JPH0739756A - メタノール合成用流動触媒 - Google Patents

メタノール合成用流動触媒

Info

Publication number
JPH0739756A
JPH0739756A JP5188220A JP18822093A JPH0739756A JP H0739756 A JPH0739756 A JP H0739756A JP 5188220 A JP5188220 A JP 5188220A JP 18822093 A JP18822093 A JP 18822093A JP H0739756 A JPH0739756 A JP H0739756A
Authority
JP
Japan
Prior art keywords
catalyst
sodium
slurry
oxide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5188220A
Other languages
English (en)
Inventor
Tadashi Nakamura
忠士 中村
Kinya Tsuji
欣也 辻
Yoriko Obata
ヨリ子 小畑
Toshiyasu Watanabe
利康 渡辺
Hajime Yamada
元 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP5188220A priority Critical patent/JPH0739756A/ja
Publication of JPH0739756A publication Critical patent/JPH0739756A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 【構成】銅、亜鉛およびジルコニウム化合物を主成分と
するメタノール合成用流動触媒において、各金属化合物
の酸化物基準でナトリウム原子を0.01〜1重量%含
有させたメタノール合成用流動触媒。 【効果】優れた触媒活性及び耐摩耗性を有すると共に、
造粒時におけるスラリー濃度を高めることができるの
で、触媒の生産性が高く、工業的に有利に製造される。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はH2 とCOおよび/また
はCO2 を主成分とする合成ガスからのメタノール合成
用流動触媒に関する。
【0002】
【従来の技術】最近、メタノール合成プロセスの大型化
と低コストを促進するためにエネルギー原単位の低減を
目的とした技術改良が行われている。このようなメタノ
ール合成プロセスの技術改良の一つとして、流動触媒を
用いた合成反応器の開発が行われており、特開昭60−
84142号、特開昭60−106534号、特開昭6
0−122040号、特開昭63−209754号、お
よび特開昭63−31541号などにメタノール合成用
流動触媒およびその製造法が開示されている。
【0003】
【発明が解決しようとする課題】流動層触媒反応器は、
反応熱の速やかな移動を促進して反応熱の回収効率を高
めるので、メタノール合成反応器において反応率を高く
することができ、反応装置の大型化に有利であると共
に、反応熱を有効に回収してエネルギー原単位を向上を
図ることができる。このような流動触媒反応器に用いら
れる触媒は、活性、強度及び耐熱性に優れた触媒性能が
要求されると共に、大型装置で使用するために触媒量が
大量となることから、触媒の生産性も極めて重要な因子
である。
【0004】流動触媒は、通常球状の粉末であるので、
これを得るための造粒法として噴霧乾燥や油中滴下法が
採用される。このような流動触媒の製造においてスラリ
ー化工程におけるスラリー性状、即ちスラリー濃度、ス
ラリー流動性等の制御が重要である。一般にスラリー濃
度(固形分濃度)が高いほど耐摩耗性の優れた触媒とな
るが、スラリー濃度が高い場合には流動性が乏しくなる
ので噴霧乾燥時の操作性が低下し、触媒の生産性が低下
する。本発明の目的は、活性、強度及び耐熱性に優れた
触媒性能を有すると共に、流動触媒の製造における生産
性の優れたメタノール合成用流動触媒を提供することで
ある。
【0005】
【課題を解決すための手段】本発明者らは上記の如き課
題を有するメタノール合成用流動触媒について鋭意研究
を重ねた結果、銅、亜鉛およびジルコニウム化合物を主
成分とするメタノール合成用流動触媒において、微量の
ナトリウムを含有させることにより、触媒の耐摩耗性や
活性が向上すると共に、高スラリー濃度で噴霧乾燥に適
