JPH0730114A - Manufacture of mos transistor - Google Patents

Manufacture of mos transistor

Info

Publication number
JPH0730114A
JPH0730114A JP19412093A JP19412093A JPH0730114A JP H0730114 A JPH0730114 A JP H0730114A JP 19412093 A JP19412093 A JP 19412093A JP 19412093 A JP19412093 A JP 19412093A JP H0730114 A JPH0730114 A JP H0730114A
Authority
JP
Japan
Prior art keywords
oxide film
gate oxide
annealing
semiconductor substrate
improved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19412093A
Other languages
Japanese (ja)
Inventor
Minoru Takeda
実 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP19412093A priority Critical patent/JPH0730114A/en
Publication of JPH0730114A publication Critical patent/JPH0730114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To improve just electric current drive characteristics without changing other characteristics. CONSTITUTION:After growing a gate oxide film 16 on a semiconductor substrate 11, an infrared-ray lamp annealing by infrared-ray 17 irradiation is performed for the gate oxide film 16 in a nitrogen atmosphere. With this, film quality of the gate oxide film 16 is improved and interface condition between the gate oxide film 16 and the semiconductor substrate 11 is improved as well. Further, by the infrared-ray lamp annealing, high temperature annealing is performed in a short time, so the impurities forming a well 15 actually do not re-diffuse.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板とゲート電
極との間にゲート酸化膜を有するMOS型トランジスタ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a MOS transistor having a gate oxide film between a semiconductor substrate and a gate electrode.

【0002】[0002]

【従来の技術】MOS型トランジスタの電流駆動特性
は、ゲート酸化膜の膜質、及びゲート酸化膜と半導体基
板との界面状態によって決定される。そこで、この電流
駆動特性を向上させるために、従来は、酸素または水蒸
気の雰囲気を含む高温炉内で半導体基板を熱酸化してそ
の表面にゲート酸化膜を形成した後、窒素雰囲気を含む
同一の炉内で熱酸化時と略同程度の温度の高温アニール
を行って、ゲート酸化膜の膜質及び半導体基板との界面
状態を改善していた。
2. Description of the Related Art The current driving characteristics of a MOS transistor are determined by the film quality of the gate oxide film and the interface state between the gate oxide film and the semiconductor substrate. Therefore, in order to improve this current driving characteristic, conventionally, after a semiconductor substrate is thermally oxidized in a high temperature furnace containing an atmosphere of oxygen or water vapor to form a gate oxide film on the surface thereof, the same atmosphere containing a nitrogen atmosphere is used. By performing high temperature annealing in the furnace at about the same temperature as during thermal oxidation, the film quality of the gate oxide film and the state of the interface with the semiconductor substrate were improved.

【0003】[0003]

【発明が解決しようとする課題】ところで、MOS型ト
ランジスタのチャネル部分における不純物分布、例えば
ウェルは、ゲート酸化膜を形成する前にイオン注入等で
形成しておくのが一般的である。従って、MOS型トラ
ンジスタの特性等を所望の状態から変動させないため
に、ゲート酸化及びその後の高温アニールは、チャネル
部分における不純物分布を実質的には変化させない程度
の温度及び時間で行う必要がある。
By the way, the impurity distribution in the channel portion of a MOS transistor, for example, a well, is generally formed by ion implantation or the like before forming a gate oxide film. Therefore, in order not to change the characteristics of the MOS transistor from the desired state, the gate oxidation and the subsequent high temperature annealing must be performed at a temperature and for a time that does not substantially change the impurity distribution in the channel portion.

【0004】しかし、上述の様な炉内における高温アニ
ールでゲート酸化膜の膜質及び半導体基板との界面状態
を改善するためには、長時間のアニールが必要であっ
た。このため、従来のMOS型トランジスタの製造方法
では、電流駆動特性以外の特性等を変動させることなく
電流駆動特性のみを向上させることができなかった。
However, in order to improve the film quality of the gate oxide film and the state of the interface with the semiconductor substrate by the high temperature annealing in the furnace as described above, long time annealing is required. Therefore, in the conventional MOS transistor manufacturing method, only the current driving characteristics could not be improved without changing the characteristics other than the current driving characteristics.

【0005】[0005]

【課題を解決するための手段】本発明によるMOS型ト
ランジスタの製造方法は、窒素雰囲気中における短時間
アニールをゲート酸化膜16に施す工程を有している。
A method of manufacturing a MOS transistor according to the present invention has a step of performing a short-time anneal on a gate oxide film 16 in a nitrogen atmosphere.

