JPH0743353B2 - 蛍光検出型ゲル電気泳動装置 - Google Patents

蛍光検出型ゲル電気泳動装置

Info

Publication number
JPH0743353B2
JPH0743353B2 JP2143797A JP14379790A JPH0743353B2 JP H0743353 B2 JPH0743353 B2 JP H0743353B2 JP 2143797 A JP2143797 A JP 2143797A JP 14379790 A JP14379790 A JP 14379790A JP H0743353 B2 JPH0743353 B2 JP H0743353B2
Authority
JP
Japan
Prior art keywords
scanning
optical system
gel
excitation light
receiving optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2143797A
Other languages
English (en)
Other versions
JPH0436652A (ja
Inventor
英彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2143797A priority Critical patent/JPH0743353B2/ja
Priority to EP91107799A priority patent/EP0459214B1/en
Priority to DE69109181T priority patent/DE69109181T2/de
Priority to US07/702,171 priority patent/US5100529A/en
Publication of JPH0436652A publication Critical patent/JPH0436652A/ja
Publication of JPH0743353B2 publication Critical patent/JPH0743353B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はDNA塩基配列決定などに用いる装置であって、
蛍光ラベルしたサンプルをゲル電気泳動させ、泳動方向
と直交する方向に蛍光の励起・受光光学系を走査し、泳
動パターンを検出するゲル電気泳動装置に関するもので
ある。
(従来の技術) 蛍光ラベルしたサンプルとは、プライマー部又はダイデ
オキシ部に蛍光ラベルし、サンガーの方法で調整したDN
A断片であり、この蛍光ラベルしたサンプルをゲル電気
泳動して得られる展開パターンはそのままDNAの塩基配
列を与える。
蛍光検出型ゲル電気泳動装置の一例は特開昭63−313035
号公報に記載されている。その引例の装置は、第11図に
示されるものであり、ガラス板に挾まれて図で紙面垂直
方向に延びる泳動ゲル104に蛍光ラベルしたサンプルが
紙面垂直方向に泳動する。ステージ239はガイドレール2
33に案内され、モータ237で駆動される棒ネジ252の回転
によって泳動方向と直交する図の上下方向に走査され
る。ステージ239には集光レンズ260が設けられ、励起光
であるレーザビーム250がミラー251で反射されてレンズ
260に入射し、ステージ239上のミラー255で反射されて
泳動ゲル104の測定部分を照射する。その測定部分から
出た蛍光はステージ239に設けられた集光レンズ221で集
光され、干渉フィルタ223で分光されてレンズ225を通
り、光電子増倍管229で検知される。
(発明が解決しようとする課題) 第11図の装置では、泳動ゲル104と走査方向(ネジ252と
ガイドレール233で決まる)、及び集光レンズ260への励
起光の入射方向の三者が全く平行で、かつ泳動ゲル104
の位置は走査のどの場所でも全く一致していなければな
らない。この条件はゲル104を交換したときでも、常に
満たされていなければならない。
第12図はこの条件が満たされていない場合を示したもの
