JPS61287160A - Manufacture of mos type semiconductor device - Google Patents

Manufacture of mos type semiconductor device

Info

Publication number
JPS61287160A
JPS61287160A JP60127243A JP12724385A JPS61287160A JP S61287160 A JPS61287160 A JP S61287160A JP 60127243 A JP60127243 A JP 60127243A JP 12724385 A JP12724385 A JP 12724385A JP S61287160 A JPS61287160 A JP S61287160A
Authority
JP
Japan
Prior art keywords
well layer
drain
oxide film
source
channel mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60127243A
Other languages
Japanese (ja)
Inventor
Masayuki Mizukoshi
水越 正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP60127243A priority Critical patent/JPS61287160A/en
Publication of JPS61287160A publication Critical patent/JPS61287160A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To simplify a process by implanting ions for source-drain on the P channel MOS transistor side in a self-alignment manner by utilizing a thermal oxide film formed when shaping source-drain on the N channel MOS transistor side. CONSTITUTION:The ions of As 16 are implanted in high dose in order to form source-drain to a P well layer 12, and the N well layer 14 side is covered with a resist 18 at that time. N<+> layers 17 are shaped in the P well layer 12 through heat treatment by N2 gas, and the N<+> layers 17 function as source-drain in an N channel MOS transistor. Since As 16 is doped onto an active region in the P well layer 12 in high concentration, a thick oxide film 20 is formed. Boron 22 is implanted to the whole surface in order to shape the N well layer 14 while employing the thick oxide film 20 as a mask, thus enabling self- alignment.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、相補型MOSのP−MOS側のソース・ド
レインのイオン打込みをPウェル層へのソース・ドレイ
ン形成時の熱処理によってできる酸化膜を利用してセル
ファラインにて行うようにして、プロセスの簡略化が図
れるようKしたMOS型半導体装置の製造方法に関する
Detailed Description of the Invention (Field of Industrial Application) This invention is directed to implanting ions into the source/drain on the P-MOS side of a complementary MOS into an oxide film formed by heat treatment during the formation of the source/drain into the P-well layer. The present invention relates to a method for manufacturing a MOS type semiconductor device in which the process can be simplified by using a self-alignment line.

(従来の技術) 従来の技術は相補型MOSにおいて、第2図のように、
同一基板上1にNチャンネルMOS4とPチャンネルM
OS5を構成しているため、ソースφドレイン2,3を
形成するには、NチャンネルMOSJ側にA、(N型不
純物)をインプランテーションし、またPチャンネルM
OSS側にはボロン(P型不純物)をインプランテーシ
ョン技術によりインプランテーションを行っている。
(Prior art) The conventional technology uses complementary MOS, as shown in Figure 2.
N channel MOS 4 and P channel M on the same board
Since the OS5 is configured, in order to form the source φ drains 2 and 3, A (N-type impurity) is implanted on the N-channel MOSJ side, and the P-channel M
Boron (P-type impurity) is implanted on the OSS side using implantation technology.

しかし、不純物が異なっているため、同時に形成はでき
ず、ホトリソ技術によってどちらか一方のMOS側をレ
ジスト6で保護しインプランテージョン時のマスクとし
て使用していた。
However, since the impurities are different, they cannot be formed at the same time, and one of the MOS sides is protected with a resist 6 using photolithography and used as a mask during implantation.

(発明が解決しようとする問題点) しかし、以上述べた方法によると、PチャンネルMOS
S側へのインプランテーションを行うKは、Nチャンネ
ルMOS4側へのレノストロによるカバーを行うため、
ホトリソ工程が増加し、半導体素子製造期間が延長とな
シ1歩留夛低下を招く問題がある。
(Problem to be solved by the invention) However, according to the method described above, the P-channel MOS
K, who performs implantation on the S side, covers the N channel MOS 4 side with Renostro.
There is a problem in that the number of photolithography steps is increased and the semiconductor device manufacturing period is extended, resulting in a drop in yield.