した流動性を有するので触媒の生産性が高くなることを
見出し、本発明に到達した。
【0006】即ち本発明は、銅、亜鉛およびジルコニウ
ム化合物を主成分とするメタノール合成用流動触媒にお
いて、各金属化合物の酸化物基準でナトリウム原子を
0.01〜1重量%含有することを特徴とするメタノー
ル合成用流動触媒である。
【0007】本発明における触媒の調製法は特に限定さ
れるものではなく、従来の流動層用触媒の調製法を踏襲
できる。即ち通常は先ず沈澱反応により触媒ケーキを製
造し、これを適当な濃度にスラリー化し、次いで噴霧乾
燥等の造粒操作により流動触媒が得られる。
【0008】本発明触媒の主成分である銅、亜鉛および
ジルコニウム化合物の組成割合は、先の引例の如き従来
触媒のものをそのまま適応できる。即ち銅と亜鉛の割合
は、原子比で0.5〜20:1、好ましくは0.8〜1
5:1の範囲であり、また触媒成分中のジルコニウムの
含有量は各金属化合物の酸化物に換算して30〜70重
量%である。なお副成分としては必要に応じて、アルミ
ニウム、ホウ素、クロム、マグネシウム等の化合物を含
有させることができる。アルミニウムを含有させる場合
には、各金属化合物の酸化物に換算してジルコニウムを
30〜70重量%、アルミニウムを1〜10重量%の範
囲とすることが好ましい。
【0009】本発明において含有させるナトリウム源に
は、炭酸ソーダ、重炭酸ソーダおよび苛性ソーダ等が用
いられる。ナトリウム原子の含有量は各触媒成分の酸化
物基準で0.01〜1重量%、好ましくは0.02〜
0.7重量%である。ナトリウム含有量が多過ぎると触
媒活性が低下する。またナトリウム含有量が少な過ぎる
と造粒時のスラリー濃度が低くなり、触媒の生産性が低
下する。ナトリウムを含有させる方法としては、スラリ
ー化工程で添加するのが便利であるが、沈殿ケーキ製造
の際に含有させることもできる。即ち触媒成分の沈殿剤
としてナトリウムを含むものを使用し、洗浄を工夫する
ことにより沈殿ケーキのナトリウムを適量に含有させる
ことができる。
【0010】流動触媒は通常球状であるので、適当な濃
度としたスラリーを噴霧乾燥や油中滴下法などにより造
粒することができる。本発明に規定したナトリウムを含
有させることにより、通常、造粒に適したスラリー濃度
が5重量%以上は上昇し、これによってスラリーの乾燥
時間が削減されるので、触媒の生産性が著しく向上す
る。造粒物はそのままでも触媒に使用できるが、通常、
焼成を施して使用する。この焼成は空気雰囲気下、25
0〜500℃の温度で行われる。
【0011】本発明触媒によりメタノールを合成する際
の反応条件は、原料ガス中のH2 、CO及びCO2 の濃
度や、触媒中の銅の含有量等により異なるが、反応圧力
は20〜300kg/cm2 、好ましくは30〜200
kg/cm2 であり、反応温度は150〜350℃、好
ましくは200〜300℃である。また空間速度は10
00〜80000Hr-1の範囲にあり、触媒粒子が十分
流動するようなガス線速度とする必要がある。
【0012】本発明の流動触媒は気相流動層反応器のみ
でなく、液相流動層反応器においても用いることがで
き、メタノール合成に高性能な流動層用触媒を得ること
ができる。また本発明の触媒は粒子形状を変えることに
より、固定層用触媒としても用いることができ、更に他
の反応、例えば液相水素添加反応やメタノールの改質反
応等にも用いることもできる。
【0013】
【実施例】次に実施例、比較例及び試験例により本発明
を詳しく説明する。但し本発明はこれらの実施例により
制限されるものではない。なお各実施例及び比較例にお
ける触媒製造ではイオン交換水を用いた。また触媒中の
ナトリウム原子およびアルミニウムの含有量は触媒中の
各金属化合物の酸化物基準の数値であり、スラリー濃度
(固形分濃度)は赤外線水分計で水分を測定し固形分濃
度を求めた。
【0014】実施例1 硝酸銅(3水塩)62Kgを水390リットルに溶解
し、40℃に保持する。次に炭酸ソーダ28.7Kgを
水460リットルに溶解し40℃とした後、攪拌下に、
前記硝酸銅溶液を加え銅スラリーを調製する。一方、塩
基性炭酸亜鉛を300℃にて熱分解した酸化亜鉛7Kg
を水100リットルに仕込、調製した酸化亜鉛スラリー
を前記の銅スラリーに加え、炭酸ガスを1.5m3 /H
rの流速で、2時間吹き込む。この時に液温を40℃で
60分経過後、70℃に昇温して30分間保持する。反
応終了後、50℃まで冷却する。
【0015】この銅−亜鉛化合物スラリーに、オキシ硝
酸ジルコニル水溶液(ZrO2 25%含有)110Kg
