JPH0656461B2 - Matrix array - Google Patents

Matrix array

Info

Publication number
JPH0656461B2
JPH0656461B2 JP57075814A JP7581482A JPH0656461B2 JP H0656461 B2 JPH0656461 B2 JP H0656461B2 JP 57075814 A JP57075814 A JP 57075814A JP 7581482 A JP7581482 A JP 7581482A JP H0656461 B2 JPH0656461 B2 JP H0656461B2
Authority
JP
Japan
Prior art keywords
insulating film
matrix array
line
gate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57075814A
Other languages
Japanese (ja)
Other versions
JPS58192090A (en
Inventor
寿源 小平
弘之 大島
敏彦 真野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP57075814A priority Critical patent/JPH0656461B2/en
Priority to GB8311878A priority patent/GB2122419B/en
Priority to FR8307125A priority patent/FR2530868B1/en
Priority to DE19833315669 priority patent/DE3315669A1/en
Priority to FR8313382A priority patent/FR2532116B1/en
Publication of JPS58192090A publication Critical patent/JPS58192090A/en
Priority to SG39888A priority patent/SG39888G/en
Priority to HK70189A priority patent/HK70189A/en
Priority to US08/014,053 priority patent/US5365079A/en
Priority to US08/237,521 priority patent/US5474942A/en
Priority to US08/259,354 priority patent/US6037608A/en
Publication of JPH0656461B2 publication Critical patent/JPH0656461B2/en
Priority to US08/406,419 priority patent/US5650637A/en
Priority to US08/408,979 priority patent/US5552615A/en
Priority to US08/445,030 priority patent/US5573959A/en
Priority to US08/461,933 priority patent/US5677547A/en
Priority to US08/859,494 priority patent/US6316790B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/104Materials and properties semiconductor poly-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明はMOS電界効果型トランジスターを用いたマト
リックスアレーに関するものであって、特にマトリック
スアレーの欠陥の修正を容易にする為の構成方法に関す
るものである。
The present invention relates to a matrix array using a MOS field effect transistor, and more particularly to a method for constructing a matrix array to facilitate the repair of defects.

マトリックスアレーを用いた大面積表示装置の開発が最
近非常に活発に進められており、小型情報機器、ハンデ
ィタイプのテレビ等広範囲にわたる応用が期待されてい
る。平面型の大容量の表示装置としては、スイッチング
素子をマトリックスアレー状に配列したものが最も有望
視されている。
Development of a large-area display device using a matrix array has been actively progressed recently, and it is expected to have a wide range of applications such as small information devices and handy-type televisions. As a flat-panel large-capacity display device, a device in which switching elements are arranged in a matrix array is most promising.