この発明は、前記従来技術がもっている問題点のうち、
ホトリソ工程が増加する点と、製造期間が長くなp、歩
留シ低下を招来する点くついて解決したMOSm半導体
装置の製造方法を提供するものである。
This invention solves the problems of the above-mentioned prior art.
The present invention provides a method for manufacturing a MOS semiconductor device that solves the problems of increasing the number of photolithography steps, requiring a long manufacturing period, and reducing yield.

(問題点を解決するための手段) この発明は%MO5ffi半導体装置の製造方法におい
て%Nチ・ヤンネルMOS側へのがロジイオンインプラ
ンテーション作業をA、  アニール膜を厚膜化し、そ
れを利用して行う工程を導入したものである。
(Means for Solving the Problems) This invention is a method for manufacturing a %MO5ffi semiconductor device, in which the ion implantation work on the %N channel MOS side is performed by increasing the thickness of the annealed film and utilizing it. This method introduces a process that involves

(作用) この発明は、MOS型半導体装置の製造方法に以上のよ
うな工程を導入したので、Pチャ/ネルMOS@へのソ
ース・ドレイン層にイオンインプランテーションによシ
形成するときKNチャンネルMOSNのソース・ドレイ
ン形成時の熱処理によってy#膜化した酸化膜を形成し
、この酸化膜を利用してNチャンネルMOS@のイオン
インプランテーションを行う。
(Function) This invention introduces the above-mentioned steps into the method of manufacturing a MOS type semiconductor device, so when forming the source/drain layer of a P channel/channel MOS@ by ion implantation, the KN channel MOSN A y# oxide film is formed by heat treatment during source/drain formation, and ion implantation of an N-channel MOS@ is performed using this oxide film.

(実施例) 以下、この発明のMOS型半導体装置の製造方法の実施
例について図面に基づき説明する。第1図(a)ないし
第1図(6)はその一実施例の工程説明図でアシ、相補
ff11MOSの実施例の断面構造図である。
(Example) Hereinafter, an example of the method for manufacturing a MOS type semiconductor device of the present invention will be described based on the drawings. FIGS. 1(a) to 1(6) are process explanatory diagrams of one embodiment, and are cross-sectional structural diagrams of an embodiment of the complementary FF11MOS.

まず、第1図(a)に示すように、半導体基板としての
針基板ll上にPウェルfi12を、ボロ7イ、t 7
 ft濃度1.5XI O” 〜2 X 10” ”0
!n/ajt’注入し、深さ約4μmに形成する。
First, as shown in FIG. 1(a), a P well fi12 is formed on a needle substrate ll as a semiconductor substrate, with a hole 7 and a hole t7.
ft concentration 1.5XI O" ~ 2 X 10""0
! n/ajt' is implanted to a depth of approximately 4 μm.

その後、 LOGO8工程を用いて、フィールド酸化a
13を約7000A形aしてP91−ルff1l 2 
を分離し、その後、Nウェル層14をリンイオンを1@
atom 濃度1×10〜3X10    /−で深さ約2μmで
形成する。
Then, using the LOGO8 process, field oxidation a
13 to about 7000A type a and P91-le ff1l 2
After that, the N-well layer 14 is irradiated with phosphorus ions at 1@
It is formed at a depth of approximately 2 μm with an atom concentration of 1×10 to 3×10 /−.

次に、ポリ−5it−pエバ全面KCVD法により育成
し、リン拡散にてポリ−81抵抗を25〜30Ω/口と
する。次にPウェルr@12とNウェル#11Dアクテ
ィブ領域上にホトリソ技術を用いてr−)ポリ−8i 
15を形成する。なお、30.40はそれぞれチャンネ
ルストッパである。
Next, poly-5it-p is grown by KCVD on the entire surface, and poly-81 resistance is adjusted to 25 to 30 Ω/hole by phosphorus diffusion. Next, r-)poly-8i was formed on the P-well r@12 and N-well #11D active areas using photolithography.
form 15. Note that 30 and 40 are channel stoppers, respectively.

