JPH07187635A - 分子ふるい炭素の製造法 - Google Patents

分子ふるい炭素の製造法

Info

Publication number
JPH07187635A
JPH07187635A JP5351937A JP35193793A JPH07187635A JP H07187635 A JPH07187635 A JP H07187635A JP 5351937 A JP5351937 A JP 5351937A JP 35193793 A JP35193793 A JP 35193793A JP H07187635 A JPH07187635 A JP H07187635A
Authority
JP
Japan
Prior art keywords
molecular sieving
gas
adsorption
sieving carbon
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5351937A
Other languages
English (en)
Inventor
Kenji Kojima
健治 小島
Chiaki Marumo
千郷 丸茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP5351937A priority Critical patent/JPH07187635A/ja
Publication of JPH07187635A publication Critical patent/JPH07187635A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】 【目的】本発明はフェノ−ル樹脂/セルロ−ス系複合材
を粉砕して得た微粉末を用いた高性能分子ふるい炭素の
新規且つ簡便な製造法を提供することを目的とする。 【構成】フェノ−ル樹脂/セルロ−ス系複合材を粉砕し
て得た微粉末をバインダ−とともに造粒後、非酸化性雰
囲気下で 700〜1100℃で炭化することを特徴とする分子
ふるい炭素の製造法に関する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、フェノ−ル樹脂/セル
ロ−ス系複合材を粉砕して得た微粉末を原料として用い
ることを特徴とする分子ふるい炭素の製造法に関するも
のである。
【0002】
【従来の技術】1948年、Emmett(P.H.Emmett :chem. Re
v. 43, 69) が塩化ビニリデンを炭化することにより分
子ふるい炭素を得て以来今日に至るまで、多くの分子ふ
るい炭素の製造法が提案され、近年に至って、石炭、ヤ
シ殻などの天然物や、合成高分子を主原料とする分子ふ
るい炭素の工業的製造が可能となってきた。例えば、特
公昭52-18675号公報には、5%までの揮発性成分含量を有
するコ−クスに、熱分解性炭化水素を添加して600 〜90
0 ℃の温度で処理することによって放出されたカ−ボン
をそのコ−クスの細孔中に沈着させる分子ふるい炭素の
製造法が開示されている。特開昭62-176908 号公報に
は、ヤシ殻炭粉末をコ−ルタ−ル、またはコ−ルタ−ル
ピッチをバインダ−として造粒し、 600〜900 ℃で乾留
し、乾留炭を鉱酸で洗浄、水洗、乾燥したものにコ−ル
タ−ルを含浸させ、600 〜900 ℃で10〜60分間熱処理し
た後、不活性ガス中で冷却することを特徴とする分子ふ
るい炭素の製造法が開示されている。また、特開平01-0
61306 号公報には、合成高分子を主原料とし、より簡便
なプロセスにより、粒状炭素粒子が三次元的に合体され
てなる、均質性に優れた分子ふるい炭素の製造法が開示