である。走査のある場所Aでは励起光250により照明さ
れたゲル部分は正しく受光光学系の光軸上にあり、強い
信号が得られるが、ゲル104が挾まれているガラス板の
厚さが変化したり、ゲル104とネジ252の平行度が不十分
な場合など、走査の別の場所Bでは図のように励起光25
0により照明されたゲル部分と受光光学系の光軸との間
にずれが生じ、信号強度が弱くなり、はなはだしい場合
には信号が検出されなくなる。このように、信号強度が
場所により変化する結果を生じる。
レンズ225はこのずれを軽減するために設けられたもの
であるが、それでもこの光学系の場合、入射角θが散乱
光を減少させるために20〜35度ぐらいと小さく設定され
ているため、ガラス板の厚さの不均一や平行度の誤差に
よるゲル104とステージ239との距離Dの変動によるゲル
104の励起場所と受光光学系の光軸とのずれを十分補償
できるものではない。
このずれを解消するために励起光のスポット位置を検出
し、光軸を負帰還サーボ機構により動かすことも考えら
れる。しかし、この方法はスポット位置の検出装置が不
可欠であり、複雑となる。
本発明は第11図のように励起・受光光学系を泳動方向と
直交する方向に走査しながら泳動パターンを検出する装
置において、ゲルと走査方向及び励起光入射方向の厳密
な平行関係が保たれない場合においても、正しく蛍光検
出を行なうことのできるゲル電気泳動装置を励起光スポ
ットの位置検出手段なしで実現することを目的とするも
のである。
(課題を解決するための手段) 第1図により本発明を説明する。
励起・受光光学系を走査する走査機構44を制御するため
に走査制御部46が備えられており、30は走査機構44や走
査制御部46からの出力によって走査場所を検出したり、
ゲルの励起光による照明部分からの散乱光などを受けて
走査場所を検出する走査場所検出部である。32は励起光
光路と受光光学系光軸との相対的位置関係を変化させる
移動手段である。34はゲルの励起光による照明位置から
の散乱光や蛍光を検出するための光学系と光検出部を備
えた信号検出手段である。36は測定に用いられるゲルが
装着された後、サンプル投入前又はサンプル投入後でサ
ンプルが測定部に到着する前の較正用走査における走査
領域内のいくつかの走査場所で移動手段32を作動させ、
信号検出手段34からの信号にもとづいてゲルの励起光に
よる照明部分が受光光学系光軸上にくるときの移動手段
32の移動量に関係した較正データを求め、走査場所デー
タとともに記憶部38へ記憶させる較正部であり、38は較
正データを走査場所データとともに記憶する記憶部であ
る。40は測定時に記憶部38から走査場所に対応した較正
データを読み出し各走査場所ごとに移動手段32の移動量
を設定する移動手段制御部である。測定時には信号検出
手段34による検出信号(実信号)は信号処理部42に取り
込まれて処理される。
(作用) 第7図を参照すると、測定に用いるゲル4を装着し、サ
ンプルが泳動して測定点に達するまでの間に走査領域内
の一点で励起・受光光学系の載っている移動ステージ13
を止め、そこで受光光学系光軸と励起光光路の交点が励
起光源側のガラス板5aの外側→ガラス板5aの内側→ゲル
4→反対側のガラス板5bの内側→ガラス板5bの外側と動
くように、励起光光路又は受光光学系光軸を移動させ、
その移動に対して受光光学系(蛍光測定用の分光手段は
除いてもよい)出力をとる。その出力プロットは第6図
に示されるようになる。最初のピーク(入射角α)はガ
ラス板5aの表面での励起光の散乱光であり、これは幅が
狭い。次のピーク(入射角β)はゲル4による散乱又は
蛍光によるものであり、このピークではゲル4が励起光
で照明された場所は正しく受光光学系光軸上にある。こ
のとき、移動手段32に与えられた移動量に対応した電圧
や電流などの数値をこの走査点での較正データとする。
以上の操作をサンプルが測定点に泳動してくるまでの時
間に走査領域内の多数の点で行ない、各走査点に対して
移動手段32に与えられた較正データを表として記憶部38
に記憶する。
較正データを測定した走査点のピッチよりも狭いピッチ