その後、第1図(b)に示すように%Pウェル612に
ソース・ドレインを形成するために、AB16を高ドー
ズでイオンインプランテーションヲ行つ。
Thereafter, as shown in FIG. 1(b), in order to form a source/drain in the %P well 612, ion implantation of AB16 is performed at a high dose.

この場合、加速電圧は40〜60KV%濃度はlX10
1s〜1.5×l1016atO/aIテ行つ。
In this case, the accelerating voltage is 40-60KV% and the concentration is lX10
1s~1.5×l1016atO/aIte.

このとき、Nウェルr@14側をホトリソ技術を用いて
、レジスト18でカバーする。レゾスト18は厚さ90
00−120001  に形成する。
At this time, the N-well r@14 side is covered with a resist 18 using photolithography. Resost 18 has a thickness of 90
00-120001.

次に、第1アニール条件としてN2  ガス(雰囲気9
00−1000℃)で約100分熱処理を行い%Pウェ
ルff112において、N”l’i#17を形成する。
Next, as the first annealing condition, N2 gas (atmosphere 9
00-1000° C.) for about 100 minutes to form N''l'i#17 in the %P well ff112.

このN 層17はNチャンネルMOSトランジスタのソ
ース・ドレインとなる領域である。
This N layer 17 is a region that becomes the source and drain of the N channel MOS transistor.

このN” * 17を形成するとき、第1図(c) K
示すように、Pウェル1112のアクティブ領域上は上
述したように、Ag2Sが高濃度でドープされているた
め、700A以上の厚い酸化![20(5to2)が形
成される。
When forming this N'' * 17, as shown in Fig. 1(c) K
As shown, the active region of the P-well 1112 is doped with Ag2S at a high concentration, as described above, and therefore has a thick oxidation of more than 700A! [20 (5to2) is formed.

次いで、この厚い酸化膜20をマスクとして、Nウェル
層14を形成する九めに1全面に第1図(d)に示すよ
うに&ロン22のインプランテーションを加速電EE4
0〜70KV、濃[lX101s〜1.5XIO1s&
t0m/cdテ行つ。
Next, using this thick oxide film 20 as a mask, implantation of &ron 22 is performed on the entire surface of the N-well layer 14 using an accelerated electric current EE4 as shown in FIG. 1(d).
0~70KV, dark [lX101s~1.5XIO1s&
Go to t0m/cd.

このように、全面にポロン22のイオン打込みを行うこ
とKよシ、セルフアライン化が可能となる。
In this way, self-alignment can be achieved by implanting the Poron 22 ions over the entire surface.

これによL Pウェル912へのレジストカバーを行う
作業が削除され、プロセスの簡略化がはかられ、半導体
素子の製造工程の処理時間が短縮となり、歩留シ向上が
期待できる。
This eliminates the work of covering the LP well 912 with resist, simplifies the process, reduces processing time in the semiconductor device manufacturing process, and can be expected to improve yield.

上記ポロン22のイオン打込み後、第2のア二−ル東件
として、02  ガス雰囲気中で約950℃、20〜4
0分間熱処理を行い、薄い酸化膜(SIO,)21(第
1図(C)、第1図(t5)を250A程度形成する。
After the ion implantation of Poron 22, the second annealing process was performed at approximately 950°C in a 02 gas atmosphere at 20~4°C.
A heat treatment is performed for 0 minutes to form a thin oxide film (SIO, ) 21 (FIG. 1(C), FIG. 1(t5)) of about 250A.

かくして、NチャンネルMOS)ランゾスタ側には厚い
酸化膜20が形成され、PチャンネルMOS)ランジス
タ側には薄い酸化膜21が形成されるが、不純物が注入
されて基板表面は酸化速度が速くなるので、Nチャンネ
ルとPチャンネルMOS)ランジスタ側では酸化膜の膜
厚に差が生じる。
In this way, a thick oxide film 20 is formed on the N-channel MOS transistor side, and a thin oxide film 21 is formed on the P-channel MOS transistor side, but since impurities are implanted and the oxidation rate of the substrate surface becomes faster. , N-channel and P-channel MOS) There is a difference in the thickness of the oxide film on the transistor side.

