主成分と
した磁性膜は、窒化、多層化、合金化等により低保磁力
でかつ高飽和磁束密度の特性を有する。
や薄膜トランス、薄膜インダクタに利用可能な高飽和磁
束密度軟磁性薄膜に関する研究・開発が盛んに行われて
いる。これらの磁性薄膜材料の中でも、Feを主成分と
した磁性膜は、窒化、多層化、合金化等により低保磁力
でかつ高飽和磁束密度の特性を有する。
【0003】一方、薄膜の研究の中で高周波数での比透
磁率を向上させるために、磁性薄膜の中間に非磁性薄膜
を介在した多層膜が提案され、メガヘルツ(MHz)帯
の使用を目的として現在開発が進められている。前記非
磁性薄膜としては、Si−O、Si−N系絶縁材料が用
いられ、これらの非磁性薄膜を前記金属系軟磁性薄膜の
間に介在して高周波使用時の渦電流を低減することによ
って、比透磁率を向上させるものである。
磁率を向上させるために、磁性薄膜の中間に非磁性薄膜
を介在した多層膜が提案され、メガヘルツ(MHz)帯
の使用を目的として現在開発が進められている。前記非
磁性薄膜としては、Si−O、Si−N系絶縁材料が用
いられ、これらの非磁性薄膜を前記金属系軟磁性薄膜の
間に介在して高周波使用時の渦電流を低減することによ
って、比透磁率を向上させるものである。
【0004】 前記非磁性薄膜は、従来、主にスパッタ
リング法により成膜されているが、スパッタリング法は
成膜温度が上昇するために、磁性膜に悪影響(軟磁気特
性の劣化)を与える。また、前記非磁性薄膜は多層膜全
体の飽和磁束密度の低下を防ぐ観点から、できり限り薄
く成膜することが必要である。しかしながら、スパッタ
リング法により前記薄い非磁性薄膜を成膜すると、成膜
時のダメージによりピンホールが発生しや易く、前記渦
電流の低減効果を十分に発揮できなくなるという問題が
あった。
リング法により成膜されているが、スパッタリング法は
成膜温度が上昇するために、磁性膜に悪影響(軟磁気特
性の劣化)を与える。また、前記非磁性薄膜は多層膜全
体の飽和磁束密度の低下を防ぐ観点から、できり限り薄
く成膜することが必要である。しかしながら、スパッタ
リング法により前記薄い非磁性薄膜を成膜すると、成膜
時のダメージによりピンホールが発生しや易く、前記渦
電流の低減効果を十分に発揮できなくなるという問題が
あった。
【0005】
【発明が解決しようとする課題】本発明は、前記従来の
問題点を解消するためになされたもので、高い比透磁率
を有すると共に高飽和磁束密度特性を有する軟磁性多層
膜の形成方法を提供しようとするものである。
問題点を解消するためになされたもので、高い比透磁率
を有すると共に高飽和磁束密度特性を有する軟磁性多層
膜の形成方法を提供しようとするものである。
【0006】
【課題を解決するための手段】 本発明は、基板に軟磁
性薄膜を複数積層すると共に、ECRプラズマCVD法
により成膜したSi−N薄膜を中間層として前記積層軟
磁性薄膜の少なくとも1つの層間に介在させることを特
徴とする軟磁性多層膜の形成方法である。
性薄膜を複数積層すると共に、ECRプラズマCVD法
により成膜したSi−N薄膜を中間層として前記積層軟
磁性薄膜の少なくとも1つの層間に介在させることを特
徴とする軟磁性多層膜の形成方法である。
【0007】 前記軟磁性薄膜としては、例えばFe−
Ni合金薄膜、Fe−N薄膜、またはFe薄膜の成膜と
窒化処理により形成されたFe/Fe−N薄膜等を用い
ることができる。特に、Fe/Fe−N薄膜を軟磁性薄
膜として用いることが望ましい。前記軟磁性薄膜の厚さ
は、100〜500オングストロームとすることが望ま
しい。
Ni合金薄膜、Fe−N薄膜、またはFe薄膜の成膜と
窒化処理により形成されたFe/Fe−N薄膜等を用い
ることができる。特に、Fe/Fe−N薄膜を軟磁性薄
膜として用いることが望ましい。前記軟磁性薄膜の厚さ
は、100〜500オングストロームとすることが望ま
しい。
【0008】
【作用】 本発明によれば、積層軟磁性薄膜の中間層と
してECRプラズマCVD法により成膜したSi−N薄
膜を介在させることによって、スパッタリング等のPV
D法により成膜したSi−N薄膜に比べてピンホール等
の欠陥のない良好なSi−N薄膜を形成できると共に、
下層の前記積層軟磁性薄膜への熱的な悪影響を回避でき
