JPH07115042A - 電解コンデンサの製造方法 - Google Patents

電解コンデンサの製造方法

Info

Publication number
JPH07115042A
JPH07115042A JP28196893A JP28196893A JPH07115042A JP H07115042 A JPH07115042 A JP H07115042A JP 28196893 A JP28196893 A JP 28196893A JP 28196893 A JP28196893 A JP 28196893A JP H07115042 A JPH07115042 A JP H07115042A
Authority
JP
Japan
Prior art keywords
organic semiconductor
treatment
electrolytic capacitor
high temperature
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28196893A
Other languages
English (en)
Inventor
Shinichi Kaneko
信一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP28196893A priority Critical patent/JPH07115042A/ja
Publication of JPH07115042A publication Critical patent/JPH07115042A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】 (修正有) 【目的】 冷却固化した有機半導体内部の歪を緩和する
ことにより、電解コンデンサの諸特性の向上に貢献可能
な、優れた電解コンデンサの製造方法を提供する。 【構成】 弁作用金属からなる陽極箔1と陰極箔2間に
スペーサ3を介在すると共に、各電極箔にそれぞれ陽極
端子4及び陰極端子5を取着して巻回してコンデンサ素
子6を形成する。有機半導体材料を上部開口型のケース
7内に収納し、加熱溶融して、有機半導体溶融液とす
る。コンデンサ素子6に有機半導体溶融液を含浸した
後、冷却して固化状態の有機半導体とする。これを、高
温処理(例えば140℃・1時間)・低温処理(例えば
−55℃・1時間)による熱衝撃処理を行う。この後、
ケース7の開口部を封口体にて密封する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、有機半導体材料を含浸
させてなる電解コンデンサの製造方法に関する。
【0002】
【従来の技術】一般に、箔巻形電解コンデンサは、例え
ば高純度アルミニウム箔からなる一対の陽・陰の電極箔
に、同じくアルミニウムからなる一対の引出端子を接続
し、前記一対の陽極・陰極箔相互間にスペーサを介在し
て巻回してなるコンデンサ素子を使用している。このよ
うなコンデンサ素子を使用してなる電解コンデンサとし
て、例えば、コンデンサ素子に駆動用電解液を含浸して
ケースに収納し、このケース開口部を密閉するなどの外
装を施してなる電解コンデンサが存在している。
【0003】しかしながら、上述の駆動用電解液として
は、例えば、エチレングリコールなどの有機溶媒にアジ
ピン酸アンモニウムなどの有機カルボン酸塩を使用して
いるため、tanδ特性改善に限度があり、また、低温
で比抵抗が上がり、低温特性が極度に悪化してしまうた
め、広域温度範囲で使用するには信頼性に欠ける。従っ
て、駆動用電解液を使用してなる電解コンデンサにおい
ては、市場要求を満足することが不可能である。そのた
め、近年では、駆動用電解液に代えて、テトラシアノキ
ノジメタンの錯体(以下、TCNQ錯体)からなる有機
半導体を用いた電解コンデンサが種々提案され、その一
部は実用化されている。
【0004】以上のように、コンデンサ素子にTCNQ
錯体からなる有機半導体を含浸する方法としては、一般
に、溶液含浸法、分散含浸法、さらには真空蒸着法があ
るが、TCNQ錯体は、多種多様の条件で特性が変化
し、極めて扱い難い物質であるため、使用に当たっては
各種の工夫が講じられている。特に、固体電解質の条件
としては、コンデンサ特性としてのtanδ及び等価直
列抵抗に影響するそれ自体としての抵抗値が小さく、且
つ、広範囲の温度範囲においても、安定した比抵抗値が
あることが重要である。そして、コンデンサ素子に対す
るTCNQ錯体からなる有機半導体の含浸に際しては、
コンデンサ素子内部に一様に必要量浸透させることが要
求される。
【0005】このようなコンデンサ素子へのTCNQ錯
体からなる有機半導体の含浸方法としては、特許公報や
技術文献によって従来提案されているように、加熱溶融
液化処理が有望視されている。この加熱溶融液化処理の
具体的な方法としては、一般的に、外装ケースに入れ、
加熱溶融させた所望のTCNQ錯体からなる有機半導体
液に、予め加熱してなるコンデンサ素子を浸漬し、この
素子を構成する絶縁紙(スペーサ)の繊維と電極箔の微
細なエッチングピットを介して毛細管現象により含浸す
る方法が採用されている。
【0006】なお、TCNQ錯体からなる有機半導体を
加熱溶融する際には、通常、アルミなどからなるケース
内にTCNQ錯体からなる有機半導体を一定量秤量し、
ヒータなどの加熱手段によりケース内の有機半導体を溶
融液化する方法が採用されている。この場合、有機半導
体は、高温、特に溶融状態において長時間放置すると抵
抗値が増大し、製品とした場合にtanδ及び等価直列
抵抗の増大や、信頼性寿命試験において静電容量変化が
大きくなるなど、電気的特性が悪化する。このため、含
浸後は、水などの冷媒により急速に冷却する必要があ
る。
【0007】
【発明が解決しようとする課題】しかしながら、上記の
ような従来の電解コンデンサの製造方法には、次のよう
な欠点があった。すなわち、含浸した後の有機半導体の
冷却固化処理において、有機半導体は、約15%の比率