第1図は非線型スイッチング素子をマトリックスアレー
状に配列したアクティブマトリックスアレー基板の構成
の1例を示した配置図である。図中1で囲まれた領域が
表示領域であり、その中に非線型素子2がマトリックス
状に配置されている。3は非線型素子2へのデータ信号
ライン(ソースライン)であり、4は非線型素子2への
タイミング信号ライン(ゲートライン)である。第1図
の様にマトリックスアレー基板を構成した場合発生し易
そ欠陥として、各ライン及び非線型素子のパターニング
時に発生するパターン不良の他に、ソースラインとゲー
トラインの交点における絶縁不良,非線型素子2の絶縁
不良が挙げられる。この内のパターン不良は、工程の改
善、無塵化の撤底等により相当低レベルまで欠陥数を下
げる事が可能であるのに対し、絶縁不良については絶縁
層の質の改善、厚みの増加等により初期的に欠陥数を低
下させる事は可能であっても、静電気等によりマトリッ
クスアレー完成以降にしばしばライン間の絶縁不良欠陥
が発生する。この静電気による欠陥は、第1図を見てわ
かる様に、ソースライン又はゲートラインが、パネルの
表示領域外で静電気を受け、そのラインと直交するライ
ンとの交点の絶縁不良となり、結果として、データ信号
がゲートラインに漏れたり、タイミング信号がソースラ
インに漏れ、絶縁不良個所を含むライン上の画素すべて
の表示が不良となってしまい、いわゆるライン欠陥とな
って、表示特性を著しくそこねる。この様な絶縁不良が
発生した場合の修正方法は、当該絶縁不良個所前後でソ
ースライン又はゲートラインを切断する事による以外に
なく、この様な修正方法ではソースライン又はゲートラ
インが断線してしまい、この断線したラインと接続した
画素はすべて非点燈の欠陥として残りライン欠陥を除去
出来ない。マトリックスアレーを単結晶シリコン基板上
に構成する場合は、静電気保護用のダイオード,抵抗を
シリコン基板内に作り込むことにより、マトリックスア
レーを静電気より保護する事も可能であるが、ガラス板
上にマトリックスアレーを構成した場合、静電気の保護
回路を設け難く、従って前記の様な絶縁不良が多量に発
生し易く、マトリックスアレーの量産は困難である。
FIG. 1 is a layout diagram showing an example of the configuration of an active matrix array substrate in which nonlinear switching elements are arranged in a matrix array. A region surrounded by 1 in the drawing is a display region, and the non-linear elements 2 are arranged in a matrix therein. Reference numeral 3 is a data signal line (source line) to the non-linear element 2, and 4 is a timing signal line (gate line) to the non-linear element 2. As shown in FIG. 1, when the matrix array substrate is configured, defects easily occur in addition to pattern defects that occur when patterning each line and non-linear element, as well as insulation defects and non-linear defects at intersections of source lines and gate lines. Insulation failure of the element 2 may be mentioned. For pattern defects, the number of defects can be reduced to a considerably low level by improving the process, removing dust, etc., whereas for insulation defects, improving the quality of the insulating layer and increasing the thickness. Although it is possible to reduce the number of defects in the initial stage due to factors such as the above, static electricity often causes insulation defect defects between lines after the matrix array is completed. As can be seen from FIG. 1, this static electricity defect causes static electricity on the source line or the gate line outside the display area of the panel, resulting in insulation failure at the intersection of the line and the line orthogonal to that line. The data signal leaks to the gate line, the timing signal leaks to the source line, and the display of all the pixels on the line including the defective insulation portion becomes defective, resulting in a so-called line defect, which significantly impairs the display characteristics. The correction method when such an insulation failure occurs is not only by cutting the source line or the gate line before and after the insulation failure point, and the source line or the gate line is broken by such a correction method. All the pixels connected to this broken line are non-lighting defects, and the remaining line defects cannot be removed. When the matrix array is constructed on a single crystal silicon substrate, it is possible to protect the matrix array from static electricity by forming a diode and a resistor for static electricity protection in the silicon substrate, but the matrix array on the glass plate When the array is configured, it is difficult to provide a static electricity protection circuit, and thus the above-described insulation failure is likely to occur in a large amount, and mass production of the matrix array is difficult.