る。しかも、前記Si−N薄膜上に軟磁性薄膜を複数積
層する工程において、下地となる薄膜はSi−Nからな
るため、Si−O薄膜を中間層として用いた場合のよう
に前記軟磁性薄膜に酸素が混入するのを回避できる。
してECRプラズマCVD法により成膜したSi−N薄
膜を介在させることによって、スパッタリング等のPV
D法により成膜したSi−N薄膜に比べてピンホール等
の欠陥のない良好なSi−N薄膜を形成できると共に、
下層の前記積層軟磁性薄膜への熱的な悪影響を回避でき
る。しかも、前記Si−N薄膜上に軟磁性薄膜を複数積
層する工程において、下地となる薄膜はSi−Nからな
るため、Si−O薄膜を中間層として用いた場合のよう
に前記軟磁性薄膜に酸素が混入するのを回避できる。
【0009】したがって、前記欠陥のない良好な膜質を
有するSi−N薄膜を積層軟磁性薄膜間に中間層として
介在させることによって、高い比透磁率を有すると共に
高飽和磁束密度特性を有する軟磁性多層膜を形成するこ
とができる。
有するSi−N薄膜を積層軟磁性薄膜間に中間層として
介在させることによって、高い比透磁率を有すると共に
高飽和磁束密度特性を有する軟磁性多層膜を形成するこ
とができる。
【0010】また、前記軟磁性薄膜としてFe薄膜の成
膜と窒化処理により形成されたFe/Fe−N薄膜を用
いれば、より高い比透磁率を有すると共に高飽和磁束密
度特性を有する軟磁性多層膜を形成することが可能とな
る。
膜と窒化処理により形成されたFe/Fe−N薄膜を用
いれば、より高い比透磁率を有すると共に高飽和磁束密
度特性を有する軟磁性多層膜を形成することが可能とな
る。
【0011】
【実施例】以下、本発明の実施例を詳細に説明する。 実施例1
【0012】まず、コーニング社製7059のガラスか
らなる50mm×50mm×0.5mmの基板上に、F
eターゲットを用いマグネトロンスパッタリングにより
下記に示す条件でFe薄膜を成膜する工程と下記に示す
条件で窒化処理を行う工程を繰り返した1層当たり20
0オングストロームの厚さを有するFe/Fe−N薄膜
を12層(全厚さ2400オングストローム)積層し
た。つづいて、前記積層Fe/Fe−N薄膜上にECR
プラズマCVD法により下記に示す条件で厚さ50オン
グストロームのSi−N薄膜を成膜した。ひきつづき、
前記Si−N薄膜上にFeターゲットを用いマグネトロ
ンスパッタリングにより下記に示す条件でFe薄膜を成
膜する工程と下記に示す条件で窒化処理を行う工程を繰
り返した1層当たり200オングストロームの厚さを有
するFe/Fe−N薄膜を12層積層することによっ
て、図1に示すように基板1上に複数のFe/Fe−N
薄膜2が積層され、かつ前記Fe/Fe−N薄膜2の所
望の間にSi−N薄3が中間層として介装された全厚さ
が4850オングストロームの多層膜4を形成した。 (マグネトロンスパッタリング条件) スパッタガス;Ar 50sccm スパッタ圧力;2mTorr スパッタターゲット;Fe(3N) スパッタ出力;400W 成膜速度;10オングストローム/sec (窒化処理条件) プラズマ窒化ガス;N2 20sccm 窒化ガス圧力;1mTorr マイクロ波出力;400W (ECRプラズマCVD条件) プラズマガス;N2 20sccm 原料ガス;SiH4 30sccm ガス圧力;1mTorr マイクロ波出力;200W 得られた多層膜について20MHz時の比透磁率(μ
´)、飽和磁束密度および保磁力を調べた。その結果を
下記表1に示す。 表1 比透磁率(μ´) 3500 飽和磁束密度(T) 1.8 保磁力(Oe) 0.9
らなる50mm×50mm×0.5mmの基板上に、F
eターゲットを用いマグネトロンスパッタリングにより
下記に示す条件でFe薄膜を成膜する工程と下記に示す
条件で窒化処理を行う工程を繰り返した1層当たり20
0オングストロームの厚さを有するFe/Fe−N薄膜
を12層(全厚さ2400オングストローム)積層し
た。つづいて、前記積層Fe/Fe−N薄膜上にECR
プラズマCVD法により下記に示す条件で厚さ50オン
グストロームのSi−N薄膜を成膜した。ひきつづき、
前記Si−N薄膜上にFeターゲットを用いマグネトロ
ンスパッタリングにより下記に示す条件でFe薄膜を成