で収縮する。そのため、前記のように含浸後に急速に冷
却を行うと、有機半導体が急激に収縮することによっ
て、固化状態の有機半導体に内部歪(残留歪)が生じ
る。この状態でコンデンサを使用した場合、周囲温度の
上昇により内部歪が緩み、これが陽極箔又は陰極箔と有
機半導体との界面に作用して界面剥離の原因となる。こ
れは、周囲の温度が高い程加速され、また、周囲との温
度差が大きいほど剥離の頻度が多くなる。このような界
面の剥離現象は、特性の低下、特に静電容量変化が大き
くなる一要因になる。また、陽極箔と有機半導体の界面
が剥離することによって、酸化皮膜の損傷が発生する。
この場合、最終工程において酸化皮膜の修復(エージン
グ)が行われるが、TCNQ錯体からなる有機半導体
は、駆動用電解液と異なり、その修復効果は低いもので
ある。このため、完成した電解コンデンサにおいては、
漏れ電流の増大などの諸特性低下を生じる。
【0008】以上のように、従来の電解コンデンサの製
造方法においては、含浸した有機半導体の冷却固化工程
における急激な収縮により、静電容量変化や漏れ電流の
増大などの諸特性の低下を生じてしまうという欠点があ
った。
【0009】本発明は、上記のような従来技術の課題を
解決するために提案されたものであり、その目的は、固
化状態の有機半導体の内部歪を緩和することにより、電
解コンデンサの諸特性の向上に貢献可能な、優れた電解
コンデンサの製造方法を提供することである。
【0010】
【課題を解決するための手段】上記の目的を達成するた
めに、請求項1記載の発明による電解コンデンサの製造
方法は、弁作用金属からなる陽極箔と陰極箔間にスペー
サを介在して巻回してコンデンサ素子を形成し、このコ
ンデンサ素子をケース内に収納すると共に、コンデンサ
素子に有機半導体材料を含浸し、その後、有機半導体材
料を冷却固化してからケースを密閉して電解コンデンサ
を製造する方法において、前記有機半導体材料の含浸後
からケースを密閉するまでの工程中に、有機半導体の含
浸されたコンデンサ素子に高温又は低温による熱衝撃処
理を行うことを特徴とする。
【0011】また、請求項2記載の発明では、請求項1
記載の熱衝撃処理として、有機半導体材料の冷却固化後
に、少なくとも140℃以下の高温処理を行うことを特
徴とする。
【0012】請求項3記載の発明では、請求項1記載の
熱衝撃処理として、高温処理後に低温処理を行い、その
温度差を少なくとも150℃以上とすることを特徴とす
る。
【0013】
【作用】以上のような構成を有する本発明の作用は次の
ようになる。すなわち、溶融液化した有機半導体をコン
デンサ素子に含浸した後は、冷却固化処理により溶融状
態の有機半導体を固化状態とする。この時、有機半導体
は約15%の比率で収縮するが、熱衝撃処理を行うこと
により、内部に発生する歪が緩和される。これにより、
製品とした時に、従来内部歪により発生していた陽極箔
又は陰極箔と有機半導体との界面剥離を防止することが
でき、電気的特性の優れた電解コンデンサを製造するこ
とができる。また、熱衝撃処理は、140℃以下にする
ことにより、有機半導体の熱劣化を防止することができ
る。さらに、高温処理後に低温処理することにより、界
面剥離の防止に高い効果が得られる。
【0014】
【実施例】以下には、本発明による電解コンデンサの製
造方法の一実施例に関して、図面を参照して具体的に説
明する。なお、図1は本発明の一実施例により製造した
電解コンデンサを示す断面図、図2は同じ実施例におい
て形成したコンデンサ素子の構造を示す展開斜視図、図
3は同じ実施例における有機半導体の加熱溶融工程を示
す断面図、図4は本発明の製造方法による電解コンデン
サ(本発明品A〜P)と従来の製造方法による電解コン
デンサ(従来品)における初期特性及び高温負荷試験の
結果を示す表、図5乃至図8は本発明品における各高温
処理毎の高温負荷試験の静電容量変化を示すグラフで、
図5は高温処理が80℃・1h、図6は高温処理が10
0℃・1h、図7は高温処理が120℃・1h、図8は
高温処理が140℃・1hの時のグラフである。
【0015】まず、図2に示すように、アルミニウム箔
表面をエッチング液で粗面化し、表面積を拡大した後、
陽極酸化皮膜を生成して陽極箔1を用意する。同様に、
アルミニウム箔表面をエッチング液で粗面化し、表面積
を拡大して陰極箔2を用意する。これらの陽極箔1、陰
極箔2間に、クラフト紙又はマニラ紙などからなるスペ
ーサ3を介在すると共に、陽極箔1及び陰極箔2の任意
の箇所それぞれに陽極端子4及び陰極端子5を取着して
巻回し、コンデンサ素子6を形成する。
【0016】次に、図3に示すように、例えばアルミニ
ウムなどからなる上部開口型のケース7内に、TCNQ
錯体からなる有機半導体を必要な一定量を秤量し、加熱
溶融して有機半導体溶融液8とする。この後、コンデン
サ素子6を予熱状態でケース7内に収納することによ
り、有機半導体溶融液8をコンデンサ素子6に含浸す
る。そして、十分な含浸時間の後、冷却固化処理を行
い、固化状態の有機半導体とする。そして、冷却固化処
理後は、高温での加熱、又は低温での冷却による熱衝撃
処理を行う。これは、例えば140℃で1時間の高温処
理の後、さらに−55℃で1時間低温処理することによ
り行う。その後、最終的に、常温においてケース7の開
口部を封口体にて密封して、図1に示す電解コンデンサ
を完成する。
【0017】以上の工程においては、冷却固化処理後の
有機半導体を、高温処理・低温処理による熱衝撃処理を
行うことにより、冷却固化処理時の有機半導体の収縮に
伴って生じていた内部歪が緩和される。これにより、本
実施例では、陽極箔又は陰極箔と有機半導体との界面の
剥離の進行を防止することができる。また、剥離があっ
た場合でも、エージングにより十分に修復可能な程度と
なる。これにより、本実施例では、電解コンデンサの静
電容量変化や漏れ電流が低減され、電気的特性が良好と
なる。
【0018】続いて、実際に、前記の工程に基づいて、
本発明の製造方法により電解コンデンサを製造すると共