第2図は、非線型素子にMOS型電界効果トランジスタ
ーを用いたマトリックスアレーの例を示したものであ
り、マトリックスアレー液晶表示装置の1画素の等価回
路を示したものである。5はMOS型電界効果トランジ
スターでありデータ信号のスイッチングを行なう。6は
コンデンサーでありデータ信号の保持用として用いられ
る。7は液晶パネルであり、7−1は液晶駆動素子に対
応して形成された液晶駆動電極であり、7−2は上側ガ
ラスパネルである。第2図の例におけるマトリックスア
レーの具体例を示したものが第3図の(a),(b)であり、
(a)が平面図、(b)は(a)内の一点鎖線イーロに従って切
断した断面図である。これはガラス基板15の上に薄膜
トランジスターを作る事によりマトリックスアレーを構
成した例であって、多結晶シリコン8の表面を熱酸化し
てゲート絶縁膜13とし、次に第2層目の多結晶シリコ
ンを形成し、パターニングする事により、ゲートライン
及びトランジスターのゲート電極9と、電荷蓄積用コン
デンサーの一方の電極12を同時に構成する。さらに、
第2層目の多結晶シリコン9及び12に不純物を拡散す
ると同時に第一層目の多結晶シリコン8のゲート電極9
におおわれていない領域にも不純物を拡散し、トランジ
スターのソース・ドレインを形成する。次に層間絶縁膜
14を全面に形成した後トランジスターのソース・ドレ
イン領域にコンタクト穴を開ける。最後にソースライン
10及び画素駆動電極11を形成して、マトリックスア
レーは完成する。この場合層間絶縁膜14はゲートライ
ン9と、ソースライン10を絶縁しているのみならず、
電極11及び12によって成る電荷蓄積用コンデンサー
の絶縁膜をもかねている為に出来る限り薄くしなけれ
ば、このコンデンサーの容量は十分な値がとれない。例
えば一画素の大きさを1ミリメートル四方とした場合コ
ンデンサーの大きさは画面の明るさから200ミクロン
平方程度までであり、絶縁膜がシリコン酸化で厚さを5
000オングストロームの場合コンデンサー容量は約2.
5ピコファラドしか得られない。これに対し、画素液晶
の容量は液晶厚みを10ミクロンとすると約9ピコファ
ラド有る。コンデンサーの容量は、少なくとも液晶の容
量程度を有しなければ存在価値が無く、理想的には2〜
3倍必要である。従ってこの為には、層間絶縁膜の膜厚
を1/5〜1/10程度に薄くするか、又は面積を5〜
10倍にしなければならない。面積は前記の様にパネル
の明るさから前記の大きさ以上は無理であり、層間絶縁
膜を薄くする方法しか無く、この場合のシリコン酸化膜
では1000オングストローム以下の膜厚でなければな
らない、又比誘電率の大きいシリコン窒化膜を用いた場
合でも誘電率は高々シリコン酸化膜の2倍でしかないの
で膜厚も1000〜2000オングストローム程度に薄
くしなければならない。一方トランジスターのゲート絶
縁膜13について考えると、この厚さは通常薄い場合で
あっても1000〜2000オングストロームあり、場
合によってはトランジスターの耐圧から5000オング
ストローム又はそれ以上必要な時もある。ここで層間絶
縁膜とトランジスターのゲート絶縁膜の耐圧を比べる
と、ゲート絶縁膜はシリコンの熱酸化膜であるので、層
間絶縁膜の様な気相成長法に依ったシリコン酸化膜に比
べ、耐圧は同一膜厚の場合約2倍有り、前記のごとく層
間絶縁膜とゲート絶縁膜の膜厚を1000〜2000オ
ングストロームとした場合必ず層間絶縁膜の方が耐圧が
低くなってしまい、従ってゲートライン又はソースライ
ンに静電気が入った場合の破壊個所は必ずソースライン
とゲートラインが交差した場合は、第3図からわかる様
に、コンデンサー容量が少なくなってしまいコンデンサ
ーを入れた効果が無くなってしまう。
FIG. 2 shows an example of a matrix array using a MOS field effect transistor as a non-linear element, and shows an equivalent circuit of one pixel of a matrix array liquid crystal display device. Reference numeral 5 is a MOS field effect transistor for switching data signals. Reference numeral 6 is a capacitor, which is used for holding a data signal. Reference numeral 7 is a liquid crystal panel, 7-1 is a liquid crystal drive electrode formed corresponding to the liquid crystal drive element, and 7-2 is an upper glass panel. Specific examples of the matrix array in the example of FIG. 2 are (a) and (b) of FIG.
(a) is a plan view and (b) is a cross-sectional view taken along the dashed-dotted line Elo in (a). This is an example in which a matrix array is formed by forming thin film transistors on the glass substrate 15. The surface of the polycrystalline silicon 8 is thermally oxidized to form the gate insulating film 13, and then the second-layer polycrystalline film is formed. By forming and patterning silicon, the gate line 9 and the gate electrode 9 of the transistor and one electrode 12 of the charge storage capacitor are simultaneously formed. further,
Impurities are diffused into the second-layer polycrystalline silicon 9 and 12, and at the same time, the gate electrode 9 of the first-layer polycrystalline silicon 8 is formed.
Impurities are also diffused into the region not covered with the silicon to form the source / drain of the transistor. Next, after forming the interlayer insulating film 14 on the entire surface, contact holes are formed in the source / drain regions of the transistor. Finally, the source line 10 and the pixel drive electrode 11 are formed to complete the matrix array. In this case, the interlayer insulating film 14 not only insulates the gate line 9 from the source line 10,
Since the insulating film of the charge storage capacitor composed of the electrodes 11 and 12 also serves as the charge storage capacitor, the capacitance of this capacitor cannot take a sufficient value unless it is made as thin as possible. For example, when the size of one pixel is 1 mm square, the size of the capacitor is from the brightness of the screen to about 200 μm 2, and the insulating film is made of silicon oxide and has a thickness of 5 mm.
In case of 000 angstrom, the condenser capacity is about 2.
You only get 5 picofarads. On the other hand, the capacity of the pixel liquid crystal is about 9 picofarads when the thickness of the liquid crystal is 10 microns. The capacity of the condenser is of no existence value unless it has at least the capacity of the liquid crystal, and ideally 2 to
It is necessary to triple. Therefore, for this purpose, the film thickness of the interlayer insulating film is reduced to about 1/5 to 1/10, or the area is set to 5
You have to multiply by 10 times. As described above, the area cannot be larger than the above size due to the brightness of the panel, and the only method is to thin the interlayer insulating film. In this case, the silicon oxide film must have a film thickness of 1000 angstroms or less. Even if a silicon nitride film having a large relative dielectric constant is used, the dielectric constant is at most twice that of the silicon oxide film, so the film thickness must be thinned to about 1000 to 2000 angstroms. Considering the gate insulating film 13 of the transistor, on the other hand, this thickness is usually 1000 to 2000 angstroms even if it is thin, and in some cases 5000 angstroms or more is required due to the breakdown voltage of the transistor. Comparing the breakdown voltage between the interlayer insulating film and the gate insulating film of the transistor, since the gate insulating film is a thermal oxide film of silicon, the breakdown voltage is higher than that of a silicon oxide film such as an interlayer insulating film formed by vapor phase epitaxy. Is about twice as large as that of the same thickness, and when the thickness of the interlayer insulating film and the gate insulating film is set to 1000 to 2000 angstroms as described above, the withstand voltage of the interlayer insulating film is always lower. If the source line and the gate line cross each other when the source line is charged with static electricity, the capacity of the capacitor will decrease and the effect of inserting the capacitor will disappear, as can be seen from FIG.