膜する工程と下記に示す条件で窒化処理を行う工程を繰
り返した1層当たり200オングストロームの厚さを有
するFe/Fe−N薄膜を12層積層することによっ
て、図1に示すように基板1上に複数のFe/Fe−N
薄膜2が積層され、かつ前記Fe/Fe−N薄膜2の所
望の間にSi−N薄3が中間層として介装された全厚さ
が4850オングストロームの多層膜4を形成した。 (マグネトロンスパッタリング条件) スパッタガス;Ar 50sccm スパッタ圧力;2mTorr スパッタターゲット;Fe(3N) スパッタ出力;400W 成膜速度;10オングストローム/sec (窒化処理条件) プラズマ窒化ガス;N2 20sccm 窒化ガス圧力;1mTorr マイクロ波出力;400W (ECRプラズマCVD条件) プラズマガス;N2 20sccm 原料ガス;SiH4 30sccm ガス圧力;1mTorr マイクロ波出力;200W 得られた多層膜について20MHz時の比透磁率(μ
´)、飽和磁束密度および保磁力を調べた。その結果を
下記表1に示す。 表1 比透磁率(μ´) 3500 飽和磁束密度(T) 1.8 保磁力(Oe) 0.9
【0013】また、非磁性薄膜であるSi−N薄膜の前
記Fe/Fe−N薄膜間への介在数を変えて多層膜を形
成した場合における各多層膜の20MHz時の比透磁率
(μ´)を測定した。その結果を図2に示す。なお、図
2には非磁性薄膜であるSi−N薄膜を熱CVD法によ
り成膜した多層膜を比較例1、非磁性薄膜であるSi−
O薄膜をECRプラズマCVD法により成膜した多層膜
を比較例2、非磁性薄膜であるSi−N薄膜をマグネト
ロンスパッタリング法により成膜した多層膜を比較例
3、としてそれぞれ併記した。
記Fe/Fe−N薄膜間への介在数を変えて多層膜を形
成した場合における各多層膜の20MHz時の比透磁率
(μ´)を測定した。その結果を図2に示す。なお、図
2には非磁性薄膜であるSi−N薄膜を熱CVD法によ
り成膜した多層膜を比較例1、非磁性薄膜であるSi−
O薄膜をECRプラズマCVD法により成膜した多層膜
を比較例2、非磁性薄膜であるSi−N薄膜をマグネト
ロンスパッタリング法により成膜した多層膜を比較例
3、としてそれぞれ併記した。
【0014】図2から明らかなように、本発明のように
積層Fe/Fe−N薄膜の中間層としてのSi−N薄膜
をECRプラズマCVD法により成膜することによって
得られた多層膜は、高い比透磁率を有することがわか
る。特に、前記Si−N薄膜の層数を1層または2層と
することにより高い比透磁率が得られることがわかる。
これに対し、Si−N薄膜を熱CVD法により成膜して
多層膜を形成した比較例1では比透磁率が極めて低いこ
とがわかる。また、Si−O薄膜をECRプラズマCV
D法により成膜して多層膜を形成した比較例2およびS
i−N薄膜をマグネトロンスパッタリング法により成膜
して多層膜を形成した比較例3は、比較例1に比べて比
透磁率が高くなるものの、実施例に比べてかなり劣る。
特に、比較例2の場合には層数を2層以上にすると極端
に比透磁率が低下する。これは、Si−O薄膜の成膜過
程で酸素がFe/Fe−N薄膜に混入してその軟磁性特
性を悪化させるためであると考えられる。
積層Fe/Fe−N薄膜の中間層としてのSi−N薄膜
をECRプラズマCVD法により成膜することによって
得られた多層膜は、高い比透磁率を有することがわか
る。特に、前記Si−N薄膜の層数を1層または2層と
することにより高い比透磁率が得られることがわかる。
これに対し、Si−N薄膜を熱CVD法により成膜して
多層膜を形成した比較例1では比透磁率が極めて低いこ
とがわかる。また、Si−O薄膜をECRプラズマCV
D法により成膜して多層膜を形成した比較例2およびS
i−N薄膜をマグネトロンスパッタリング法により成膜
して多層膜を形成した比較例3は、比較例1に比べて比
透磁率が高くなるものの、実施例に比べてかなり劣る。
特に、比較例2の場合には層数を2層以上にすると極端
に比透磁率が低下する。これは、Si−O薄膜の成膜過
程で酸素がFe/Fe−N薄膜に混入してその軟磁性特
性を悪化させるためであると考えられる。
【0015】
【発明の効果】 以上詳述した如く、本発明によればE
CRプラズマCVD法により欠陥のない良好な膜質を有