【0006】[0006]

【作用】本発明によるMOS型トランジスタの製造方法
では、窒素雰囲気中におけるアニールをゲート酸化膜1
6に施しているので、ゲート酸化膜16中の正電荷を除
去してゲート酸化膜16の膜質を改善し、また界面準位
の密度を減少させたりしてゲート酸化膜16と半導体基
板11との界面状態も改善することができる。しかも、
アニールが短時間アニールであるので、高温アニールを
施しても、既に形成してあるチャネル部分における不純
物分布15を実質的には変化させない。
In the method of manufacturing a MOS transistor according to the present invention, the gate oxide film 1 is annealed in a nitrogen atmosphere.
6 is applied to the gate oxide film 16, the positive charges in the gate oxide film 16 are removed to improve the film quality of the gate oxide film 16, and the interface state density is reduced. The interfacial state of can also be improved. Moreover,
Since the annealing is a short time annealing, the high temperature annealing does not substantially change the impurity distribution 15 in the already formed channel portion.

【0007】[0007]

【実施例】以下、nMOSトランジスタの製造に適用し
た本発明の一実施例を、図1〜3を参照しながら説明す
る。本実施例でも、図1(a)に示す様に、シリコン基
板等であるn型の半導体基板11の表面に、従来公知の
選択酸化法で素子分離用酸化膜12を形成する。そし
て、次の工程のイオン注入時に半導体基板11が汚染さ
れたり損傷されたりするのを防止するために、膜厚が1
0〜20nmの犠牲酸化膜13を素子活性領域の表面に
形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention applied to the manufacture of an nMOS transistor will be described below with reference to FIGS. Also in this embodiment, as shown in FIG. 1A, an element isolation oxide film 12 is formed on the surface of an n-type semiconductor substrate 11 such as a silicon substrate by a conventionally known selective oxidation method. Then, in order to prevent the semiconductor substrate 11 from being contaminated or damaged at the time of ion implantation in the next step, the film thickness is set to 1
A sacrificial oxide film 13 having a thickness of 0 to 20 nm is formed on the surface of the element active region.

【0008】次に、図1(b)に示す様に、犠牲酸化膜
13及び素子分離用酸化膜12を貫通して半導体基板1
1にB+ 14をイオン注入して、nMOSトランジスタ
のチャネル部分における不純物分布としてのp型のウェ
ル15を形成する。その後、フッ酸等で犠牲酸化膜13
を除去し且つ洗浄して、素子活性領域の清浄な表面を露
出させる。そして、高温炉中の水蒸気雰囲気によって、
図1(c)に示す様に、膜厚が10〜20nmのゲート
酸化膜16を素子活性領域の表面に成長させる。
Next, as shown in FIG. 1B, the semiconductor substrate 1 is penetrated through the sacrificial oxide film 13 and the element isolation oxide film 12.
1 is ion-implanted with B + 14 to form a p-type well 15 as an impurity distribution in the channel portion of the nMOS transistor. Then, the sacrificial oxide film 13 is formed with hydrofluoric acid or the like.
Are removed and washed to expose a clean surface of the device active area. And, by the steam atmosphere in the high temperature furnace,
As shown in FIG. 1C, a gate oxide film 16 having a film thickness of 10 to 20 nm is grown on the surface of the element active region.

【0009】次に、図1(d)に示す様に、赤外線17
を照射する赤外線ランプアニールを、窒素雰囲気中でゲ
ート酸化膜16に対して行う。アニール条件としては、
例えば1050℃の温度及び60〜120秒程度の時間
が好ましい。このアニールによって、ゲート酸化膜16
の膜質が改善されると共に、ゲート酸化膜16と半導体
基板11との界面状態も改善される。
Next, as shown in FIG. 1D, infrared rays 17
Infrared lamp annealing is performed on the gate oxide film 16 in a nitrogen atmosphere. The annealing conditions are:
For example, a temperature of 1050 ° C. and a time of 60 to 120 seconds are preferable. By this annealing, the gate oxide film 16
The film quality is improved, and the interface state between the gate oxide film 16 and the semiconductor substrate 11 is also improved.

【0010】次に、図1(e)に示す様に、従来公知の
工程で、多結晶シリコン等から成るゲート電極21を形
成する。そして、ゲート電極21及び素子分離用酸化膜
12をマスクにしたn型の不純物22のイオン注入で、
ソース23及びドレイン24の不純物分布をゲート電極
21に対して自己整合的に形成する。以上で、nMOS
トランジスタ25が完成する。
Next, as shown in FIG. 1E, a gate electrode 21 made of polycrystalline silicon or the like is formed by a conventionally known process. Then, by ion implantation of the n-type impurity 22 using the gate electrode 21 and the element isolation oxide film 12 as a mask,
The impurity distribution of the source 23 and the drain 24 is formed in self alignment with the gate electrode 21. With the above, nMOS
The transistor 25 is completed.