本発明は以上の点に鑑みてなされたものであり、ゲート
ラインとソースラインの交差部での耐圧を高くして、静
電気破壊によって生じた欠陥を修正してもライン状の欠
陥とならず、又コンデンサーの容量も十分な値をとれる
様にしたものである。
The present invention has been made in view of the above points, increasing the breakdown voltage at the intersection of the gate line and the source line, does not become a linear defect even if the defect caused by electrostatic breakdown is corrected, Also, the capacity of the condenser can be set to a sufficient value.

以下本発明を図面によって詳細に説明する。The present invention will be described in detail below with reference to the drawings.

第4図は本発明を実施した1例を示したものであり、
(a)は第3図(b)の断面図と同じ位置での断面図であり、
(b)は、ソースライン10とゲートライン9の交差点近
傍のみを示す平面図である。第4図の各部材番号は第3
図同様であり、製造方法もゲートライン9及びコンデン
サー電極12の形成及び不純物の拡散までは第3図の例
と同一である。層間絶縁膜はまず第一層目のシリコン酸
化膜14−1を基板全面に形成した後、第二層目のシリ
コン酸化膜を基板全面に形成し、フォトエッチング技術
により第4図の14−2の様にゲートライン9とソース
ライン10の交差領域以外の第二層目のシリコン酸化膜
をエッチング除去する。次は第3図の例と同様にトラン
ジスターのソース・ドレイン領域の第1層目のシリコン
酸化膜にコンタクトホールを開け、ソースライン10を
形成して完成する。第一層目のシリコン酸化膜14−1
の厚きはコンデンサー容量を確保する為に1000オン
グストローム以下であり、第二層目のシリコン酸化膜の
膜厚は、ゲートラインとソースライン間の耐圧を考慮し
て5000オングストローム以上が良い。これによりコ
ンデンサーの容量を十分とれて、ゲートラインとソース
ラインの交差点での耐圧をトランジスターのゲート耐圧
より高くする事が可能である。
FIG. 4 shows an example of carrying out the present invention.
(a) is a cross-sectional view at the same position as the cross-sectional view of FIG. 3 (b),
(b) is a plan view showing only the vicinity of the intersection of the source line 10 and the gate line 9. Each member number in FIG. 4 is the third
Similar to the figure, the manufacturing method is the same as the example of FIG. 3 up to formation of the gate line 9 and the capacitor electrode 12 and diffusion of impurities. As the interlayer insulating film, first, the first-layer silicon oxide film 14-1 is formed on the entire surface of the substrate, and then the second-layer silicon oxide film is formed on the entire surface of the substrate. As described above, the second-layer silicon oxide film other than the intersecting region between the gate line 9 and the source line 10 is removed by etching. Next, similarly to the example of FIG. 3, a contact hole is opened in the first layer silicon oxide film of the source / drain region of the transistor, and the source line 10 is formed to complete the process. First layer silicon oxide film 14-1
Is 1000 angstroms or less to secure the capacitance of the capacitor, and the thickness of the second layer silicon oxide film is preferably 5000 angstroms or more in consideration of the breakdown voltage between the gate line and the source line. As a result, the capacitance of the capacitor can be sufficiently secured, and the breakdown voltage at the intersection of the gate line and the source line can be made higher than the gate breakdown voltage of the transistor.