するSi−N薄膜を積層軟磁性薄膜間に中間層として介
在させることによって、高い比透磁率を有すると共に高
飽和磁束密度特性を有する軟磁性多層膜を形成できる。
また、Si−N薄膜はECRプラズマCVD法により成
膜されるため、その成膜時に積層軟磁性薄膜の温度上昇
を抑制して前記磁性薄膜の軟磁気特性の劣化を抑制でき
る。その結果、薄膜ヘッド、MIGヘッド、薄膜トラン
ス、薄膜インダクタなどに有効に利用できる軟磁性積層
膜の形成方法を提供できる。
CRプラズマCVD法により欠陥のない良好な膜質を有
するSi−N薄膜を積層軟磁性薄膜間に中間層として介
在させることによって、高い比透磁率を有すると共に高
飽和磁束密度特性を有する軟磁性多層膜を形成できる。
また、Si−N薄膜はECRプラズマCVD法により成
膜されるため、その成膜時に積層軟磁性薄膜の温度上昇
を抑制して前記磁性薄膜の軟磁気特性の劣化を抑制でき
る。その結果、薄膜ヘッド、MIGヘッド、薄膜トラン
ス、薄膜インダクタなどに有効に利用できる軟磁性積層
膜の形成方法を提供できる。
【図1】本発明の実施例における基板上に形成された多
層膜を示す断面図。
層膜を示す断面図。
【図2】非磁性薄膜の層数と比透磁率の関係を示す特性
図。
図。
1…基板、2…Fe/Fe−N薄膜、3…Si−N薄
膜、4…多層膜。
膜、4…多層膜。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 米本 隆治 東京都港区西新橋1丁目7番2号 株式会 社ライムズ内 (72)発明者 海老沢 孝 東京都港区西新橋1丁目7番2号 株式会 社ライムズ内 (72)発明者 真下 啓治 東京都港区西新橋1丁目7番2号 株式会 社ライムズ内 (72)発明者 高橋 純三 東京都港区西新橋1丁目7番2号 株式会 社ライムズ内 (56)参考文献 特開 平2−51205(JP,A) 特開 平3−208311(JP,A) 特開 昭62−285406(JP,A) 特開 昭64−80006(JP,A)
Claims (2)
- 【請求項1】 基板に軟磁性薄膜を複数積層すると共
に、ECRプラズマCVD法により成膜したSi−N薄
膜を中間層として前記積層軟磁性薄膜の少なくとも1つ
の層間に介在させることを特徴とする軟磁性多層膜の形
成方法。 - 【請求項2】 前記軟磁性薄膜は、Fe薄膜の成膜と窒
化処理により形成されたFe/Fe−N薄膜であること
を特徴とする請求項1記載の軟磁性多層膜の形成方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3271421A JPH0779052B2 (ja) | 1991-10-18 | 1991-10-18 | 軟磁性多層膜の形成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3271421A JPH0779052B2 (ja) | 1991-10-18 | 1991-10-18 | 軟磁性多層膜の形成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0620836A JPH0620836A (ja) | 1994-01-28 |
JPH0779052B2 true JPH0779052B2 (ja) | 1995-08-23 |
Family
ID=17499802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3271421A Expired - Lifetime JPH0779052B2 (ja) | 1991-10-18 | 1991-10-18 | 軟磁性多層膜の形成方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0779052B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101035605B1 (ko) * | 2009-07-09 | 2011-05-19 | 탁동호 | 수납장의 코너 도어용 힌지 |