されている。上記の如き製法により製造された分子ふる
い炭素は各種混合ガスの分離、特に空気中の窒素と酸素
の分離に有効であることが開示されており、主に圧力ス
イング吸着(PSA)式窒素ガス発生装置の吸着分離材
として用いられている。分子ふるい炭素は吸着ガス分子
の分子径の差によって生じる平衡吸着量差、あるいは細
孔内の拡散速度差によって混合ガスの分離精製を行うの
で、細孔直径が通常10Å以下、好ましくは 3〜 5Å程度
の範囲にシャ−プな細孔径分布を有するものが好ましい
とされている。こうした細孔構造の厳密な制御を図るた
め、現状では非常に煩雑な製造工程が採用されており、
もっと簡便、低コストで且つ分離性能の優れた分子ふる
い炭素の製造法の開発が望まれている。
【0003】さて、現在、家電、エレクトロニクス産業
の伸びにともなってプリント配線基板の需要が増加して
きている。そのなかでも特にフェノ−ル樹脂/セルロ−
ス系複合材よりなる銅張り積層板は、価格が他のプリン
ト配線基板より安いこと、プリント配線基板工業の誕生
以来の長い使用実績を持つこと、価格の割にすぐれた特
性を持つことなどの理由によって、電気通信機用絶縁材
料、機械部品、化粧板等に広く用いられており、プリン
ト配線基板需要ではその80〜90%を占めている。このフ
ェノ−ル樹脂/セルロ−ス系複合材よりなる銅張り積層
板の孔あけ加工を行うとき、銅はくのカエリなどのない
きれいな穴を開けるためにこの基板を2枚重ねて孔あけ
を行っており、下側の基板は孔あけ加工が終わると、そ
の有効利用法がないために、産業廃棄物として処理され
ているのが実状である。このように大量に産出される産
業廃棄物としてのフェノ−ル樹脂/セルロ−ス系複合材
の有効利用が望まれている。
【0004】
【発明が解決しようとする課題】本発明者らは、上記の
課題を解決すべく鋭意研究を重ねた結果本発明を完成し
たものであって、その目的とするところは、フェノ−ル
樹脂/セルロ−ス系複合材を粉砕して得た微粉末を用い
た分離性能の優れた高性能分子ふるい炭素の新規且つ簡
便な製造法を提供することにある。
【0005】
【問題を解決するための手段】上述の目的は、フェノ−
ル樹脂/セルロ−ス系複合材を粉砕して得た微粉末をバ
インダ−とともに造粒後、非酸化性雰囲気下で700 〜11
00℃で炭化することを特徴とする分子ふるい炭素の製造
法により達成される。
【0006】本発明に用いるフェノ−ル樹脂/セルロ−
ス系複合材は、通常フェノ−ル樹脂・紙積層板、いわゆ
るベ−クライト積層板として主にプリント配線基板の有
機絶縁材料として最も広く用いられている。
【0007】本発明のフェノ−ル樹脂としては、その種
類を特に限定するものではないが、主に現在プリント配
線基板に用いられているレゾ−ル型フェノ−ル樹脂が好
ましい。レゾ−ル型フェノ−ル樹脂とは、フェノ−ル類
とホルマリン(ホルムアルデヒドの水溶液)をアルカリ
触媒下で反応させることによって得られる粘稠な液状プ
レポリマ−であり、フェノ−ルに対してホルマリンを過
剰に使用して、アルカリ触媒で反応することによって得
られる。アルカリ触媒としては、プリント配線基板の電
気絶縁性を低下させてしまう苛性ソ−ダのような強塩基
性触媒は好ましくなく、通常、アンモニア、ヘキサミ
ン、有機アミンなどの弱塩基性触媒などが用いられる。
またレゾ−ル型フェノ−ル樹脂を合成する際のフェノ−
ル類には、フェノ−ルのほかにクレゾ−ル、キシレノ−
ルなども含まれる。
【0008】フェノ−ル樹脂/セルロ−ス系複合材の中
のセルロ−スとしては、主に紙基材が用いられ、木材か
らのクラフトパルプを原料として作ったクラフト紙や、
木綿の短繊維より得られるほぼ純粋なα−セルロ−スか
らなるリンタ−紙などが好ましい。上記フェノ−ル樹脂