第4図の例では、基板全面に形成する層間絶縁膜14−
1を最初に形成した後、ソースラインとゲートラインの
交差領域にのみ設ける層間絶縁膜14−2を形成した
が、この順序は逆であっても良く、特に両絶縁膜をシリ
コン酸化膜の様に同一物質で形成する場合14−2の方
が厚い為にエッチングが行ない易い。又、第4図の様に
絶縁膜14−1を最初に形成する場合これをシリコン窒
化膜で形成し、絶縁膜14−2をシリコン酸化膜で形成
すれば図の様なパターニングに際し、エッチングの選択
性が有り、より良好である。
In the example of FIG. 4, the interlayer insulating film 14- formed on the entire surface of the substrate
1 was first formed, and then the interlayer insulating film 14-2 provided only in the intersection region of the source line and the gate line was formed. However, the order may be reversed, and both insulating films may be formed like silicon oxide films. In the case of forming the same material, since 14-2 is thicker, etching is easier. Further, when the insulating film 14-1 is first formed as shown in FIG. 4, if it is formed of a silicon nitride film and the insulating film 14-2 is formed of a silicon oxide film, etching during patterning as shown in FIG. It has selectivity and is better.

第5図は本発明の他の実施例を示したものであって(a)
が平面図、(b)は(a)内の一点鎖線ハーニに従って切断し
た断面図である。製造工程は第4図の例と同一であり、
シリコン薄膜8の表面に熱酸化膜13を成長させ、その
上へ2層目のシリコン薄膜9及び12を形成パターニン
グする。さらにこの2層目のシリコン薄膜9及び12
と、シリコン薄膜8の内シリコン薄膜9におおわれてい
ない領域へ不純物の拡散を行なう。この後まず第一層目
の展開絶縁膜14−2をエッチング除去し、コンデンサ
ーの一方の電極として用いるシリコン薄膜12の表面上
の層間絶縁膜は14−1の第一層目のみとする。次にト
ランジスターのソース・ドレイン領域上の層間絶縁膜に
コンタクト穴を開け、ソースライン10及び画素駆動電
極11を形成してアレーは完成する。第4図の例の場合
と同様に層間絶縁膜14−1の膜厚を1000オングス
トローム程度、又層間絶縁膜14−2の膜厚を5000
オングストローム以上とすれば、やはり、ソースライン
とゲートラインの交差部での両ライン間の耐圧をトラン
ジスターのゲート耐圧より高くする事が出来、しかも、
画素内コンデンサーの容量も十分な値とする事が可能で
ある。第5図の場合、厚い層間絶縁膜がトランジスター
をもおおうので、素子の保護に役立ち、信頼性も高くな
る、又厚い層間絶縁膜14−2は第5図内の破線16で
示した様に、コンデンサー電極よりはずす必要はなく、
コンデンサー電極の周辺をおおっても良いが、出来るだ
け層間膜14−2をエッチング除去する面積が大きい程
コンデンサー容量は大きくとれる。尚2つの層間絶縁膜
14−1及び14−2の材料はシリコン酸化膜が一般的
であるが、シリコン窒化膜、アルミナ等でも良く、又2
層の形成順序は第4図の例同様にどちらを先に形成して
も良いことはいうまでもない。又、第5図の実施例で
は、画素駆動電極のデッドスペースが小さくなりコント
ラストの向上になる。この様にゲートライン9はトラン
ジスター8を画素駆動電極11でおおう事は絶縁膜が1
4の1のみの場合も可能であるが、さらに厚い絶縁膜1
4−2の存在によつてシヨート等の欠陥が減少し有効で
ある。
FIG. 5 shows another embodiment of the present invention (a)
Is a plan view, and (b) is a cross-sectional view taken along the dashed-dotted line Hanni in (a). The manufacturing process is the same as in the example of FIG.
A thermal oxide film 13 is grown on the surface of the silicon thin film 8, and second silicon thin films 9 and 12 are formed and patterned thereon. Further, the second silicon thin films 9 and 12
Then, the impurities are diffused into a region of the silicon thin film 8 which is not covered with the silicon thin film 9. After this, first, the developed insulating film 14-2 of the first layer is removed by etching, and the interlayer insulating film on the surface of the silicon thin film 12 used as one electrode of the capacitor is the first layer 14-1 only. Next, contact holes are opened in the interlayer insulating film on the source / drain regions of the transistors, the source lines 10 and the pixel drive electrodes 11 are formed, and the array is completed. As in the case of the example of FIG. 4, the film thickness of the interlayer insulating film 14-1 is about 1000 angstroms, and the film thickness of the interlayer insulating film 14-2 is 5000.
If it is more than Angstrom, the withstand voltage between both lines at the intersection of the source line and the gate line can be higher than the gate withstand voltage of the transistor.
It is possible to set the capacity of the pixel capacitor to a sufficient value. In the case of FIG. 5, since the thick interlayer insulating film also covers the transistor, it is useful for the protection of the device and the reliability is improved. Further, the thick interlayer insulating film 14-2 is as shown by the broken line 16 in FIG. , It is not necessary to remove it from the condenser electrode,
Although the periphery of the capacitor electrode may be covered, the larger the area where the interlayer film 14-2 is removed by etching, the larger the capacity of the capacitor can be. The material of the two interlayer insulating films 14-1 and 14-2 is generally a silicon oxide film, but a silicon nitride film, alumina, etc. may be used.
It goes without saying that the layers may be formed first as in the example of FIG. Further, in the embodiment shown in FIG. 5, the dead space of the pixel drive electrode is reduced and the contrast is improved. In this way, the gate line 9 covers the transistor 8 with the pixel drive electrode 11 so that the insulating film is 1
It is possible to use only 1 of 4 but thicker insulating film 1
The presence of 4-2 is effective in reducing defects such as shorts.