US9859357B1 (en) * | 2016-07-14 | 2018-01-02 | International Business Machines Corporation | Magnetic inductor stacks with multilayer isolation layers |
CN108022714B (zh) * | 2016-10-31 | 2021-06-08 | 北京北方华创微电子装备有限公司 | 一种软磁薄膜及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62285406A (ja) * | 1986-06-03 | 1987-12-11 | Nec Home Electronics Ltd | 複合軟磁性薄膜 |
JPS6480006A (en) * | 1987-09-21 | 1989-03-24 | Matsushita Electric Ind Co Ltd | Manufacture of magnetic thin film of iron oxide |
JPH0251205A (ja) * | 1988-08-12 | 1990-02-21 | Tdk Corp | 多層状強磁性体 |
JPH03208311A (ja) * | 1990-01-10 | 1991-09-11 | Nec Home Electron Ltd | 磁性体膜積層体およびその製造方法 |
-
1991
- 1991-10-18 JP JP3271421A patent/JPH0779052B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0620836A (ja) | 1994-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001291230A (ja) | 磁気記録媒体及びその製造方法 | |
JPS63299219A (ja) | 軟磁性薄膜 | |
JPH0779052B2 (ja) | 軟磁性多層膜の形成方法 | |
US6472048B1 (en) | Magnetic recording medium and process for producing the same | |
JPH0997714A (ja) | 磁気ヘッド用磁性薄膜およびその製造方法ならびに該磁性薄膜を用いた磁気ヘッド | |
JPH03124005A (ja) | 超構造窒化合金膜 | |
JP2570337B2 (ja) | 軟磁性積層膜 | |
JPH056834A (ja) | 積層磁性体膜の形成方法 | |
JP3230212B2 (ja) | 磁気記録媒体 | |
JPH08138934A (ja) | 軟磁性薄膜およびその製造方法 | |
KR100215785B1 (ko) | 자기헤드 | |
JP2550995B2 (ja) | 軟磁性積層薄膜 | |
JPH01217723A (ja) | 磁気記録媒体 | |
JPH05135343A (ja) | 磁気記録媒体 | |
JPH0581637A (ja) | 磁気記録媒体 | |
JPH04285153A (ja) | 多層磁性体膜およびその形成方法 | |
Nakagawa et al. | Improvement of soft magnetic properties of ferromagnetic Fe-Co-Ta: N/M films multilayered with paramagnetic Ti, Co/sub 67/Cr/sub 33/and Fe/sub 82/Co/sub 9/Ta/sub 9: N interlayers | |
JPH09330503A (ja) | 磁気ヘッド | |
JPH04359501A (ja) | 多層状強磁性体 | |
JPH0489620A (ja) | 磁気記録媒体の製造方法 | |
JPH05198455A (ja) | Fe−Co−N系軟磁性薄膜の製造方法 | |
JPS59157826A (ja) | 磁気記録媒体の製造方法 | |
JP2003173514A (ja) | 垂直磁気記録媒体および垂直磁気記録媒体の製造方法 | |
JPH0668466A (ja) | 磁気記録媒体の製造方法 | |
JPH04362160A (ja) | 強磁性材料 |