【0011】図2、3は、本実施例で製造したnMOS
トランジスタ25と、窒素雰囲気中での850℃、30
分の炉内アニールのみをゲート酸化膜に施す一従来例で
製造したnMOSトランジスタとにおける、相互コンダ
クタンスGm のゲート電圧依存性とドレイン電流Ids
ドレイン電圧Vds特性とを夫々示している。なお、Vg
はゲート電圧、Vthは閾値電圧、Toxはゲート酸化膜の
膜厚である。
2 and 3 show the nMOS manufactured in this embodiment.
Transistor 25 and 850 ° C, 30 in nitrogen atmosphere
Gate voltage dependence of the mutual conductance G m and the drain current I ds − in an nMOS transistor manufactured in a conventional example in which only the in-furnace annealing in the furnace is performed on the gate oxide film.
The drain voltage V ds characteristics are shown respectively. Note that V g
Is the gate voltage, V th is the threshold voltage, and Tox is the thickness of the gate oxide film.

【0012】これらの図2、3から明らかな様に、相互
コンダクタンスGm はピーク値で10%程度、3.3V
での駆動電流Idsは4%程度、本実施例で製造したnM
OSトランジスタ25の方が、従来例で製造したnMO
Sトランジスタよりも夫々向上している。従って、nM
OSトランジスタ25を用いれば、MOS集積回路の処
理速度を向上させることができる。
As is apparent from FIGS. 2 and 3, the transconductance G m has a peak value of about 10% and 3.3 V.
Drive current I ds at about 4%, nM manufactured in this example
The OS transistor 25 is the nMO manufactured in the conventional example.
Each is improved compared to the S transistor. Therefore, nM
If the OS transistor 25 is used, the processing speed of the MOS integrated circuit can be improved.

【0013】しかも、本実施例で用いている赤外線ラン
プアニールでは、高温アニールも短時間で行うことがで
きるので、ウェル15を形成している不純物が実質的に
は再拡散しない。このため、nMOSトランジスタ25
の電流駆動特性を向上させているにも拘らず他の特性は
変動せず、また、例えば、CMOSトランジスタのnM
OS領域とpMOS領域との分離帯を広くしたりする必
要もない。
Moreover, in the infrared lamp annealing used in this embodiment, the high temperature annealing can be performed in a short time, so that the impurities forming the well 15 are not substantially re-diffused. Therefore, the nMOS transistor 25
Despite improving the current drive characteristics of the other characteristics, other characteristics do not change.
It is not necessary to widen the separation band between the OS region and the pMOS region.

【0014】なお、以上の実施例では短時間アニールと
して赤外線ランプアニールを用いたが、赤外線ランプア
ニール以外の短時間アニールを用いることもできる。ま
た、上述の実施例は本発明をnMOSトランジスタの製
造に適用したものであるが、本発明はpMOSトランジ
スタの製造にも適用することができる。
Although infrared lamp annealing is used as the short-time annealing in the above embodiments, short-time annealing other than infrared lamp annealing can also be used. Further, although the above-mentioned embodiment applies the present invention to the manufacture of the nMOS transistor, the present invention can also be applied to the manufacture of the pMOS transistor.

【0015】[0015]

【発明の効果】本発明によるMOS型トランジスタの製
造方法では、既に形成してあるチャネル部分における不
純物分布を実質的には変化させることなく、ゲート酸化
膜の膜質を改善し、ゲート酸化膜と半導体基板との界面
状態も改善することができるので、電流駆動特性以外の
特性等を変動させることなく、電流駆動特性のみを向上
させることができる。
According to the method of manufacturing a MOS type transistor of the present invention, the quality of the gate oxide film is improved without substantially changing the impurity distribution in the already formed channel portion, and the gate oxide film and the semiconductor are improved. Since the interface state with the substrate can also be improved, only the current driving characteristics can be improved without changing the characteristics other than the current driving characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を工程順に示す側断面図であ
る。
FIG. 1 is a side sectional view showing an embodiment of the present invention in the order of steps.

【図2】一実施例で製造したnMOSトランジスタと一
従来例で製造したnMOSトランジスタとにおける、相
互コンダクタンスのゲート電圧依存性を示すグラフであ
る。
FIG. 2 is a graph showing the gate voltage dependence of mutual conductance in an nMOS transistor manufactured in one example and an nMOS transistor manufactured in one conventional example.