に、従来の製造方法により電解コンデンサを製造した。
すなわち、本発明及び従来例共に、有機半導体材料とし
て、N−nアミルイソキノリニウムのTCNQ錯体を用
意した。そして、本発明及び従来例共に、直径6.3m
m、長さ9.8mmの円筒状ケースを用意し、コンデン
サ素子への含浸に必要な一定量のTCNQ錯体をそれぞ
れ収納した。この状態で、有機半導体を加熱溶融し、有
機半導体溶融液中に、予熱したコンデンサ素子を浸漬
し、有機半導体溶融液を含浸した。十分な含浸時間の
後、水などの冷媒により有機半導体を冷却固化し、固化
状態の有機半導体とした。そして、本発明においては、
熱衝撃処理として、高温処理の4種類(80℃,100
℃,120℃,140℃/各1h)に対して、それぞれ
に低温処理の3種類(−10℃,−30℃,−55℃/
各1h)及び常温による冷却を組み合わせて行った。こ
の後、最終的に、常温においてケースの開口部を封口体
にて密封して、定格16V−47μFの電解コンデンサ
を完成した。これに対し、従来例においては、冷却固化
後、ケースの開口部を封口体にて密封して、定格16V
−47μFの電解コンデンサを完成した。
【0019】なお、上述のN−nアミルイソキノリニウ
ムのTCNQ錯体からなる有機半導体は、140℃より
も高い温度、特に160℃以上では熱劣化を生じて、等
価直列抵抗が増大するなどの電気的特性が悪化すること
が判明している。このため、熱衝撃処理の高温処理は、
140℃以下で行った。
【0020】このようにして完成した本発明による電解
コンデンサ(本発明品)の16種類と従来技術による電
解コンデンサ(従来品)における初期特性及び高温負荷
試験として105℃で1000時間加熱後の特性を調査
したところ、次の図4に示すような結果が得られた。ま
た、本発明品においては、図5乃至図8に各高温処理毎
の高温負荷試験の結果として静電容量変化をグラフに示
す。
【0021】図4から明らかなように、漏れ電流(L
C)は、従来品においては初期値に比べ高温負荷試験後
の値は増大している。しかし、本発明品においては、初
期値が比較品に比べて小さいだけでなく、高温負荷試験
後の値と初期値はほぼ同一となっている。また、静電容
量変化(ΔC/C)についても、従来品の−42.5%
に対して、温度差の一番小さい本発明品A(80℃・1
h/常温)でも、−32.8%と小さい値となってい
る。そして、他の本発明品はさらに小さい値となってい
る。これについては、図5乃至図8に示すように、加熱
と冷却の温度差が大きい程に、静電容量変化が大幅に小
さい値となっている。このように、従来品に比べ、本発
明品の漏れ電流特性及び静電容量特性は、格段に優れた
ものとなっている。特に、本発明品H(加熱100℃・
1h/冷却−55℃・1h)、本発明品K,L(加熱1
20℃・1h/冷却−30℃,−55℃・1h)、本発
明品N,O,P(加熱140℃・1h/冷却−10℃,
−30℃,−55℃・1h)のように、加熱温度と冷却
温度(高温と低温)の温度差が約150℃以上であれば
高い効果が得られる。
【0022】なお、本発明は前記実施例に限定されるも
のではなく、有機半導体の種類や熱衝撃処理の加熱・冷
却の温度・時間の設定は、自由に選択可能である。例え
ば、熱衝撃処理においては、高温処理・低温処理のそれ
ぞれの温度は、上述の温度に限定されず、適宜変更可能
である。特に、温度差が約150℃以上となるように構
成することにより、漏れ電流特性及び静電容量特性が格
段に優れた電解コンデンサが製造可能となる。
【0023】また、本発明は、熱衝撃処理として高温と
低温の2段階処理に限らず、加熱及び冷却の温度とそれ
ぞれの時間をより細かく段階化して、3段階以上の多数
段階処理として構成することも同様に可能である。例え
ば、高温処理として140℃・15分加熱後、100℃
・45分加熱、そして低温処理として−55℃・30分
後、さらに−10℃・30分冷却する等も可能であり、
前記実施例と同様の作用効果を得られるものである。
【0024】さらに、本発明は、前記実施例の寸法及び
定格を有する電解コンデンサに限定されるものではな
く、多種多様な寸法及び定格を有する各種電解コンデン
サに適用可能であり、その場合にも、前記実施例と同様
の優れた作用効果を得られるものである。すなわち、本
発明は、有機半導体材料の冷却固化処理後に、加熱・冷
却による熱衝撃処理することに特徴を有するものであ
り、この特徴を有する製造方法である限り、他の各種工
程の具体的な構成は自由に選択可能であり、これらの他
の工程の構成に拘らず、前記実施例と同様の優れた作用
効果を得られるものである。
【0025】
【発明の効果】以上説明したように、本発明において
は、有機半導体材料の冷却固化処理後に、有機半導体材
料を、高温処理・低温処理による熱衝撃処理を行うこと
により、従来に比べて、電解コンデンサの諸特性の向上
に貢献可能な、優れた電解コンデンサの製造方法を提供
することができる。
【図面の簡単な説明】
【図1】本発明に従う電解コンデンサの製造方法の一実
施例により製造した電解コンデンサを示す断面図。
【図2】図1の製造方法において形成したコンデンサ素
子の構造を示す展開斜視図。
【図3】図1の製造方法における有機半導体の加熱溶融
工程を示す断面図。
【図4】本発明の製造方法による電解コンデンサ(本発
明品A〜P)と従来の製造方法による電解コンデンサ
(従来品)における初期特性及び高温負荷試験の結果を
示す表。
【図5】図4の高温処理80℃・1hの本発明品におけ
る、高温負荷試験の静電容量変化を示すグラフ。
【図6】図4の高温処理100℃・1hの本発明品にお
ける、高温負荷試験の静電容量変化を示すグラフ。
【図7】図4の高温処理120℃・1hの本発明品にお
ける、高温負荷試験の静電容量変化を示すグラフ。
【図8】図4の高温処理140℃・1hの本発明品にお
ける、高温負荷試験の静電容量変化を示すグラフ。
【符号の説明】
1…陽極箔 2…陰極箔 3…スペーサ 4…陽極端子 5…陰極端子 6…コンデンサ素子 7…ケース 8…有機半導体溶融液