その後、第1図(e)に示すように、CVD法によ、D
P8Gの中間絶縁膜23を約7000A程度形成する。
Thereafter, as shown in FIG. 1(e), D
A P8G intermediate insulating film 23 with a thickness of about 7000A is formed.

その後、平担化をはかシ、PSGフローを行う。このと
きの条件はドライ03  ガス中温度約900℃で約5
分、ワエット02  ガス中で温度約900℃で約15
分、  ドライ0.ガス中で温度約900℃、約20分
とする。
Thereafter, flattening is performed and a PSG flow is performed. The conditions at this time are dry 03, gas temperature of about 900℃, and about 5
min, weight 02 in gas at a temperature of about 900°C, about 15
minutes, dry 0. The temperature is about 900°C in gas for about 20 minutes.

このPSGフローを行うと同時に%PチャンネルMOS
)ランゾスタ側のソース・ドレインが同時に拡散して形
成される。
At the same time as performing this PSG flow, %P channel MOS
) The source and drain on the Lanzoster side are simultaneously diffused and formed.

以下、とのPSGの中間絶縁膜23は2層配線層を形成
するときの中間絶lIk膜となる。
Hereinafter, the intermediate insulating film 23 of the PSG will serve as an intermediate isolation lIk film when forming a two-layer wiring layer.

(発明の効果) 以上詳細に説明したように、この発明によれは、Nチャ
ンネ:zMOS)ランジスタ側のソース・ドレインを形
成するときにできる熱除化膜を利用してPチャンネルM
OS)ランジスタ側のソース・ドレインのイオンインプ
ランテーションをセルフアラインにて行えるようにした
ので、PチャンネルMOS)ランジスタの拡散ホトリソ
工程が削除でき、プロセスの簡略化が図れ、ひいては歩
留シの向上が期待できる。
(Effects of the Invention) As described above in detail, the present invention provides a P-channel MMOS transistor using a heat removal film formed when forming the source/drain on the transistor side.
Since the ion implantation of the source and drain on the OS) transistor side can be performed in self-alignment, the diffusion photolithography process for P-channel MOS) transistors can be eliminated, simplifying the process and improving yield. You can expect it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1ないし第1図(e)はこの発明のMOS型半
導体装置の製造方法の一実施例の工程説明図、第2図は
従来の相補型MOS)ランノスタの製造方法を説明する
ための図である。 11・−N子基板、12・・・Pウェルlit、13・
・・フィールド酸化膜、14・・・Nワエル7i!1.
15・・・r−トボリーSi、16・・・A8  % 
17・・・N11i、18・・・レジスト、20・・・
厚い酸化膜、21・・・薄い酸化膜、23・・・中間絶
縁膜%30.40・・・チャンネルストッパ。 fPFF出願人  沖電気工業株式会社従泉の同1i!
迭方共盲免明2 第2図
FIG. 1 (1 to 1(e) is a process explanatory diagram of an embodiment of the method for manufacturing a MOS type semiconductor device of the present invention, and FIG. 2 is for explaining a method for manufacturing a conventional complementary MOS) runnostar. This is a diagram. 11.-N daughter board, 12...P well lit, 13.
...Field oxide film, 14...Nwael 7i! 1.
15...r-Toboly Si, 16...A8%
17...N11i, 18...Resist, 20...
Thick oxide film, 21...Thin oxide film, 23...Intermediate insulating film%30.40...Channel stopper. fPFF applicant Oki Electric Industry Co., Ltd.'s 1i!
Diagnostic blindness 2 Diagram 2

Claims (1)