【図3】一実施例で製造したnMOSトランジスタと一
従来例で製造したnMOSトランジスタとにおける、ド
レイン電流−ドレイン電圧特性を示すグラフである。
FIG. 3 is a graph showing drain current-drain voltage characteristics of an nMOS transistor manufactured in one example and an nMOS transistor manufactured in one conventional example.

【符号の説明】[Explanation of symbols]

11 半導体基板 15 ウェル 16 ゲート酸化膜 17 赤外線 25 nMOSトランジスタ 11 semiconductor substrate 15 well 16 gate oxide film 17 infrared 25 nMOS transistor

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/316 P 7352−4M Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/316 P 7352-4M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒素雰囲気中における短時間アニールを
ゲート酸化膜に施す工程を有するMOS型トランジスタ
の製造方法。
1. A method of manufacturing a MOS transistor, comprising a step of subjecting a gate oxide film to a short-time annealing in a nitrogen atmosphere.
JP19412093A 1993-07-09 1993-07-09 Manufacture of mos transistor Pending JPH0730114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19412093A JPH0730114A (en) 1993-07-09 1993-07-09 Manufacture of mos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19412093A JPH0730114A (en) 1993-07-09 1993-07-09 Manufacture of mos transistor

Publications (1)

Publication Number Publication Date
JPH0730114A true JPH0730114A (en) 1995-01-31

Family

ID=16319253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19412093A Pending JPH0730114A (en) 1993-07-09 1993-07-09 Manufacture of mos transistor

Country Status (1)

Country Link
JP (1) JPH0730114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034431A1 (en) * 1997-12-26 1999-07-08 Seiko Epson Corporation Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display, and infrared irradiating device
US6420281B2 (en) 1999-12-24 2002-07-16 Denso Corporation Method of forming oxidized film on SOI substrate
US7306985B2 (en) 2003-08-29 2007-12-11 Seiko Epson Corporation Method for manufacturing semiconductor device including heat treating with a flash lamp

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034431A1 (en) * 1997-12-26 1999-07-08 Seiko Epson Corporation Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display, and infrared irradiating device
EP0966029A1 (en) * 1997-12-26 1999-12-22 Seiko Epson Corporation Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display, and infrared irradiating device
EP0966029A4 (en) * 1997-12-26 2001-05-09 Seiko Epson Corp Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display, and infrared irradiating device
US6407012B1 (en) 1997-12-26 2002-06-18 Seiko Epson Corporation Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display and infrared irradiating device
US6632749B2 (en) 1997-12-26 2003-10-14 Seiko Epson Corporation Method for manufacturing silicon oxide film, method for manufacturing semiconductor device, semiconductor device, display device and infrared light irradiating device
US6420281B2 (en) 1999-12-24 2002-07-16 Denso Corporation Method of forming oxidized film on SOI substrate
US7306985B2 (en) 2003-08-29 2007-12-11 Seiko Epson Corporation Method for manufacturing semiconductor device including heat treating with a flash lamp

Similar Documents

Publication Publication Date Title
TW501204B (en) Method to adjust the threshold-voltage of a MOS-transistor
JPH0730114A (en) Manufacture of mos transistor
JP2718757B2 (en) MOS type semiconductor device and method of manufacturing the same
JPH05267333A (en) Manufacture of mos type field effect transistor
JPH0612826B2 (en) Method of manufacturing thin film transistor
JP2833500B2 (en) Method for manufacturing surface tunnel transistor
JPH07161988A (en) Manufacture of semiconductor device
JPH09148570A (en) Manufacture of semiconductor device
JPH0684944A (en) Thin film transistor
JPH05267338A (en) Manufacture of semiconductor device
JPH10233457A (en) Manufacture of semiconductor device
JPS61287160A (en) Manufacture of mos type semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JP3008579B2 (en) Method for manufacturing semiconductor device
JP2722829B2 (en) Method for manufacturing semiconductor device
JPH06224380A (en) Manufacture of semiconductor device
JP2637860B2 (en) Method for manufacturing semiconductor device
KR100567875B1 (en) Method for forming gate dielectric in semiconductor device
KR930009479B1 (en) Manufacturing method of insulated gate type fet
RU2141149C1 (en) Process of manufacture of bipolar cos/mos structure
JP3317220B2 (en) Method for manufacturing semiconductor device
JPH11135801A (en) Manufacture of thin-film transistor
JPH0360150A (en) Semiconductor device and its manufacture
JPH04209524A (en) Manufacture of semiconductor device
JPH01278768A (en) Semiconductor device having depth extension parts of source and drain and its manufacture