以上の如く、本発明のマトリックスアレーは、複数のゲ
ート線と、該複数のゲート線と絶縁膜を介して直交して
なる複数のソース線と、該複数のゲート線と該複数のソ
ース線の交点に設けられた薄膜トランジスターと、該薄
膜トランジスターに接続された電荷保持用コンデンサー
とよりなるマトリックスアレーにおいて、前記電荷保持
用コンデンサーは2つの電極間に第1の絶縁層を挾持し
てなり、前記ゲート線と前記ソース線の交差領域の前記
絶縁膜は、前記第1の絶縁層と、第2の絶縁層とからな
り、かつ前記絶縁膜は少なくとも前記電荷保持用コンデ
ンサーの第1の絶縁層より厚いことを特徴とするから、
以下のような効果を有する。
As described above, the matrix array of the present invention includes a plurality of gate lines, a plurality of source lines orthogonal to the plurality of gate lines with an insulating film interposed therebetween, a plurality of gate lines and the plurality of source lines. In a matrix array including thin film transistors provided at intersections and charge holding capacitors connected to the thin film transistors, the charge holding capacitor has a first insulating layer sandwiched between two electrodes, The insulating film in the intersection region of the gate line and the source line is composed of the first insulating layer and the second insulating layer, and the insulating film is at least the first insulating layer of the charge holding capacitor. It is characterized by being thick,
It has the following effects.

A)静電気がマトリックスアレーに入った場合は、ゲー
ト線とソース線の交差領域の絶縁層より薄い電荷保持用
コンデンサーの絶縁層もしくは薄膜トランジスター上の
絶縁層が先に絶縁破壊されるため、ゲート線とソース線
の交差部では短絡しない。従って、静電気による影響は
一画素の点欠陥で済み、ライン欠陥が引き起こされるこ
とはない。
A) When static electricity enters the matrix array, the insulation layer of the charge holding capacitor or the insulation layer on the thin film transistor, which is thinner than the insulation layer at the intersection of the gate line and the source line, is destroyed first, so the gate line Do not short-circuit at the intersection of the and source lines. Therefore, the influence of static electricity is sufficient for a point defect of one pixel, and a line defect is not caused.

B)更に、ゲート線とソース線の交差領域の絶縁膜は二
層の絶縁層を重ね合わせて構成されるから、一方の絶縁
層にピンホールが存在しても、他方の絶縁層でも同一箇
所にピンホールができる可能性は極めて低い。従って、
ライン間の短絡欠陥をもほぼ完全に防止することができ
る。
B) Furthermore, since the insulating film in the intersection region of the gate line and the source line is formed by stacking two insulating layers, even if there is a pinhole in one insulating layer, the same position in the other insulating layer. It is extremely unlikely that pinholes will form in the. Therefore,
Short-circuit defects between lines can be almost completely prevented.