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 弁作用金属からなる陽極箔と陰極箔間に
    スペーサを介在して巻回してコンデンサ素子を形成し、
    このコンデンサ素子をケース内に収納すると共に、コン
    デンサ素子に有機半導体材料を含浸し、その後、有機半
    導体材料を冷却固化してからケースを密閉して電解コン
    デンサを製造する方法において、 前記有機半導体材料の含浸後からケースを密閉するまで
    の工程中で、有機半導体材料に高温又は低温による熱衝
    撃処理を行うことを特徴とする電解コンデンサの製造方
    法。
  2. 【請求項2】 前記熱衝撃処理として、有機半導体材料
    の冷却固化後に、少なくとも140℃以下の高温処理を
    行うことを特徴とする請求項1記載の電解コンデンサの
    製造方法。
  3. 【請求項3】 前記熱衝撃処理として、高温処理後に低
    温処理を行い、その温度差を少なくとも150℃以上と
    することを特徴とする請求項1記載の電解コンデンサの
    製造方法。
JP28196893A 1993-10-15 1993-10-15 電解コンデンサの製造方法 Pending JPH07115042A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28196893A JPH07115042A (ja) 1993-10-15 1993-10-15 電解コンデンサの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28196893A JPH07115042A (ja) 1993-10-15 1993-10-15 電解コンデンサの製造方法