とセルロ−スは、通常、フェノ−ル樹脂を含浸したセル
ロ−スを積層し、高温下で加圧成型することにより積層
板に成形される。積層板中のセルロ−スの含有量は通
常、30〜90% 、好ましくは 50 〜80% 、最も好ましくは
55〜75% である。
【0009】フェノ−ル樹脂/セルロ−ス系複合材を粉
砕して得た微粉末の粒子径は特に限定するものではない
が、粉砕作業性やバインダ−とともに粒状物に成形する
際の造粒作業性を考慮すると、通常 1〜100 μm、好ま
しくは 5〜50μmが適当である。
【0010】本発明でいうところのバインダ−として
は、特にその種類を限定するものではないが、液状熱硬
化性樹脂やコ−ルタ−ル、ピッチ、クレオソ−ト油など
が好ましく用いられる。
【0011】液状熱硬化性樹脂としては、レゾ−ル樹
脂、メラミン樹脂、またはこれらの変性樹脂などが挙げ
られる。
【0012】レゾ−ル樹脂は、先述したように塩基性触
媒の存在下でフェノ−ルを過剰のアルデヒドと反応させ
ることによって製造され、比較的多量の遊離メチロ−ル
基を有するフェノ−ルの 1〜 3量体が主成分を成す。
【0013】メラミン樹脂はいわゆる熱硬化性樹脂であ
り、加熱により化学反応が促進され親水性の初期重合物
の形態、ないしは、やや縮合の進んだ疎水性縮合物の状
態を経て最終的には不溶不融の硬化物になる。
【0014】メラミン樹脂は、メラミンにアルデヒド、
通常はホルムアルデヒドを付加させて製造される。ま
た、種々のアルコ−ルが同時に使用されることもある。
メラミン樹脂の生成は、先ずメラミンにホルムアルデヒ
ドがメチロ−ル基として付加し、ついでメチロ−ル基が
他の分子のアミノ基やイミノ基との間で脱水縮合してメ
チレン基となる反応や、メチロ−ル基同士で脱水縮合し
てジメチレンエ−テル結合となる反応、あるいはメチロ
−ル基とアルコ−ルとの間で脱水してエ−テル化する反
応により進行する。メラミン樹脂は、水溶性樹脂と油溶
性樹脂とに分けることができ、一般に水溶性樹脂はアル
コ−ルとしてメタノ−ルを使用して製造される。一方油
溶性樹脂は、ブチル化メラミン樹脂ともいわれ、通常ア
ルコ−ルとしてブタノ−ルを使用する。本発明に使用さ
れるメラミン樹脂は、水溶性、油溶性いずれでもよく、
既知の方法にて製造されたものでよい。
【0015】コ−ルタ−ルは石炭の乾留によって得られ
る炭化水素を主とした化合物の混合体であり、少量の水
分と微量の灰分を含んでいる。これら組成の割合や物理
化学的な性質は原料石炭の種類、乾留炉の型式、乾留条
件等により差があるが、現在既知の成分としては、40
0種以上の成分があり、このうち最も多いのが、ベンゼ
ン、トルエン、アントラセン等の中性成分であり、次い
で、ピリジン、アニリン、キノリン等の塩基性成分、更
にフェノ−ル、クレゾ−ル、ナフト−ル、アントラノ−
ル等の酸性成分、ベンゾフラン、ジフェニレンオキシ
ド、p−メトキシベンジフェノン等の含酸素成分、ベン
ゾチオフェン、ジフェニレンスルフィド、ナフトチオフ
ェン等の含硫黄成分である。本発明で用いるコ−ルタ−
ルは、上記成分等に於いて特に制限されるものではない
が、縮合環芳香族化合物が多いものの方がより適してい
る。
【0016】ピッチは、化学的には主に縮合環芳香族化
合物の混合物であり、粘性があり、通常、室温では固体
に近い形、あるいは固形物の形をとっている。原料によ
って分類すれば、石炭系ピッチ、石油系ピッチ、また木
材乾留時に得られるピッチやオイルサンド、オイルシュ
−ル等から得られるピッチ等多種多様のものがある。石
炭系ピッチは、石炭の乾留によって生じたコ−ルタ−ル
の蒸留によって油分を留出させて、残留物として得られ
るもので、沸点約350℃以上の多くの高沸点物質や遊