で測定を行なうためには、測定した較正データをもとに
して補間法により他の測定点の較正データを算出し、そ
れも記憶部38に記憶させておけばよい。
サンプルが泳動して測定点に達する少し前から通常の走
査を行ない、測定を開始する。このときは走査に同期し
て走査の各点で記憶部38から呼び出した較正データに従
って移動手段制御部40が移動手段32を制御し、励起光光
路又は受光光学系光軸を変化させる。較正データは走査
の各点でゲル4が励起光で照明された場所が受光光学系
光軸上にくるように作成されたもの又はそれをもとに算
出されたものであるので、測定用の走査中は常にゲル4
の励起光照明場所が受光光学系光軸上にくる条件が満た
されることになり、ずれはなくなる。
(実施例) 第2図は一実施例を表わす。
4は泳動ゲルであり、例えば6%ポリアクリルアミドに
てなり、ガラス板(例えば厚さ5mmのパイレックスガラ
ス板)5a,5bに挾まれて、例えば0.35mmの厚さに形成さ
れ、紙面垂直方向に立てられている。泳動ゲル4には蛍
光ラベルしたサンプルが紙面垂直方向に電気泳動され
る。サンプルは例えば蛍光物質FITCでラベルされてお
り、488nmのアルゴンイオンレーザで励起されて520nmの
蛍光を発する。
13は移動ステージであり、クロスローラやアリ溝などの
ガイドレール28により案内され、走査用モータ15で駆動
される棒ネジ14の回転により駆動されて泳動方向と直交
する方向に走査される。ステージ13上には励起光である
アルゴンイオンレーザビーム1を受ける集光レンズ2が
設けられており、励起光ビーム1は泳動ゲル4及びステ
ージ13の走査方向に平行に入射し、レンズ2で集光され
る。レンズ2で集光された励起光ビーム1を泳動ゲル4
に入射させるため、ステージ13上にはミラー3が設けら
れており、ミラー3はガルバノスキャナ(例えばGenera
l Scanning社のG120Dなど)11により回転角を変化させ
ることができるようになっている。ガルバノスキャナ11
に流す電流によりミラー3の回転角が制御される。受光
光学系に入射する散乱光を減少させるために、ゲル4に
対するレーザビーム1の入射角が20〜35度ぐらいになる
ように、励起光学系と受光光学系が設定されている。
励起光ビーム1による泳動ゲル4の照明位置6からの光
を集光し検出するために、ステージ13上には、対物レン
ズ7、対物レンズ7で集光された光を520nmの干渉フィ
ルタ8を経て集光するために集光レンズ9が設けられて
おり、集光レンズ9で集光された蛍光を検出するために
光電子増倍管10が設けられている。集光レンズ9は干渉
フィルタ8を通った平行で幅の広い光束を光電子増倍管
10の光電面の大きさに縮小するためのものであり、光電
子増倍管10の光電面が広ければ省略してもよい。
16はA/D変換器であり、光電子増倍管10の検出信号をデ
ジタル信号に変換してマイクロコンピュータ12に取り込
む。
ミラー3はガルバノスキャナ11によって回転角が制御さ
れるが、その制御信号はマイクロコンピュータ12から与
えられる。
移動ステージ13は棒ネジ14が走査用モータ15によって回
転することによって走査されるが、走査用モータ15には
エンコーダが取りつけられており、ステージ13の走査場
所の情報がそのエンコーダからマイクロコンピュータ12
に取り込まれる。
第1図と第2図の対応関係を示すと、移動手段32はミラ
ー3とガルバノスキャナ11に対応し、走査機構44は棒ネ
ズ14と走査用モータ15に対応し、信号検出手段34は光電
子増倍管10に対応し、走査場所検出部30、較正部36、記
憶部38、移動手段制御部40、信号処理部42及び走査制御
部46はマイクロコンピュータ12により実現される。
動作の例を説明するにあたり、第2図で走査領域は全部
で256mmとし、上方から下方へX=0〜256の座標で表わ
されるところを走査するものとし、受光光学系光軸Aが
X=0〜256の範囲内を移動するものとする。信号取込
み点(測定点)を512個所とすると、Xの0.5mm移動ごと
に蛍光信号がマイクロコンピュータ12に取り込まれる。
信号取込み点のX座標をXi(i=1,2,……512)とお