を水240リットルに溶解した液(液温50℃)と、炭
酸ソーダ24.8Kgを水500リットルに溶解した液
(液温50℃)を攪拌下に添加して、その温度で30分
保持する。その後、濾過、洗浄してケーキを得る。この
ケーキの水分は68%であった。このケーキから噴霧乾
燥に適したスラリーに調製した。この際のスラリー濃度
(固形分濃度)は21重量%であった。このスラリーを
噴霧乾燥して平均粒径62μmの球状粉末を得、これを
380℃で焼成した。この触媒のナトリウム原子の含有
量は0.032重量%であった。これを触媒Aとする。
【0016】実施例2 実施例1における銅スラリー調製時の炭酸ソーダを3
0.0kg、またオキシ硝酸ジルコニル水溶液との反応
用の炭酸ソーダを26.0kgとした以外は実施例1と
同様にして触媒を調製した。この際の噴霧乾燥に適した
スラリー濃度(固形分濃度)は26重量%であり、また
触媒中のナトリウム原子の含有量は0.22重量%であ
った。これを触媒Bとする。
【0017】実施例3 実施例1における銅スラリー調製時の炭酸ソーダを3
2.8kg、またオキシ硝酸ジルコニル水溶液との反応
用の炭酸ソーダを28.4kgとした以外は実施例1と
同様にして触媒を調製した。この際の噴霧乾燥に適した
スラリー濃度(固形分濃度)は28重量%であり、また
触媒中のナトリウム原子の含有量は0.38重量%であ
った。これを触媒Cとする。
【0018】実施例4 実施例1における銅スラリー調製時の炭酸ソーダを3
5.5kg、またオキシ硝酸ジルコニル水溶液との反応
用の炭酸ソーダを30.8kgとした以外は実施例1と
同様にして触媒を調製した。この際の噴霧乾燥に適した
スラリー濃度(固形分濃度)は29重量%であり、また
触媒中のナトリウム原子の含有量は0.61重量%であ
った。これを触媒Dとする。
【0019】実施例5 実施例1のケーキを使用して噴霧乾燥用スラリーを調製
する際にアルミナゾル(日産化学製、#200)と苛性
ソーダを添加した。触媒中のアルミニウム含有量は2.
5重量%、ナトリウム原子の含有量は0.4重量%であ
り、この際の噴霧乾燥に適したスラリー濃度(固形分濃
度)は27重量%であった。これを触媒Dとする。
【0020】比較例1 実施例1における銅スラリー調製時の炭酸ソーダを2
7.0kg、またオキシ硝酸ジルコニル水溶液との反応
用の炭酸ソーダを23.7kgとした以外は実施例1と
同様にして触媒を調製した。この際の噴霧乾燥に適した
スラリー濃度(固形分濃度)は13重量%であり、また
触媒中のナトリウム原子の含有量は0.0083重量%
であった。これを触媒Fとする。
【0021】比較例2 実施例1における銅スラリー調製時の炭酸ソーダを4
1.0kg、またオキシ硝酸ジルコニル水溶液との反応
用の炭酸ソーダを35.0kgとした以外は実施例1と
同様にして触媒を調製した。この際の噴霧乾燥に適した
スラリー濃度(固形分濃度)は30重量%であり、また
触媒中のナトリウム原子の含有量は1.5重量%であっ
た。これを触媒Gとする。
【0022】試験例1〜6(摩耗試験) 下部にフィルターを備えた内径25mmφのガラス製反
応器に触媒A〜Fを100ml充填し、反応器下部のフ
ィルターを通して窒素ガスを導入し140℃に保持し
た。次に窒素ガスを徐々に水素ガスに置き換えた後、2
40℃に昇温し、3時間保持して還元を行う。還元終了
後、降温し窒素ガスで置換して、摩耗試験のための試料
とする。
【0023】次にこの試料を直径0.4mmの小穴の開
いたステンレス板を備え、窒素ガス置換された内径27
mmの肉厚ガラス管に50g充填する。ガラス管上部に
は触媒粉末が飛散しないように、円筒濾紙を備えた排気
管を挿入する。下部の小穴より510リットル/Hrの
速度で窒素ガスを1時間噴出させた後、窒素ガスを止め
て空気の微量を徐々に15時間流しながら触媒を酸化す
る。酸化終了後、触媒をは全量取り出し、音波式ハンド
シフター(筒井理化器械製SW−20型)により測定
し、次式により摩耗速度を求めた。
【0024】
【化1】AR(−20)=(A−B)/C*100(重
量%/H) AR(−44)=(F−G)/H*100(重量%/
H) AR(−20);20μm以下の粒子割合の変化より求
めた摩耗速度(重量%/H) AR(−44);44μm以下の粒子割合の変化より求
めた摩耗速度(重量%/H) A;摩耗試験後に回収された酸化触媒粒子中に占める2
0μm以下の粒子の割合(重量%) B;摩耗試験用触媒粒子中に占める20μm以下の粒子
の割合(重量%) C;摩耗試験用触媒粒子中に占める20μm以上の粒子