離炭素の混合物である。石油系ピッチは、原油の減圧蒸
留残渣油、原油の熱分解残渣、ガソリン製造を目的とし
た流動接触分解装置からの分解残渣油等の石油重質油を
熱処理することによって、熱分解ガス及び留出油等の分
解生成物と共に熱重縮合した成分として得られる。ま
た、ピッチは軟らかさまたは硬さの程度によって、軟ピ
ッチ、中ピッチ、硬ピッチの3種類に区分される。通
常、軟化点(環球法)により、約70℃以下が軟ピッ
チ、約75℃〜85℃が中ピッチ、約85℃以上が硬ピ
ッチと区分されている。本発明に用いるピッチは、石炭
系ピッチ、石油系ピッチ等いずれのピッチでもよく、軟
化点等の諸特性も特に制限するものではない。
【0017】クレオソ−ト油は、コ−ルタ−ルの各分留
油から成分を分離回収した残油を規格に応じて調合して
製造される。JIS規格によれば、比重、水分含有率、
蒸留試験結果等により1号〜3号に区分されている。ク
レオソ−ト油は、通常化学的には、主に縮合環芳香族化
合物の数十種類以上の混合物であり、主な成分は、ナフ
タリン、アントラセン、フェナントレン、ピレン、ビフ
ェニル、フルオレン、クレゾ−ル、1メチルナフタリ
ン、2メチルナフタリン、ジメチルフルオレンや、これ
らの化合物の各種誘導体等であり、沸点が200℃以上
の化合物が大部分を占める。本発明に用いるクレオソ−
ト油は、JIS規格による1,2,3号いずれでもよ
く、特に制限するものではないが、蒸留試験による結果
に於いて360℃までの留出量が60v/v%以上であ
る3号が好適に用いられる。
【0018】さて、本発明においては、上記のフェノ−
ル樹脂/セルロ−ス系複合材を粉砕して得た微粉末を、
液状熱硬化性樹脂やコ−ルタ−ル、ピッチ、クレオソ−
ト油などのバインダ−成分と混合及び造粒することによ
って粒状成形物を得る。この複合材微粉末とバインダ−
成分の混合は、室温あるいは加熱下で、ニ−ダ−などの
市販の混合攪拌機で行えばよい。バインダ−成分とし
て、コ−ルタ−ルまたはピッチを用いる場合には、その
作業性を考慮し、十分に流動性が生じる温度まで加熱し
ながら混合する。クレオソ−ト油の場合には、通常室温
において液状であり、室温下でも混合時の作業性は良好
である。本発明は、上記フェノ−ル樹脂/セルロ−ス系
複合材の微粉末とバインダ−成分の他に、他の添加成分
を加えることを何ら制限するものではなく、例えばポリ
ビニルアルコ−ル、澱粉、結晶性セルロ−ス粉末、メチ
ルセルロ−ス、水、溶媒等を適量加えることができる。
また、少量のコ−クス、ヤシ殻炭等を添加することも何
ら制限されるものではない。
【0019】更に本発明では、その特性を損なわない範
囲で混合及び造粒時の作業性の向上のため、例えばエチ
レングリコ−ル、ポリオキシエチレン、アルキルエ−テ
ル、ポリオキシエチレン脂肪酸エステル、ポリカルボン
酸アンモニウム塩等の界面活性剤、液状熱硬化性樹脂の
硬化剤、ポリビニルアルコ−ルの架橋剤、押出造粒用の
可塑剤等を少量加えることができる。本発明の原料成分
は、混合装置により均一に混合され、次いで粒状物に成
形される。粒状物への成形は、例えば単軸あるいは二軸
の湿式押出造粒機、バスケットリュ−ザ−の如き堅式造
粒機、半乾式ディスクペレッタ−等により行うことがで
きる。この成形は通常室温で行われるが、ピッチ成分等
が多い場合には加熱下で実施してもよい。
【0020】粒状物の形状は、例えば円柱状あるいは球
状である。造粒により得られる粒状体の大きさは特に制
限されないが、例えば円柱では直径0.5 〜5mm 、長さ 1
〜10mm程度、球状の場合には直径0.5 〜10mm程度が好ま
しい。上述の如く得られた粒状成形体を非酸化性雰囲気
下で 700〜1100℃の温度領域で炭化することにより分子