き、その内の4個ごとの信号取込み点(X4,X8,X12,……
X512)が励起光光軸を動かして励起光照明位置6が受光
光学系光軸A上にくるように較正データが測定された点
であるとする。
一実施例の動作を第3図、第4図及び第5図のフローチ
ャートと、第6図及び第7図を参照して説明する。
オペレータはゲルを装着し、サンプルを投入して泳動を
開始する。
第3図はX座標X4,X9,……X512に対して受光光学系光軸
上に励起光照明位置がくるようなガルバノミラー3の回
転角θiを見出す較正プロセスである。
最初はガルバノミラー3の角度θを励起光ビーム1の入
射方向と平行にしておく(θ=0)。次に、ミラー3の
回転角θを変えて、θ=45度(励起光ビーム1がゲル4
に垂直に入射る角度)になるまでミラー3を回転させ、
そのときの光電子増倍管10の出力を取る。この出力をプ
ロットすると第6図のようになる。第6図の最初のピー
ク(θ=α)は励起光がガラス板5aの表面で散乱される
点が受光光学系光軸上にきたものであり、次のピーク
(θ=β)は励起光ビーム1がゲル4を照明した部分が
ちょうど受光光学系光軸上にきた求める点である(第7
図参照)。β位置のピークはα位置のピークよりも幅が
広い。これは、ゲル4が厚さをもっていて、しかも励起
光ビーム1の入射がゲル4に平行に近い角度で行なわれ
るためである。第6図に示される光電子増倍管出力はほ
とんど励起光の散乱であり、その波長は励起光の波長で
あるが、この光は非常に強く、蛍光用干渉フィルタ8は
特に取り外さなくても十分に信号を得ることができる。
しかし、干渉フィルタ8を取り除いてもよい。また、θ
をβ以上に増加させたときの種々のピークは励起光ビー
ム1がガラス板5a,5b中で多重反射をしたものであり、
この場合は関係がない。したがって、2番目の山が1番
目の山よりも半値幅(1/e幅などでもよい)が広けれ
ば、この2番目の山の極大を与えるθをθiとおき、走
査位置Xiとともに記憶する。これが終ると、次に移動台
を動かし、X(i+4),X(i+8),……の点で同じ
較正操作を行ない、X512まで行なう。これで較正データ
θ48,……θ512が決定される。
第4図は第3図の較正プロセスでまだ決定されていない
操作位置の較正データを補間法で求める補間プロセスで
ある。第4図には線形の補間法が示されているが、線形
でなくても適当な曲線で補間してもよい。
第5図は測定プロセスである。
測定点にステージ13を順次動かし、その測定点でミラー
3の角度を較正プロセスと補間プロセスで求められた較
正データの角度に設定し、信号を取り込む。実際にはミ
ラー3及びステージ13は慣性をもつので、測定点でステ
ージ13がいちいち止まることはなく、連続的に走査及び
それに同期したミラー3の角度設定が行なわれていく。
第8図は第2図においてミラー3を回転させる代りに、
ミラー3bを圧電素子26に取りつけ、圧電素子26に電圧を
与えてミラー3bを移動させることにより励起光光路を移
動させるようにしたものである。圧電素子26として例え
ばトーキン社のLANシリーズの製品などを用いることが
できる。
第9図は励起光光路を移動させる他の実施例を表わした
ものであり、ミラー3cを固定し、励起光ビーム1を音響
光学素子27を介してミラー3cに入射させるようにしたも
のである。音響光学素子27に印加される電圧によりゲル
4に入射する励起光光路が変化する。
第10図はさらに他の実施例を表わしたものである。
第2図の実施例と比較すると、第10図では光電変換部が
移動ステージ13外にあり、励起光光路の方向を変えるた
めのミラー3aもステージ13外にあり、走査用及びミラー
角度を設定するための走査・制御用マイクロコンピュー
タ12aと、信号取込み用のマイクロコンピュータ12bとが
別になっている点が相違している。
励起光ビーム1はガルバノミラー3aに反射されてマスク
21を通り、ステージ13へ入射する。ステージ13上には凸
レンズの一部を切断したレンズ2aが設けられており、励
起光ビーム1はこのレンズ2aで偏向され集光されてゲル
4を照明する。凸レンズ2aの焦点は受光光学系光軸とゲ