C)電荷保持用コンデンサーがあるから、マトリックス
アレーのデータ信号の保持特性が向上する。
C) Since there is a charge holding capacitor, the data signal holding characteristics of the matrix array are improved.

本発明の応用は、上記実施例で示した様にコンデンサー
電極を独立して設けたマトリックスアレーに限らず、隣
接画素のゲートラインを当該画素のコンデンサー電極と
共用するタイプのマトリックスアレーにも適用可能であ
る。
The application of the present invention is not limited to the matrix array in which the capacitor electrodes are independently provided as shown in the above embodiment, but can be applied to the matrix array of the type in which the gate line of the adjacent pixel is shared with the capacitor electrode of the pixel. Is.

【図面の簡単な説明】[Brief description of drawings]

第1図はマトリックスアレーの構成例を示した配置図、
第2図は表示体に液晶を用いたマトリックスアレー表示
装置の例を等価回路を示した配線図であり、第3図
(a),(b)は第2図の例の具体例を示す平面図及び断面図
である。 第4図(a),(b)は本発明を実施した例を示した平面図及
び断面図であり、又第5図(a),(b)は本発明の他の実施
例を示した平面図及び断面図である。
FIG. 1 is a layout diagram showing a configuration example of a matrix array,
FIG. 2 is a wiring diagram showing an equivalent circuit of an example of a matrix array display device using a liquid crystal as a display body.
(a), (b) is the top view and sectional drawing which show the specific example of the example of FIG. 4 (a) and 4 (b) are a plan view and a sectional view showing an example in which the present invention is carried out, and FIGS. 5 (a) and 5 (b) show another embodiment of the present invention. It is a top view and a sectional view.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真野 敏彦 長野県諏訪市大和3丁目3番5号 株式会 社諏訪精工舎内 (56)参考文献 特開 昭58−125087(JP,A) 特開 昭54−152894(JP,A) 特開 昭58−190042(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Mano 3-3-5 Yamato, Suwa City, Nagano Stock Company Suwa Seikosha Co., Ltd. (56) Reference JP-A-58-125087 (JP, A) 54-152894 (JP, A) JP-A-58-190042 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数のゲート線と、該複数のゲート線と絶
縁膜を介して直交してなる複数のソース線と、該複数の
ゲート線と該複数のソース線の交点に設けられた薄膜ト
ランジスターと、該薄膜トランジスターに接続された電
荷保持用コンデンサーとよりなるマトリックスアレーに
おいて、 前記電荷保持用コンデンサーは2つの電極間に第1の絶
縁層を挾持してなり、 前記ゲート線と前記ソース線の交差領域の前記絶縁膜
は、前記第1の絶縁層と、第2の絶縁層とからなり、か
つ前記絶縁膜は少なくとも前記電荷保持用コンデンサー
の第1の絶縁層より厚いことを特徴とするマトリックス
アレー。
1. A thin film provided at a plurality of gate lines, a plurality of source lines orthogonal to the plurality of gate lines via an insulating film, and a thin film provided at an intersection of the plurality of gate lines and the plurality of source lines. A matrix array including a transistor and a charge holding capacitor connected to the thin film transistor, wherein the charge holding capacitor sandwiches a first insulating layer between two electrodes, and the gate line and the source line. Is characterized in that the insulating film in the intersection region of is composed of the first insulating layer and the second insulating layer, and the insulating film is at least thicker than the first insulating layer of the charge holding capacitor. Matrix array.
JP57075814A 1982-04-30 1982-05-06 Matrix array Expired - Lifetime JPH0656461B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP57075814A JPH0656461B2 (en) 1982-05-06 1982-05-06 Matrix array
GB8311878A GB2122419B (en) 1982-04-30 1983-04-29 A thin film transistor and an active matrix liquid crystal display device
FR8307125A FR2530868B1 (en) 1982-04-30 1983-04-29 THIN FILM TRANSISTOR AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
DE19833315669 DE3315669A1 (en) 1982-05-06 1983-04-29 Liquid crystal display device
FR8313382A FR2532116B1 (en) 1982-04-30 1983-08-17 THIN FILM TRANSISTOR AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
SG39888A SG39888G (en) 1982-04-30 1988-06-20 An active matrix liquid crystal display device
HK70189A HK70189A (en) 1982-04-30 1989-08-31 An active matrix liquid crystal display device
US08/014,053 US5365079A (en) 1982-04-30 1993-02-05 Thin film transistor and display device including same
US08/259,354 US6037608A (en) 1982-04-30 1994-05-03 Liquid crystal display device with crossover insulation
US08/237,521 US5474942A (en) 1982-04-30 1994-05-03 Method of forming a liquid crystal display device
US08/406,419 US5650637A (en) 1982-04-30 1995-03-20 Active matrix assembly
US08/408,979 US5552615A (en) 1982-04-30 1995-03-23 Active matrix assembly with double layer metallization over drain contact region
US08/445,030 US5573959A (en) 1982-04-30 1995-05-19 Method of forming a liquid crystal device
US08/461,933 US5677547A (en) 1982-04-30 1995-06-05 Thin film transistor and display device including same
US08/859,494 US6316790B1 (en) 1982-04-30 1997-05-20 Active matrix assembly with light blocking layer over channel region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57075814A JPH0656461B2 (en) 1982-05-06 1982-05-06 Matrix array