Publications (1)

Publication Number Publication Date
JPH07115042A true JPH07115042A (ja) 1995-05-02

Family

ID=17646414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28196893A Pending JPH07115042A (ja) 1993-10-15 1993-10-15 電解コンデンサの製造方法

Country Status (1)

Country Link
JP (1) JPH07115042A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592282A (en) * 1993-07-22 1997-01-07 York Limited Suppression of stimulated scattering in optical time domain reflectometry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592282A (en) * 1993-07-22 1997-01-07 York Limited Suppression of stimulated scattering in optical time domain reflectometry

Similar Documents

Publication Publication Date Title
JPH04229611A (ja) 固体電解コンデンサ
JPH07115042A (ja) 電解コンデンサの製造方法
JP2783932B2 (ja) 有機半導体固体電解コンデンサの製法
JP3253126B2 (ja) 固体電解コンデンサ
JPH0547607A (ja) 電解コンデンサの製造方法
KR970004277B1 (ko) 고체 전해 콘덴서의 제조방법
JP3162738B2 (ja) 固体電解コンデンサ
JPH04357815A (ja) 固体電解コンデンサの製造方法
JPH03241726A (ja) 電解コンデンサ
JPH09260215A (ja) 固体電解コンデンサの製造方法
JPH01205412A (ja) 固体電解コンデンサの製造方法
JP3363664B2 (ja) 固体電解コンデンサ及びその製造方法
JPH062675U (ja) 固体電解コンデンサ
JPH1050560A (ja) 固体電解コンデンサ
JPH03280520A (ja) 有機半導体固体電解コンデンサの製造方法
JP2771767B2 (ja) 固体電解コンデンサの製造方法
JPH05326344A (ja) 固体電解コンデンサ
JPS60214519A (ja) 固体電解コンデンサの製造方法
JPH03280522A (ja) 有機半導体固体電解コンデンサの製造方法
JPS63100710A (ja) 固体電解コンデンサの製造方法
JPH03276711A (ja) 有機半導体固体電解コンデンサの製造方法
JPH0744131B2 (ja) 固体電解コンデンサの製造方法
JPH06181145A (ja) 電解コンデンサの製造方法
JPH0260047B2 (ja)
JPH04302127A (ja) 固体電解コンデンサの製造方法