ル4のおおよその交点にある。凸レンズの切断品2aの代
りに第2図のように通常の凸レンズとミラーを組み合わ
せたり、凸レンズとウェッジプリズムを組み合わせるよ
うにしてもよい。
ステージ13上にはゲル4又はガラス板5a,5bからの光を
取り込む対物レンズ7と、対物レンズ7で平行光とされ
た光をステージ13外へ導くミラー20が設けられている。
ステージ13の外部には、ミラー20から導かれた平行光の
向きを変えるミラー21、蛍光用干渉フィルタ8、集光レ
ンズ9及び集光レンズ9で適当な大きさに集光された蛍
光を光電変換する光電子増倍管10が設けられている。16
はA/D変換器であり、A/D変換器16を経てマイクロコンピ
ュータ12bに取り込まれた信号は外部のコンピュータ22
に導かれて塩基配列決定のデータ処理が行なわれる。
走査・制御用マイクロコンピュータ12aは走査用モータ1
5に対し駆動に必要な駆動信号を与える。走査領域の両
端にはセンサ23,24が設けられている。走査領域の端部
のセンサ23,24からの信号がマイクロコンピュータ12aに
取り込まれ、走査領域の端部に来たら駆動信号により駆
動方向を変える。走査用モータ15にはエンコーダが設け
られており、エンコーダ信号がマイクロコンピュータ12
aにフィードバックされてモータ15の回転速度が一定に
保たれる。
マイクロコンピュータ12bはもっぱら光電子増倍管10の
信号を取り込むA/D変換器16の制御に用いられる。この
場合、特にA/D変換器16のクロックと、走査用モータ15
のクロックとは同期しているわけではなく、単に走査の
初めと終わりを示す信号がセンサ23,24の出力としてマ
イクロコンピュータ12bに与えられるにすぎない。実際
にはこのような構成でも差し支えなく、マイクロコンピ
ュータを12aと12bに分離することにより、プログラムは
ずっと容易になる。
第10図の実施例の動作を示すフローチャートは第3図、
第4図及び第5図に示されたものとほとんど同じであ
る。相違点は、第3図ではガルバノミラーを回転する角
度(ストローク)は第2図のものより小さくてよいが、
回転角の精度はより高くなければならない点である。第
3図の較正プロセスと第4図の補間プロセスではマイク
ロコンピュータ12aと12bが同時に働き、計算し、記憶す
るが、第5図の測定プロセスではマイクロコンピュータ
12aと12bが全く独立の動作をする。第3図と第4図で決
定された較正データθiの値は走査位置Xiとともにマイ
クロコンピュータ12aのメモリに記憶され、マイクロコ
ンピュータ12aの制御下で走査と同期してガルバノミラ
ー3aの角度θを変える。それと並列にマイクロコンピュ
ータ12bでは光電子増倍管10の信号出力を取り込み、外
部コンピュータ22に電送して泳動パターンを得る。
第10図の実施例が第2図の実施例より優れている点は、
ステージ13上の部品点数が少なく軽量化できる点と、マ
イクロコンピュータを分離したことによりプログラムが
楽になる点である。
実施例では励起光光路と受光光学系光軸との相対的な位
置関係を変化させる移動手段として、いずれも励起光光
路を変化させるものを示しているが、励起光光路を固定
し、受光光学系光軸を移動させる方式にすることもでき
る。その方式としては、例えば走査点で移動台を走査方
向に移動させたり、第2図に鎖線で示されるように、受
光光学系光軸にガラスブロック29を配置し、これを回転
させるようにする方式がある。
(発明の効果) 本発明ではゲル電気泳動装置に装着されたゲルに対し、
測定が開始される前に較正プロセスを設け、走査を行な
って各走査点についてゲルが励起光によって照明された
部分が受光光学系光軸上に来るようにするための較正デ
ータを求めておき、測定にあたってはその較正データを
用いて励起光光路と受光光学系光軸との相対的位置関係
を制御しながら測定を行なうようにしたので、加工誤
差、組立て誤差、調整誤差によって必然的に起こり得る
受光光学系光軸と励起光照明位置とのずれが根本的に解
消され、感度ムラもなくなる。また、ゲルを保持するガ
ラス板を交換しても全く差し支えない。したがって、逆
に加工誤差や組立て誤差、調整誤差が存在しても性能上