の割合(重量%) F;摩耗試験後に回収された酸化触媒粒子中に占める4
4μm以下の粒子の割合(重量%) G;摩耗試験用触媒粒子中に占める44μm以下の粒子
の割合(重量%) H;摩耗試験用触媒粒子中に占める44μm以上の粒子
の割合(重量%) 以上による摩耗試験の結果を表1に示す。
【0025】
【表1】 ─────────────────────────────────── 触媒名 噴霧乾燥時の 摩耗速度(重量%/H) スラリー濃度 AR(−20) AR(−44) 試験例1 A 21重量% 8.7 9.2 2 B 26 4.0 4.5 3 C 28 3.8 4.2 4 D 29 3.5 4.0 5 E 27 4.0 4.3 6 F 13 30.3 35.7 ───────────────────────────────────
【0026】試験例7〜13(活性試験) 実施例1〜5および比較例1〜2で得られた触媒A〜G
の各100mlを、下部に焼結金属製フィルターを備え
た内径30mmのステンレス製反応器に充填する。試験
例1〜6と同様に水素で還元した後、H2 67.3モル
%、CO 24.1モル%、CO2 6.6モル%、CH
4 1.5モル%、N2 0.5モル%からなる合成ガスに
切り換えて活性試験を行った。反応条件は次の通りであ
る。 反応温度 260 (℃) 反応圧力 70 (kg/cm2 ) 空間速度 20000(1/H) またここで触媒寿命(耐熱性)を知るために、触媒温度
を360℃に昇温し、2時間メタノール合成を行った
後、再び温度を260℃とした時の触媒活性、および再
び触媒温度を360℃に昇温し、8時間メタノール合成
を行った(計10時間)後、再び温度を260℃とした
時の触媒活性を測定した。それぞれにおける出口カス中
のメタノール濃度を表2に示す。
【0027】
【表2】 ─────────────────────────────────── 触媒中の 反応管出口ガス中のメタノール濃度(mol%) 触媒名 Na含有量 反応温度 260℃ (wt%) 初期 2時間処理後 10時間処理後 試験例7 A 0.032 15.1 14.9 14.4 8 B 0.22 15.7 15.5 15.1 9 C 0.38 15.3 15.1 14.7 10 D 0.61 15.0 14.9 14.5 11 E 0.40 15.2 15.1 14.7 12 F 0.0083 14.1 13.0 12.0 13 G 1.5 13.2 12.1 10.0 ───────────────────────────────────
【0028】
【発明の効果】実施例に示されるように本発明による触
媒は活性及び耐摩耗性に優れている。またナトリウムを
含有させた本発明の触媒は造粒時におけるスラリー濃度
を高めることができるので、触媒の生産性が高く、工業
的に極めて有利に製造することができる。従って本発明
は実用上その工業的意義が大きい。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 利康 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 (72)発明者 山田 元 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】銅、亜鉛およびジルコニウム化合物を主成
    分とするメタノール合成用流動触媒において、各金属化
    合物の酸化物基準でナトリウム原子を0.01〜1重量
    %含有することを特徴とするメタノール合成用流動触媒
  2. 【請求項2】各金属化合物の酸化物基準でジルコニウム
    を30〜70重量%含有する請求項1のメタノール合成
    用流動触媒
  3. 【請求項3】各金属化合物の酸化物基準でジルコニウム
    を30〜70重量%、アルミニウムを1〜10%含有す
    る請求項2のメタノール合成用流動触媒
JP5188220A 1993-07-29 1993-07-29 メタノール合成用流動触媒 Pending JPH0739756A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5188220A JPH0739756A (ja) 1993-07-29 1993-07-29 メタノール合成用流動触媒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5188220A JPH0739756A (ja) 1993-07-29 1993-07-29 メタノール合成用流動触媒