【特許請求の範囲】 (a)半導体基板上にPウェル層を形成してフィールド
酸化膜によりこのPウェル層を分離した後Nウェル層を
形成する工程と、 (b)上記Pウェル層とNウェル層のアクティブ領域上
にゲートポリーSiを形成する工程と、 (c)上記Nウェル層上にホトレジストをカバーしてP
ウェル層にイオン注入を行つて熱処理することによりN
チャンネルMOSトランジスタのソース・ドレインを形
成するとともにこのPウェル層上に厚い酸化膜を同時に
形成する工程と、 (d)この厚い酸化膜をマスクとして上記Nウェル層に
イオン注入をセルフアラインにて行つて熱処理を行うこ
とによりPチャンネルMOSトランジスタのソース・ド
レインを形成する工程と、よりなることを特徴とするM
OS型半導体装置の製造方法。
[Claims] (a) A step of forming a P-well layer on a semiconductor substrate and separating this P-well layer with a field oxide film, and then forming an N-well layer; (b) forming an N-well layer between the P-well layer and the N-well layer; (c) forming a gate poly-Si on the active region of the well layer; (c) covering the N-well layer with photoresist;
By performing ion implantation into the well layer and heat treatment, N
(d) ion implantation into the N-well layer using the thick oxide film as a mask in a self-aligned manner; a step of forming a source/drain of a P-channel MOS transistor by applying heat treatment to the P-channel MOS transistor;
A method for manufacturing an OS type semiconductor device.
JP60127243A 1985-06-13 1985-06-13 Manufacture of mos type semiconductor device Pending JPS61287160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60127243A JPS61287160A (en) 1985-06-13 1985-06-13 Manufacture of mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60127243A JPS61287160A (en) 1985-06-13 1985-06-13 Manufacture of mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPS61287160A true JPS61287160A (en) 1986-12-17

Family

ID=14955244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60127243A Pending JPS61287160A (en) 1985-06-13 1985-06-13 Manufacture of mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPS61287160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258373A (en) * 1988-08-24 1990-02-27 New Japan Radio Co Ltd Manufacture of c-mos ic
WO1990013916A1 (en) * 1989-05-10 1990-11-15 Oki Electric Industry Co., Ltd. Method of fabricating semiconductor devices
DE19839641A1 (en) * 1998-08-31 2000-03-09 Siemens Ag Different transistors, especially PMOS and NMOS transistors of CMOS ICs useful for chip cards, are produced in a semiconductor substrate using only two photo-levels instead of the usual five

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258373A (en) * 1988-08-24 1990-02-27 New Japan Radio Co Ltd Manufacture of c-mos ic
WO1990013916A1 (en) * 1989-05-10 1990-11-15 Oki Electric Industry Co., Ltd. Method of fabricating semiconductor devices
DE19839641A1 (en) * 1998-08-31 2000-03-09 Siemens Ag Different transistors, especially PMOS and NMOS transistors of CMOS ICs useful for chip cards, are produced in a semiconductor substrate using only two photo-levels instead of the usual five

Similar Documents

Publication Publication Date Title
JPS6115594B2 (en)
JP2727552B2 (en) Method for manufacturing semiconductor device
JPS61287160A (en) Manufacture of mos type semiconductor device
JPS6360549B2 (en)
JPS60180158A (en) Manufacture of semiconductor device
JPH05315617A (en) Manufacture of insulated type field effect transistor
JP2633525B2 (en) Method for manufacturing semiconductor device
JPH0258273A (en) Insulated gate field effect transistor and its manufacture
JPH02189965A (en) Manufacture of semiconductor device
JPH04257267A (en) Manufacture of soi-structured semiconductor device
JPH07161826A (en) Manufacture of semiconductor device
JPS60105267A (en) Manufacture of semiconductor device
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JPH1131814A (en) Manufacture of semiconductor device
JPH023915A (en) Manufacture of semiconductor device
JPH04260331A (en) Manufacture of semiconductor device
JPH03257846A (en) Manufacture of semiconductor device
JPH04230023A (en) Manufacture of cmos semiconductor device
JPH04363019A (en) Manufacture of semiconductor device
JPS60107856A (en) Manufacture of cmosic (complementary metal oxide semiconductor integrated circuit)
JPS6281051A (en) Semiconductor device and manufacture thereof
JPS60158659A (en) Manufacture of semiconductor device
JPS6024589B2 (en) Method for manufacturing complementary insulated gate field effect transistors
JPH0685178A (en) Semiconductor integrated circuit device
JPS6051275B2 (en) Manufacturing method of semiconductor device