は全く問題がないことになり、加工、組立て、調整が楽
になり、装置コストも低下する。
【図面の簡単な説明】
第1図は本発明を示すブロック図、第2図は一実施例を
示す概略平面図、第3図は一実施例の動作における較正
プロセスを示すフローチャート図、第4図は補間プロセ
スを示すフローチャート図、第5図は測定プロセスを示
すフローチャート図、第6図は較正時の光電子増倍管出
力を示す波形図、第7図はガルバノミラーの回転による
励起光光路の変化を示す概略平面図、第8図及び第9図
はそれぞれ他の実施例における励起光光路の移動手段を
示す概略平面図、第10図は他の実施例を示す概略平面図
である。第11図は従来のゲル電気泳動装置を示す概略平
面図、第12図は第11図の問題点を示す要部平面図であ
る。 1……励起光ビーム、3,3a……ガルバノミラー、4……
泳動ゲル、5a,5b……ガラス板、6……励起光ビームの
ゲル照明位置、A……受光光学系光軸、11……ガルバノ
スキャナ、12,12a,12b……マイクロコンピュータ、13…
…ステージ、14……走査機構の棒ネジ、15……走査用モ
ータ、30……走査場所検出部、32……移動手段、34……
信号検出手段、36……較正部、38……記憶部、40……移
動手段制御部、42……信号処理部、44……走査機構、46
……走査制御部。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】蛍光ラベルしたサンプルをゲル電気泳動さ
    せ、泳動方向と直交する方向に蛍光の励起・受光光学系
    を走査して泳動パターンを検出する装置において、励起
    ・受光光学系の走査場所を検出する走査場所検出部と、
    励起光光路と受光光学系光軸との相対的位置関係を変化
    させる移動手段と、測定に用いられるゲルが装着された
    後、サンプル投入前又はサンプル投入後でサンプルが測
    定部に到着する前の較正用走査における走査領域内のい
    くつかの走査場所で前記移動手段を作動させ、信号検出
    手段からの信号にもとづいてゲルの励起光による照明部
    分が受光光学系光軸上にくるときの前記移動手段の移動
    量に関係した較正データを求め、走査場所データととも
    に後記記憶部へ記憶させる較正部と、較正データを走査
    場所データとともに記憶する記憶部と、測定時に前記記
    憶部から走査場所に対応した較正データを読み出し各走
    査場所ごとに前記移動手段の移動量を設定する移動手段
    制御部とを備えた蛍光検出型ゲル電気泳動装置。
  2. 【請求項2】較正部は、励起光光路又は受光光学系光軸
    を、受光光学系光軸と励起光光路の交点がゲルを支持す
    るガラス板の励起光源側の外側にある状態を始点に同交
    点が同ガラス板の同光源と反対側の外側にくる方向に向
    かって順に移動させたとき、その移動に対する受光光学
    系光軸上の光電変換器の出力の極大のうち、最初から2
    番目の山で幅が最初のものより有意に広い山の極大を与
    える移動量に関係したデータを較正データとする請求項
    1に記載の蛍光検出型ゲル電気泳動装置。
JP2143797A 1990-05-31 1990-05-31 蛍光検出型ゲル電気泳動装置 Expired - Fee Related JPH0743353B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2143797A JPH0743353B2 (ja) 1990-05-31 1990-05-31 蛍光検出型ゲル電気泳動装置
EP91107799A EP0459214B1 (en) 1990-05-31 1991-05-14 Fluorescence detection type gel electrophoresis
DE69109181T DE69109181T2 (de) 1990-05-31 1991-05-14 Gel-Elektrophorese mit Fluoreszenz-Nachweisverfahren.