Publications (1)

Publication Number Publication Date
JPH0739756A true JPH0739756A (ja) 1995-02-10

Family

ID=16219875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5188220A Pending JPH0739756A (ja) 1993-07-29 1993-07-29 メタノール合成用流動触媒

Country Status (1)

Country Link
JP (1) JPH0739756A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185192A (ja) * 1999-12-28 2001-07-06 Mitsubishi Gas Chem Co Inc 燃料電池用水素の製造方法
US9295978B2 (en) 2012-02-15 2016-03-29 Basf Corporation Catalyst and method for the direct synthesis of dimethyl ether from synthesis gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185192A (ja) * 1999-12-28 2001-07-06 Mitsubishi Gas Chem Co Inc 燃料電池用水素の製造方法
US9295978B2 (en) 2012-02-15 2016-03-29 Basf Corporation Catalyst and method for the direct synthesis of dimethyl ether from synthesis gas

Similar Documents

Publication Publication Date Title
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
EP0042471B1 (en) Catalyst and method for producing the catalyst
JP3553066B2 (ja) 純粋のもしくはガス混合物中に含有されている一酸化二窒素の接触分解の方法
JPH0470946B2 (ja)
ZA200601435B (en) High temperature shift catalyst prepared with a high purity iron precursor
JPH06170230A (ja) 触媒組成物及びエチレンのオキシ塩素化法
JP5553484B2 (ja) アンモニア分解触媒及びアンモニア分解方法
CN1009827B (zh) 含银催化剂的制备方法
US4386017A (en) Preparation of improved catalyst composition
US3992325A (en) γ-CrOOH fluorination catalysts
US2960518A (en) Ethylene production process
JPH08229399A (ja) 助触媒を含む安定化酸化銅−酸化亜鉛触媒および製造方法
US7271126B2 (en) Catalyst for the dehydrogenation of ethyl benzene to STYRENE prepared with a high purity iron precursor
KR20000075903A (ko) 에틸벤젠의 탈수소화 반응에 의한 스티렌 제조에 있어서의 산화 Ce/Zr 혼합물 페이스의 용도
JPH05245376A (ja) 一酸化炭素の変換のための酸化銅−酸化アルミニウム−酸化マグネシウム触媒
JPH08127544A (ja) 二酸化炭素と水素からのメタン製造法
JPH0739756A (ja) メタノール合成用流動触媒
CA2485782C (en) Fischer-tropsch catalyst prepared with a high purity iron precursor
JPS6331541A (ja) メタノ−ル合成用流動触媒の製造法
JPH06320000A (ja) メタノール合成用流動触媒
JP2017124366A (ja) アンモニア分解用触媒、及び当該触媒を用いた水素の製造方法
JPH0371174B2 (ja)
JP3867305B2 (ja) 一酸化炭素転化触媒
JPH0133097B2 (ja)
JP4577464B2 (ja) 銅−亜鉛系触媒前駆体組成物および該触媒の製造法