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP7666395A Division JP2565148B2 (en) 1995-03-31 1995-03-31 Matrix array manufacturing method
JP7666495A Division JP2677237B2 (en) 1995-03-31 1995-03-31 Manufacturing method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS58192090A JPS58192090A (en) 1983-11-09
JPH0656461B2 true JPH0656461B2 (en) 1994-07-27

Family

ID=13587019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57075814A Expired - Lifetime JPH0656461B2 (en) 1982-04-30 1982-05-06 Matrix array

Country Status (2)

Country Link
JP (1) JPH0656461B2 (en)
DE (1) DE3315669A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3734412A1 (en) * 1987-05-14 1989-01-05 Licentia Gmbh Liquid-crystal display device
JP2589327B2 (en) * 1987-11-14 1997-03-12 株式会社リコー Method for manufacturing thin film transistor
JPH0816757B2 (en) * 1988-11-18 1996-02-21 シャープ株式会社 Transmissive active matrix liquid crystal display device
US5187609A (en) * 1991-03-27 1993-02-16 Disanto Frank J Electrophoretic display panel with semiconductor coated elements
US5557534A (en) * 1995-01-03 1996-09-17 Xerox Corporation Forming array with metal scan lines to control semiconductor gate lines
JP2907177B2 (en) * 1997-03-10 1999-06-21 セイコーエプソン株式会社 Liquid crystal device
WO2010131393A1 (en) * 2009-05-12 2010-11-18 シャープ株式会社 Wiring structure, wiring substrate, liquid crystal display panel, and method for manufacturing wiring structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840695A (en) * 1972-10-10 1974-10-08 Westinghouse Electric Corp Liquid crystal image display panel with integrated addressing circuitry
GB2081018B (en) * 1980-07-31 1985-06-26 Suwa Seikosha Kk Active matrix assembly for display device
JPS58190042A (en) * 1982-04-28 1983-11-05 Toshiba Corp Thin film semiconductor device

Also Published As

Publication number Publication date
JPS58192090A (en) 1983-11-09
DE3315669A1 (en) 1983-12-08

Similar Documents

Publication Publication Date Title
JP3708637B2 (en) Liquid crystal display device
JP3844913B2 (en) Active matrix type liquid crystal display device
US5166816A (en) Liquid crystal display panel with reduced pixel defects
JP2850850B2 (en) Method for manufacturing semiconductor device
JPH0816756B2 (en) Transmissive active matrix liquid crystal display device
JP2682997B2 (en) Liquid crystal display device with auxiliary capacitance and method of manufacturing liquid crystal display device with auxiliary capacitance
JP2711015B2 (en) Matrix type display device
JPH0656461B2 (en) Matrix array
JPH04313729A (en) Liquid crystal display device
JP2870072B2 (en) Liquid crystal display
JP2565148B2 (en) Matrix array manufacturing method
JPH0444014A (en) Active matrix type liquid crystal display device
JP2677237B2 (en) Manufacturing method of liquid crystal display device
JPH03114028A (en) Thin film transistor matrix and its production
JPH0427920A (en) Liquid crystal display device
JPS6236687A (en) Display unit
KR0144233B1 (en) Manufacturing method and apparatus of active matrix lcd
JP2907177B2 (en) Liquid crystal device
JPH0572561A (en) Active matrix substrate
JP3083965B2 (en) Active matrix substrate
JP2687967B2 (en) Liquid crystal display
JPH09274202A (en) Thin-film transistor array substrate
JP4075220B2 (en) Display panel and manufacturing method thereof
JPH0618922A (en) Liquid crystal display device
JPH05257161A (en) Active matrix substrate