US07/702,171 US5100529A (en) 1990-05-31 1991-05-20 Fluorescence detection type gel electrophoresis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143797A JPH0743353B2 (ja) 1990-05-31 1990-05-31 蛍光検出型ゲル電気泳動装置

Publications (2)

Publication Number Publication Date
JPH0436652A JPH0436652A (ja) 1992-02-06
JPH0743353B2 true JPH0743353B2 (ja) 1995-05-15

Family

ID=15347208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143797A Expired - Fee Related JPH0743353B2 (ja) 1990-05-31 1990-05-31 蛍光検出型ゲル電気泳動装置

Country Status (4)

Country Link
US (1) US5100529A (ja)
EP (1) EP0459214B1 (ja)
JP (1) JPH0743353B2 (ja)
DE (1) DE69109181T2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360523A (en) * 1984-03-29 1994-11-01 Li-Cor, Inc. DNA sequencing
US5571388A (en) * 1984-03-29 1996-11-05 Li-Cor, Inc. Sequencing near infrared and infrared fluorescense labeled DNA for detecting using laser diodes and suitable labels thereof
US6004446A (en) * 1984-03-29 1999-12-21 Li-Cor, Inc. DNA Sequencing
US6086737A (en) * 1984-03-29 2000-07-11 Li-Cor, Inc. Sequencing near infrared and infrared fluorescence labeled DNA for detecting using laser diodes and suitable labels therefor
US5549805A (en) * 1984-03-29 1996-08-27 The Board Of Regents Of The University Of Nebraska Digital DNA typing
US5863403A (en) * 1984-03-29 1999-01-26 The Board Of Regents Of The University Of Nebraska Digital DNA typing
JP2873884B2 (ja) * 1991-03-22 1999-03-24 日立ソフトウェアエンジニアリング 株式会社 多色泳動パターン読み取り装置
US5208466A (en) * 1991-10-08 1993-05-04 Beckman Instruments, Inc. Apparatus and method for aligning capillary column and detection optics
US5424841A (en) * 1993-05-28 1995-06-13 Molecular Dynamics Apparatus for measuring spatial distribution of fluorescence on a substrate
US5460709A (en) * 1993-06-21 1995-10-24 Helena Laboratories Corporation Automatic electrophoresis method and apparatus
US5370347A (en) * 1993-07-07 1994-12-06 Helena Laboratories Corporation Support system for an equipment housing
US5538613A (en) * 1993-10-26 1996-07-23 Genesys Technologies, Inc. Electrophoresis analyzer
US5459325A (en) * 1994-07-19 1995-10-17 Molecular Dynamics, Inc. High-speed fluorescence scanner
SE503503C2 (sv) * 1994-10-20 1996-06-24 Pharmacia Biotech Ab Förfarande och anordning för automatisk inställning av en ljusstråle vid en gelelektroforesapparat
US5710628A (en) * 1994-12-12 1998-01-20 Visible Genetics Inc. Automated electrophoresis and fluorescence detection apparatus and method
US6014213A (en) * 1994-12-12 2000-01-11 Visible Genetics Inc. High dynamic range apparatus for separation and detection of polynucleotide fragments
AU2021099A (en) 1997-12-30 1999-07-19 Caliper Technologies Corporation Software for the display of chromatographic separation data
US6246046B1 (en) 1999-01-21 2001-06-12 University Of Pittsburgh Method and apparatus for electronically controlled scanning of micro-area devices
NL1011664C2 (nl) * 1999-03-24 2000-05-15 Datascan Group B V Inrichting en werkwijze voor het selecteren en vastleggen van een beeld dat een deel vormt van een bestraald of emitterend object.