ふるい炭素が得られる。炭化温度は、好ましくは 750〜
1000℃、最も好ましくは 780から950 ℃である。この炭
化温度が高すぎる場合には、細孔が収縮しすぎて吸着容
量が小さくなってしまい、また低すぎる場合には細孔が
まだあまり形成されず、吸着容量、分離能ともに小さす
ぎて好ましくない。また、この場合の非酸化性雰囲気と
は、例えば、窒素、アルゴン、ヘリウム等の雰囲気であ
る。炭化工程での最高処理温度に到達するまでの昇温速
度は特に限定するものではないが、好ましくは5〜50
0℃/Hである。
【0021】
【発明の効果】本発明の分子ふるい炭素は、上記の如く
簡便な製法により製造することができ、また優れた吸着
容量と選択的吸着特性を有する。そのため、本発明の分
子ふるい炭素は種々の混合ガスの分離に使用することが
できる。例えば、窒素ガスと酸素ガスの気体混合物、メ
タンガスと水素ガスの気体混合物、キシレン異性体、ブ
タン異性体、ブテン異性体等の炭化水素異性体混合物、
エチレンとプロピレンの混合物、アルゴンを含む気体混
合物等の分離に使用できる。より具体的に、例えば窒素
ガスと酸素ガスを含有する気体混合物から、窒素ガス、
酸素ガス、または窒素ガスと酸素ガスのいずれか一方が
富化された気体混合物を取得するために使用することが
できる。あるいは、メタンガスと水素ガスを含有する気
体混合物からメタンガス、水素ガス、またはメタンガス
と水素ガスのいずれか一方が富化された気体混合物を取
得するために使用できる。そのためには、圧力スイング
吸着法を採用するのが望ましい。
【0022】圧力スイング吸着法では、通常2塔ないし
3塔の吸着塔に分子ふるい炭素を充填し、3〜9kgf
/cm2 程度の加圧下での選択的吸着と、減圧または常圧
での吸着材の再生を周期的に繰り返すことにより、混合
ガスの分離を行うことができる。この方法によって、上
述の混合ガスの他にスチ−ムリフォ−ミングガス、エチ
レンプラントのオフガス、メタノ−ル分解ガス、アンモ
ニア分解ガス、コ−クス炉排ガス等よりの水素回収、あ
るいは、火力発電所のボイラ−排ガスよりの二酸化炭素
の分離回収等にも使用することができる。以下に、本発
明を実施例にしたがって更に説明するが、本発明はこれ
らの実施例に何ら限定されるものではない。
【0023】
【実施例1】平均粒子径18μmのフェノ−ル樹脂/セル
ロ−ス系複合材微粉末10重量部に対し、メラミン樹脂水
溶液(住友化学工業株式会社製、スミテックスレジンM
−3、固形分濃度80重量%)を固形分で 2.7重量部、重
合度1700、けん化度99%のポリビニルアルコ−ル 0.5重
量部、馬鈴薯澱粉 2.3重量部、そして界面活性剤(花王
株式会社製、ペレックスNB−L)1.2 重量部および水
0.5重量部計量した。上記原料のうちまず、フェノ−ル
樹脂/セルロ−ス系複合材微粉末と馬鈴薯澱粉をニ−ダ
−で15分間乾式混合した。一方、上記ポリビニルアルコ
−ルを温水で15重量%の水溶液となるように溶解し、こ
のポリビニルアルコ−ル水溶液とメラミン樹脂水溶液、
界面活性剤および水をニ−ダ−に加えて、更に15分間混
合した。この混合組成物を2軸押出造粒機(不二パウダ
ル株式会社製、ペレッタダブルEXDF−100型)で
押出し、外径が約2.5mm φの分子ふるい炭素となるよう
な円柱状粒状体の造粒を試みた。
【0024】このペレットを90℃で24時間硬化及び乾燥
させた後、有効径 600mmφ×2000mmL のロ−タリ−キル
ンに入れ、窒素気流下において、30℃/Hで 600,700,90
0,950,1200 ℃まで昇温し、各々の温度で1時間保持し
た後、窒素雰囲気下で炉冷した。
【0025】こうして得られた試料1〜4の分子ふるい
特性を評価するため、図1に示す吸着特性測定装置によ
り酸素及び窒素の吸着量を測定した。
【図1】
【0026】図1において、試料室(4) (200ml) に3gの
試料を入れ、バルブ(11)、(8) を閉じバルブ(2) 、(3)
を開けて30分間脱気した後、バルブ(2) 、(3) を閉じバ
ルブ(11)を開け、試料室(5)(200ml)内に、酸素ガス又は
窒素ガスを送り込み、設定圧(6.000kgf/cm2)になったと
ころでバルブ(11)を閉じバルブ(3) を開け、所定時間に
おける内部圧力の変化を測定して酸素及び窒素の各々の
吸着速度を求めた。なお、(1) は真空ポンプ、(6) 、
(7) は圧力センサ−、(9) は記録計、(14)、(15)はガス
レギュレ−タ−、(16)は窒素ボンベ、(17)は酸素ボンベ
である。
【0027】窒素と酸素の分離性能を示す指標として、
吸着開始1分後の吸着量を窒素分はQ1 、酸素分はQ2
とし、吸着量差ΔQを下記の式(3) ΔQ=Q2 −Q1 (3) により、また窒素吸着圧力をP1(atm), 酸素吸着圧力を
2(atm)として、選択係数αを下記の式(4) α=(Q2/P2)/(Q1/P1) (4) より求めた。その測定結果を表1に示す。
【表1】
【0028】炭化時の加熱処理における最高到達温度
が、本発明の請求項の範囲より低い温度で得られた試料
1は酸素吸着量、吸着量差ΔQ、選択係数αとも小さ
く、分子ふるい炭素として好ましくない。試料2,3,
4は酸素吸着量、吸着量差ΔQ、選択係数αとも大き
く、分子ふるい炭素として実用性を有しており、特に試
料3の特性が優れていることが分かる。また、本発明の
請求項の範囲より高い温度で得られた試料5は、酸素吸
着量、吸着量差ΔQが小さく好ましくない。
【0029】
【実施例2】実施例1の試料1〜5を用い、圧力スイン
グ吸着(PSA)法により空気中の窒素と酸素の分離実
験を実施した。本実験に用いたPSA装置の概略図を図
2に示す。
【図2】吸着塔サイズは内径50mmφ×1000mmL であり、
2本の吸着塔内に分子ふるい炭素を充填した。まずコン
プレッサ−で圧縮した空気を吸着塔に送り、吸着塔の圧
力をゲ−ジ圧で 7kgf/cm2 ・G とし、脱着再生は吸着塔
を常圧に戻すことにより実施した。PSA操作は均圧
(加圧)−吸着−均圧(減圧)−排気の4工程で実施
し、各工程の切り換えは、電磁弁をシ−ケンサ−で制御
して行った。PSA操作条件を表2に示す。
【表2】 製品窒素ガスの取出量が1 l/minおよび1.5 l/minの
時の測定結果を表3に示す。
【表3】 表3に示すように、炭化時の加熱処理における最高到達
温度が、本発明の請求項の範囲より低い温度で得られた
試料1と、本発明の請求項の範囲より高い温度で得られ
た試料5は分離性能が劣っており低純度の製品窒素ガス
( N2+Ar,vol%)しか得ることができなかったが、試料
2,3,4は優れた分離性能を有しており高純度の製品
窒素ガスを得ることができた。
【0030】
【図面の簡単な説明】
【図1】実施例1に用いた吸着特性測定装置。
【図2】実施例2に用いた圧力スイング吸着(PSA)
装置。
【符号の説明】
1 真空ポンプ 2、3、8、11、12、13 バルブ 4 試料室 5 調整室 6、7 圧力センサ− 9 記録計 10 圧力計 14、15 ガスレギュレ−タ− 16 窒素ボンベ 17 酸素ボンベ 21 空気圧縮機 22 エア−ドライヤ− 23、23a 吸着塔 24、24a、27、27a、30、30a、33、3
3a、35、37 開閉弁 25、25a 供給路パイプ 28 排気路パイプ 29、29a 取出路パイプ 31 メインパイプ 32 均圧用パイプ 34 サ−ジタンク 36 製品ガス取出パイプ

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 フェノ−ル樹脂/セルロ−ス系複合材を
    粉砕して得た微粉末をバインダ−とともに造粒後、非酸
    化性雰囲気下で700 〜1100℃で炭化することを特徴とす
    る分子ふるい炭素の製造法。
JP5351937A 1993-12-27 1993-12-27 分子ふるい炭素の製造法 Pending JPH07187635A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5351937A JPH07187635A (ja) 1993-12-27 1993-12-27 分子ふるい炭素の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5351937A JPH07187635A (ja) 1993-12-27 1993-12-27 分子ふるい炭素の製造法

Publications (1)

Publication Number Publication Date
JPH07187635A true JPH07187635A (ja) 1995-07-25

Family

ID=18420647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5351937A Pending JPH07187635A (ja) 1993-12-27 1993-12-27 分子ふるい炭素の製造法

Country Status (1)

Country Link
JP (1) JPH07187635A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211911A (ja) * 2001-01-12 2002-07-31 Rengo Co Ltd 親水性高分子由来水酸基含有炭化物及びその製造方法
JP2007063047A (ja) * 2005-08-30 2007-03-15 Kobayashi Kogyo Kk 炭化物成型体及びその製造方法
WO2009157404A1 (ja) * 2008-06-23 2009-12-30 株式会社トクヤマ 多孔質炭素材およびその製造方法
JP2015510482A (ja) * 2011-12-15 2015-04-09 ポステク アカデミー−インダストリー ファウンデイションPostech Academy−Industry Foundation 縮合重合反応を用いた二酸化炭素の固定方法、これにより形成された高分子材料、この高分子材料からの炭素回収方法、及びこの炭素回収方法を通じて生成された黒鉛

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211911A (ja) * 2001-01-12 2002-07-31 Rengo Co Ltd 親水性高分子由来水酸基含有炭化物及びその製造方法
JP2007063047A (ja) * 2005-08-30 2007-03-15 Kobayashi Kogyo Kk 炭化物成型体及びその製造方法
WO2009157404A1 (ja) * 2008-06-23 2009-12-30 株式会社トクヤマ 多孔質炭素材およびその製造方法
US8569206B2 (en) 2008-06-23 2013-10-29 Tokuyama Corporation Porous carbon material and a method of production thereof
JP5443352B2 (ja) * 2008-06-23 2014-03-19 株式会社トクヤマ 多孔質炭素材およびその製造方法
JP2015510482A (ja) * 2011-12-15 2015-04-09 ポステク アカデミー−インダストリー ファウンデイションPostech Academy−Industry Foundation 縮合重合反応を用いた二酸化炭素の固定方法、これにより形成された高分子材料、この高分子材料からの炭素回収方法、及びこの炭素回収方法を通じて生成された黒鉛

Similar Documents

Publication Publication Date Title
Li et al. Space‐Confined Synthesis of ZIF‐67 Nanoparticles in Hollow Carbon Nanospheres for CO2 Adsorption
KR950000880B1 (ko) 카본 분자체용 고용량 코코넛 껍질챠르
KR950014208B1 (ko) 고용량 탄소 분자체를 사용하는 압력 변동 흡착에 의한 공기 분리 방법
EP3356028B1 (en) Method of preparing carbon molecular sieve adsorbents from activated carbon and a polymer
US4933314A (en) Molecular sieving carbon
US4051098A (en) Method of preparing shaped active carbon
US4742040A (en) Process for manufacturing a carbon molecular sieve
JPH08119614A (ja) 活性炭、その製造方法及び電気二重層キャパシター用電極
Ridassepri et al. Activated carbon from bagasse and its application for water vapor adsorption
JP3628399B2 (ja) 有機塩素化合物吸着用活性炭
JPH0531361A (ja) 炭素分子篩吸着剤の製法と、その製法による炭素分子 篩およびそれを使用する選択吸着による気体分離法
Banisheykholeslami et al. Synthesis of a carbon molecular sieve from broom corn stalk via carbon deposition of methane for the selective separation of a CO2/CH4 mixture
Zhang et al. Influence of Lignin units on the properties of Lignin/PAN‐derived carbon fibers
Ozbay et al. Carbon foam production from bio‐based polyols of liquefied spruce tree sawdust: Effects of biomass/solvent mass ratio and pyrolytic oil addition
KR20210092392A (ko) 리그닌 유래 활성탄의 제조방법 및 이에 따라 제조된 활성탄을 포함하는 고분자 복합재료
Afsari et al. Synthesis and characterization of supported Phenolic resin/Carbon nanotubes Carbon membranes for gas separation
CN110734060B (zh) 一种超容炭的制备方法
JPH07187635A (ja) 分子ふるい炭素の製造法
JPH05285379A (ja) 分子ふるい炭素の製造法
Asasian-Kolur et al. Ordered porous carbon preparation by hard templating approach for hydrogen adsorption application
JP2003104720A (ja) 分子ふるい炭素およびそれを用いた圧力スイング吸着装置
CN1120467A (zh) 用果壳(核)制造空分制氮用炭分子筛
JPH0620546B2 (ja) 分子ふるい炭素及びその製造法
CN115594177A (zh) 一种新型催化燃烧吸脱附专用蜂窝活性炭及其制备方法
JP2008094710A (ja) 分子ふるい炭素の製造方法及び分子ふるい炭素