JP2001074656A (ja) * 1999-09-03 2001-03-23 Fuji Photo Film Co Ltd 画像情報読取装置
US6495812B1 (en) 2000-08-02 2002-12-17 Li-Cor, Inc. Apparatus and method for analyzing an object of interest having a pivotably movable source and detector
WO2003044522A1 (en) * 2001-11-16 2003-05-30 Proteome Systems Intellectual Property Pty Ltd Method of registration of visible light image to fluroescent light image of protein spots
DE102008010435B4 (de) * 2008-02-21 2010-07-29 Tecan Trading Ag Datenerfassungsverfahren mit einem Laser Scanner-Gerät
DE102010040611A1 (de) * 2010-09-13 2012-03-15 Sulfurcell Solartechnik Gmbh Spektrometer zur Erfassung opto-elektronischer Materialeigenschaften einer Halbleiterprobe
JP5934585B2 (ja) * 2012-06-19 2016-06-15 シャープ株式会社 蛍光検出装置
JP6686281B2 (ja) * 2015-03-12 2020-04-22 セイコーエプソン株式会社 分光測定装置、画像形成装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130824A (en) * 1977-05-24 1978-12-19 Corning Glass Works Recording analyzer for electrophoretic samples
JPS6162843A (ja) * 1984-08-13 1986-03-31 Hitachi Ltd 螢光検出型電気泳動装置
US4726904A (en) * 1984-12-17 1988-02-23 Senetek P L C Apparatus and method for the analysis and separation of macroions
US4812218A (en) * 1985-02-11 1989-03-14 Gerber Arthur M Method of making a digital recording medium
GB8513538D0 (en) * 1985-05-29 1985-07-03 Mackay C D Electrophoresis
US4811218A (en) * 1986-06-02 1989-03-07 Applied Biosystems, Inc. Real time scanning electrophoresis apparatus for DNA sequencing
JPS6381256A (ja) * 1986-09-25 1988-04-12 Shimadzu Corp ゲル電気泳動解析装置
JP2550106B2 (ja) * 1987-10-30 1996-11-06 株式会社日立製作所 光分散検出型電気泳動装置
JP2804038B2 (ja) * 1988-02-24 1998-09-24 株式会社日立製作所 塩基配列決定方法
US4960999A (en) * 1989-02-13 1990-10-02 Kms Fusion, Inc. Scanning and storage of electrophoretic records

Also Published As

Publication number Publication date
EP0459214B1 (en) 1995-04-26
DE69109181T2 (de) 1995-08-31
US5100529A (en) 1992-03-31
JPH0436652A (ja) 1992-02-06
EP0459214A1 (en) 1991-12-04
DE69109181D1 (de) 1995-06-01

Similar Documents

Publication Publication Date Title
JPH0743353B2 (ja) 蛍光検出型ゲル電気泳動装置
EP1062478B8 (en) Apparatus and method for optically measuring an object surface contour
US5568259A (en) Elongation measuring method and laser noncontact extensometer
EP2993463B1 (en) Fluorescence imaging autofocus systems and methods
US5796485A (en) Method and device for the measurement of off-center rotating components
ATE290229T1 (de) Positionierung des messvolumens in einem scanning-mikroskopischen verfahren
US7247825B2 (en) Method and apparatus for scanning a specimen using an optical imaging system
US6674058B1 (en) Apparatus and method for focusing a laser scanning cytometer
US4220850A (en) Bimodal autofocusing apparatus
CN108195292B (zh) 一种位移量测量方法
JP2008008689A (ja) 表面検査装置および表面検査方法
JP3211389B2 (ja) 蛍光検出型ゲル電気泳動装置
US6894271B2 (en) Method for operating a positioning apparatus, and scanning microscope
Mathies et al. Laser‐excited confocal‐fluorescence gel scanner
JP2676980B2 (ja) 蛍光検出型ゲル電気泳動装置
JP2828145B2 (ja) 光切断顕微鏡装置及びその光学手段の位置合わせ方法
WO2022145391A1 (ja) 走査型共焦点顕微鏡および走査型共焦点顕微鏡の調整方法
JPS61225606A (ja) 物体形状測定装置
SU1681243A1 (ru) Устройство дл контрол поверхностных пороков рулонных материалов
JPH1123229A (ja) 膜厚測定方法
US10656402B2 (en) Three-dimensional infrared imaging of surfaces utilizing laser displacement sensors
JP2625331B2 (ja) 共焦点光学系のピンホール径制御方法及びその制御装置
JPH0578780B2 (ja)
JP3343969B2 (ja) 多点位置測定装置と多点位置測定方法と固体撮像素子の製造方法
JPS62269007A (ja) 光学式変位測定装置

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees