JPH0627591B2 - 吸収冷凍機 - Google Patents
吸収冷凍機Info
- Publication number
- JPH0627591B2 JPH0627591B2 JP21526385A JP21526385A JPH0627591B2 JP H0627591 B2 JPH0627591 B2 JP H0627591B2 JP 21526385 A JP21526385 A JP 21526385A JP 21526385 A JP21526385 A JP 21526385A JP H0627591 B2 JPH0627591 B2 JP H0627591B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- generator
- absorber
- cold water
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は溶液流量調節装置と加熱量調節装置とを備えた
吸収冷凍機(以下、この種の吸収冷凍機という)の改良
に関する。
吸収冷凍機(以下、この種の吸収冷凍機という)の改良
に関する。
(ロ) 従来の技術 この種の吸収冷凍機の従来の技術として、例えば特公昭
58−34730号公報や特公昭59−52348号公
報などにみられるように、蒸発器の冷水出口温度を感知
する温度検出器の信号により温度調節器(およびポテン
ショメータ)を介して稀溶液流量調節弁と発生器の加熱
量調節弁とを比例制御するもの(以下、第1従来例とい
う)が知られている。また、この種の吸収冷凍機の別の
従来の技術として、加熱量調節弁を蒸発器の冷水出口温
度に応じて制御する一方で稀溶液流量調節弁を冷水入口
温度に応じて制御するもの〔例えば、特公昭54−35
342号公報〕(以下、第2従来例という)が知られて
いる。さらにまた、別の従来の技術として、例えば特公
昭56−53239号公報にみられるように、二重効用
吸収冷凍機の低温溶液熱交換器から吸収器に至る濃液管
路を分岐して一方の管路および他方の管路をいずれも開
閉弁を介して吸収器の上部および下部に接続し、これら
開閉弁を高温発生器の吸収液温度を検知して作動する制
御器で開閉制御することにより、冷凍機の起動時におけ
る濃液の吸収器への散布を中断するもの(以下、第3従
来例という)が知られている。
58−34730号公報や特公昭59−52348号公
報などにみられるように、蒸発器の冷水出口温度を感知
する温度検出器の信号により温度調節器(およびポテン
ショメータ)を介して稀溶液流量調節弁と発生器の加熱
量調節弁とを比例制御するもの(以下、第1従来例とい
う)が知られている。また、この種の吸収冷凍機の別の
従来の技術として、加熱量調節弁を蒸発器の冷水出口温
度に応じて制御する一方で稀溶液流量調節弁を冷水入口
温度に応じて制御するもの〔例えば、特公昭54−35
342号公報〕(以下、第2従来例という)が知られて
いる。さらにまた、別の従来の技術として、例えば特公
昭56−53239号公報にみられるように、二重効用
吸収冷凍機の低温溶液熱交換器から吸収器に至る濃液管
路を分岐して一方の管路および他方の管路をいずれも開
閉弁を介して吸収器の上部および下部に接続し、これら
開閉弁を高温発生器の吸収液温度を検知して作動する制
御器で開閉制御することにより、冷凍機の起動時におけ
る濃液の吸収器への散布を中断するもの(以下、第3従
来例という)が知られている。
(ハ) 発明が解決しようとする問題点 上記した第1従来例および第2従来例のものは、冷凍出
力より直接の影響を受ける冷水出口温度に応じて加熱量
調節弁を比例制御するため負荷に見合う冷凍出力が発揮
されるよう加熱量制御できる利点を有するものの、加熱
量制御の動作は比例動作〔P動作〕であって冷水出口温
度の比例帯があるためこの温度が負荷の変化によって変
ってしまう欠点をもっている。それ故、第1従来例およ
び第2従来例のものは、クリーンルームや化学プロセス
用設備などのように一定温度の冷水を必要とする設備を
用いる吸収冷凍機として、不向きという問題点をもって
いる。また、第1従来例のものは発生器の加熱量に見合
うように発生器への稀液供給量の調節できる利点を有
し、第2従来例のものはこの利点に加えて燃料使用率が
より一層低くなる利点を有するものの、これらは共に発
生器への稀液供給量を調節するものであって冷凍出力に
直接の影響を及ぼす吸収器への濃液供給量を調節するも
のでないため、負荷の急変(例えば、クリーンルームの
稼動数を激減または激増させたような場合)に対して制
御の追従性が悪く、所定温度の冷水を安定的に負荷側へ
供給することが難しいという問題点を有している。な
お、濃液流路に流量制御弁を設けてこの開度を制御する
ことにより、吸収器への濃液供給量を調節するもの〔例
えば、特開昭59−44557号公報〕が提案されてい
るけれども、このものにおいては、発生器側と吸収器側
との圧力差があまり変らない場合、吸収器への濃液供給
量を急増させることが困難であるため、負荷の急増に対
する制御の追従性に劣るという問題点がある。
力より直接の影響を受ける冷水出口温度に応じて加熱量
調節弁を比例制御するため負荷に見合う冷凍出力が発揮
されるよう加熱量制御できる利点を有するものの、加熱
量制御の動作は比例動作〔P動作〕であって冷水出口温
度の比例帯があるためこの温度が負荷の変化によって変
ってしまう欠点をもっている。それ故、第1従来例およ
び第2従来例のものは、クリーンルームや化学プロセス
用設備などのように一定温度の冷水を必要とする設備を
用いる吸収冷凍機として、不向きという問題点をもって
いる。また、第1従来例のものは発生器の加熱量に見合
うように発生器への稀液供給量の調節できる利点を有
し、第2従来例のものはこの利点に加えて燃料使用率が
より一層低くなる利点を有するものの、これらは共に発
生器への稀液供給量を調節するものであって冷凍出力に
直接の影響を及ぼす吸収器への濃液供給量を調節するも
のでないため、負荷の急変(例えば、クリーンルームの
稼動数を激減または激増させたような場合)に対して制
御の追従性が悪く、所定温度の冷水を安定的に負荷側へ
供給することが難しいという問題点を有している。な
お、濃液流路に流量制御弁を設けてこの開度を制御する
ことにより、吸収器への濃液供給量を調節するもの〔例
えば、特開昭59−44557号公報〕が提案されてい
るけれども、このものにおいては、発生器側と吸収器側
との圧力差があまり変らない場合、吸収器への濃液供給
量を急増させることが困難であるため、負荷の急増に対
する制御の追従性に劣るという問題点がある。
また、第3従来例のものは、高温発生器を循環する吸収
液が十分に濃縮されて所定の沸騰温度に達するまで吸収
器への濃液の散布を中断して吸収器での冷媒の吸収作用
を止めるので、吸収冷凍機の起動時の立上り性能を向上
できる利点を有するけれども、負荷の急増時に急増した
負荷に見合う冷凍出力を発揮させつつ吸収液濃度を高め
ることができないという問題点を有している。
液が十分に濃縮されて所定の沸騰温度に達するまで吸収
器への濃液の散布を中断して吸収器での冷媒の吸収作用
を止めるので、吸収冷凍機の起動時の立上り性能を向上
できる利点を有するけれども、負荷の急増時に急増した
負荷に見合う冷凍出力を発揮させつつ吸収液濃度を高め
ることができないという問題点を有している。
本発明は、これらの問題点に鑑み、負荷に対する冷凍出
力制御の追従性に秀れ、また、ほぼ所定温度の冷水の負
荷への供給が可能であり、かつまた、負荷の急変時にそ
の負荷に見合う冷凍出力を発揮しつつ吸収液の濃縮を効
率良く行ない得るこの種の吸収冷凍機の提供を目的とし
たものである。
力制御の追従性に秀れ、また、ほぼ所定温度の冷水の負
荷への供給が可能であり、かつまた、負荷の急変時にそ
の負荷に見合う冷凍出力を発揮しつつ吸収液の濃縮を効
率良く行ない得るこの種の吸収冷凍機の提供を目的とし
たものである。
(ニ) 問題点を解決するための手段 本発明は、上記の問題点を解決する手段として、吸収
器、発生器、凝縮器及び蒸発器を配管接続して冷媒及び
溶液の流路を形成し、かつ、吸収器から発生器に至る稀
溶液の流路に設けられた吐出量可変の稀液用ポンプと、
発生器から吸収器に至る濃溶液の流路に設けられた吐出
量可変の濃液用ポンプと、蒸発器の冷水入口温度を検出
する第1の温度検出器と、この第1の温度検出器が検出
した温度により濃液用ポンプの吐出量を制御する濃溶液
流量調節装置と、蒸発器の冷水出口温度を検出する第2
の温度検出器と、この第2の温度検出器が検出した温度
により発生器の加熱量を制御する加熱量調節装置と、発
生器の溶液温度を検出する第3の温度検出器と、この第
3の温度検出器が検出した温度により稀液用ポンプの吐
出量を御御する稀溶液流量調節装置とを備えた構成とし
たものである。
器、発生器、凝縮器及び蒸発器を配管接続して冷媒及び
溶液の流路を形成し、かつ、吸収器から発生器に至る稀
溶液の流路に設けられた吐出量可変の稀液用ポンプと、
発生器から吸収器に至る濃溶液の流路に設けられた吐出
量可変の濃液用ポンプと、蒸発器の冷水入口温度を検出
する第1の温度検出器と、この第1の温度検出器が検出
した温度により濃液用ポンプの吐出量を制御する濃溶液
流量調節装置と、蒸発器の冷水出口温度を検出する第2
の温度検出器と、この第2の温度検出器が検出した温度
により発生器の加熱量を制御する加熱量調節装置と、発
生器の溶液温度を検出する第3の温度検出器と、この第
3の温度検出器が検出した温度により稀液用ポンプの吐
出量を御御する稀溶液流量調節装置とを備えた構成とし
たものである。
(ホ) 作 用 本発明によるこの種の吸収冷凍機は、冷凍出力に直接の
影響を及ぼす吸収器の冷媒吸収能力を濃液用ポンプの吐
出量制御で調整する機能(作用)をもつので、冷凍出力
制御の追従性に秀れる。かつまた、濃液用ポンプの吐出
量制御を負荷の変化に直接影響される冷水入口温度に応
じて行なうことにより負荷に対応した吸収器の能力調整
機能をこの種の吸収冷凍機にもたらすので、その冷凍出
力を急変した負荷にほぼ見合うよう迅速に調節すること
も可能となる。また、冷水出口温度の決定要因となる蒸
発器および吸収器内の飽和温度、飽和蒸気圧に影響を及
ぼす吸収液濃度すなわち吸収液の濃縮度合を左右する加
熱量制御が冷水出口温度の検出器の信号により加熱量調
節装置を介して行なわれるので、冷水出口温度を目標値
にほぼ保つことが可能になる。
影響を及ぼす吸収器の冷媒吸収能力を濃液用ポンプの吐
出量制御で調整する機能(作用)をもつので、冷凍出力
制御の追従性に秀れる。かつまた、濃液用ポンプの吐出
量制御を負荷の変化に直接影響される冷水入口温度に応
じて行なうことにより負荷に対応した吸収器の能力調整
機能をこの種の吸収冷凍機にもたらすので、その冷凍出
力を急変した負荷にほぼ見合うよう迅速に調節すること
も可能となる。また、冷水出口温度の決定要因となる蒸
発器および吸収器内の飽和温度、飽和蒸気圧に影響を及
ぼす吸収液濃度すなわち吸収液の濃縮度合を左右する加
熱量制御が冷水出口温度の検出器の信号により加熱量調
節装置を介して行なわれるので、冷水出口温度を目標値
にほぼ保つことが可能になる。
さらにまた、本発明の吸収冷凍機は、発生器の加熱量調
節に伴なって変化する発生器内の吸収液温度を検知しつ
つ稀液用ポンプの吐出量を制御することにより、発生器
に流入する稀溶液量を調節して発生器内の吸収液の温度
すなわち沸騰温度を所定の範囲内に維持する機能をもつ
と共に加熱量に見合う発生器への稀液供給量に維持する
機能をもつ。これにより、発生器の熱効率を高水準に保
って吸収液を濃縮することが可能になると共に発生器内
の飽和蒸気圧を所定の範囲内に保ちつつ発生器における
吸収液の出入量をほぼバランスさせることも可能にな
る。かつまた、本発明の吸収冷凍機は、濃液用ポンプと
稀液用ポンプとで溶液流量を調節するため、機内での吸
収液の偏在を軽減する機能をもつ。それ故、吸収液の機
内循環を良好に保ちつつ吸収冷凍機の安定した運転を続
け得ると共に効率良く吸収液の濃縮を行ない得る一方
で、濃液用ポンプの制御による吸収器の能力調整を行な
って急変する負荷に見合う冷凍出力を吸収冷凍機に発揮
させ得る。
節に伴なって変化する発生器内の吸収液温度を検知しつ
つ稀液用ポンプの吐出量を制御することにより、発生器
に流入する稀溶液量を調節して発生器内の吸収液の温度
すなわち沸騰温度を所定の範囲内に維持する機能をもつ
と共に加熱量に見合う発生器への稀液供給量に維持する
機能をもつ。これにより、発生器の熱効率を高水準に保
って吸収液を濃縮することが可能になると共に発生器内
の飽和蒸気圧を所定の範囲内に保ちつつ発生器における
吸収液の出入量をほぼバランスさせることも可能にな
る。かつまた、本発明の吸収冷凍機は、濃液用ポンプと
稀液用ポンプとで溶液流量を調節するため、機内での吸
収液の偏在を軽減する機能をもつ。それ故、吸収液の機
内循環を良好に保ちつつ吸収冷凍機の安定した運転を続
け得ると共に効率良く吸収液の濃縮を行ない得る一方
で、濃液用ポンプの制御による吸収器の能力調整を行な
って急変する負荷に見合う冷凍出力を吸収冷凍機に発揮
させ得る。
(ヘ) 実施例 第1図は本発明によるこの種の吸収冷凍機の一実施例を
示した概略構成説明図である。第1図において、(1)は
高温発生器、(2)は低温発生器(3)および凝縮器(4)より
成る発生凝縮器、(5)は蒸発器(6)および吸収器(7)より
成る蒸発吸収器、(8),(9)はそれぞれ低温,高温溶液熱
交換器、(10)は吸収器(7)の稀液溜め、(11)は稀液溜め
(10)への溢流口(12)を有する濃液溜め、(13)は溶液散布
器、(14)は蒸発器(6)の冷媒液溜め、(15)は冷媒液散布
器、(PLA)は稀液用ポンプ、(PHA)は濃液用ポンプ、
(PR)は冷媒液用ポンプで、これらは冷媒の流れる管(1
6),(17)、冷媒液の流下する管(18)、冷媒液の還流する
管(19),(20)、稀液の送られる管(21),(22),(23),(2
4)、中間液の流下する管(25),(26)、濃液の流下する管
(27),(28)、濃液の送られる管(29),(30)により接続さ
れて冷媒〔水〕および吸収液〔臭化リチウム水溶液〕の
循環路が構成されている。
示した概略構成説明図である。第1図において、(1)は
高温発生器、(2)は低温発生器(3)および凝縮器(4)より
成る発生凝縮器、(5)は蒸発器(6)および吸収器(7)より
成る蒸発吸収器、(8),(9)はそれぞれ低温,高温溶液熱
交換器、(10)は吸収器(7)の稀液溜め、(11)は稀液溜め
(10)への溢流口(12)を有する濃液溜め、(13)は溶液散布
器、(14)は蒸発器(6)の冷媒液溜め、(15)は冷媒液散布
器、(PLA)は稀液用ポンプ、(PHA)は濃液用ポンプ、
(PR)は冷媒液用ポンプで、これらは冷媒の流れる管(1
6),(17)、冷媒液の流下する管(18)、冷媒液の還流する
管(19),(20)、稀液の送られる管(21),(22),(23),(2
4)、中間液の流下する管(25),(26)、濃液の流下する管
(27),(28)、濃液の送られる管(29),(30)により接続さ
れて冷媒〔水〕および吸収液〔臭化リチウム水溶液〕の
循環路が構成されている。
(31)は高温発生器(1)の燃焼加熱室、(32),(32)…は燃
燒ガスの流れる管、(33)は低温発生器(3)の加熱器、(3
4)は凝縮器(4)の冷却器、(35)は蒸発器(6)の熱交換器、
(36)は吸収器(7)の冷却器である。また、(37),(38)は
負荷側熱交換ユニット〔図示せず〕と熱交換器(35)とを
結んだ管路、(39),(40),(41)は冷却器(36),(34)を直
列に結んだ管路、(42)は送風機(F)とバーナー(B)を結ん
だ空気供給路、(43)はバーナー(B)と燃料タンク〔図示
せず〕とを結んだ燃料供給路である。そして、空気供給
路(42)、燃料供給路(43)にはそれぞれダンパー(D)、燃
料制御弁(VF)が備えてある。
燒ガスの流れる管、(33)は低温発生器(3)の加熱器、(3
4)は凝縮器(4)の冷却器、(35)は蒸発器(6)の熱交換器、
(36)は吸収器(7)の冷却器である。また、(37),(38)は
負荷側熱交換ユニット〔図示せず〕と熱交換器(35)とを
結んだ管路、(39),(40),(41)は冷却器(36),(34)を直
列に結んだ管路、(42)は送風機(F)とバーナー(B)を結ん
だ空気供給路、(43)はバーナー(B)と燃料タンク〔図示
せず〕とを結んだ燃料供給路である。そして、空気供給
路(42)、燃料供給路(43)にはそれぞれダンパー(D)、燃
料制御弁(VF)が備えてある。
なお、(V1)、(V2)、(V3)は、それぞれ、管(25)と
蒸発吸収器(5)とを結んだ管(44)、管(25)と管(21)とを
結んだ管(45)、冷媒液溜め(14)と管(22)とを結んだ管(4
6)に備えた冷温切換弁であり、これらは冷凍運転の際に
閉止されている。これら冷温切換弁を開いて運転し、熱
交換器(35)から温水(あるいは温風)を得る際には、管
(39),(40),(41)への冷却水(あるいは冷却用空気)の
流通を断ち冷媒液用ポンプ(PR)および濃液用ポンプ
(PHA)の作動を止めるようになっている。なおまた、
(47)は冷媒液ブロー用の管で、この管には開閉弁(VB)
が備えてある。
蒸発吸収器(5)とを結んだ管(44)、管(25)と管(21)とを
結んだ管(45)、冷媒液溜め(14)と管(22)とを結んだ管(4
6)に備えた冷温切換弁であり、これらは冷凍運転の際に
閉止されている。これら冷温切換弁を開いて運転し、熱
交換器(35)から温水(あるいは温風)を得る際には、管
(39),(40),(41)への冷却水(あるいは冷却用空気)の
流通を断ち冷媒液用ポンプ(PR)および濃液用ポンプ
(PHA)の作動を止めるようになっている。なおまた、
(47)は冷媒液ブロー用の管で、この管には開閉弁(VB)
が備えてある。
(Sexw)は熱交換器(35)から流出する冷水〔冷風〕ある
いは温水〔温風〕の温度(以下、冷水出口温度という)
を感知する第2の温度検出器(以下、検出器という)
で、この検出器の信号によりPIもしくはPID調節器
(CVD)を介してダンパー(D)および燃料制御弁(VF)の
開度が制御されるようになっている。調節器(CVD)に
PI調節器を用いた場合、この調節器の制御動作は下記
(a)式で示される。
いは温水〔温風〕の温度(以下、冷水出口温度という)
を感知する第2の温度検出器(以下、検出器という)
で、この検出器の信号によりPIもしくはPID調節器
(CVD)を介してダンパー(D)および燃料制御弁(VF)の
開度が制御されるようになっている。調節器(CVD)に
PI調節器を用いた場合、この調節器の制御動作は下記
(a)式で示される。
M=100/P{e+1/TI・∫edt}……(a) なお、(a)式において、Mは操作量〔ダンパー(D)および
燃料制御弁(VF)の開度〕、Pは比例動作の強さを表わ
す定数〔比例帯とも称される。〕100/Pは比例ゲイ
ン、eは偏差〔制御偏差や制御動作信号とも称される。
この実施例では冷水出口温度Xとその目標温度Vとの差
を意味する。〕、TIは積分の強さを表わす定数〔積分
時間とも称される。〕である。
燃料制御弁(VF)の開度〕、Pは比例動作の強さを表わ
す定数〔比例帯とも称される。〕100/Pは比例ゲイ
ン、eは偏差〔制御偏差や制御動作信号とも称される。
この実施例では冷水出口温度Xとその目標温度Vとの差
を意味する。〕、TIは積分の強さを表わす定数〔積分
時間とも称される。〕である。
また、調節器(CVD)にPID調節器を用いた場合、こ
の調節器の制御動作は下記(b)式で示される。
の調節器の制御動作は下記(b)式で示される。
M=100/P{e+1/TI・∫edt+TD・de/dt}…(b) なお、(b)式において、TDは微分の強さを表わす定数
で微分時間と称される。その他の記号は(a)式と同じで
ある。これら(a),(b)式で示されるように、ダンパー
(D)および燃料制御弁(VF)の開度M〔操作量〕は冷水
出口目標温度Vに対する冷水出口温度Xの差e〔制御偏
差〕と時間tとを変数にした関数になる。
で微分時間と称される。その他の記号は(a)式と同じで
ある。これら(a),(b)式で示されるように、ダンパー
(D)および燃料制御弁(VF)の開度M〔操作量〕は冷水
出口目標温度Vに対する冷水出口温度Xの差e〔制御偏
差〕と時間tとを変数にした関数になる。
(Senw)は負荷側熱交換ユニット〔図示せず〕から熱交
換器(35)に流入する冷水〔冷風〕の温度(以下、冷水入
口温度という)を感知する第1の温度検出器(以下、検
出器という)であり、この検出器の信号により調節器
(CPHA)を介して濃液用ポンプ(PHA)の吐出量が比例
制御されるようになっている。
換器(35)に流入する冷水〔冷風〕の温度(以下、冷水入
口温度という)を感知する第1の温度検出器(以下、検
出器という)であり、この検出器の信号により調節器
(CPHA)を介して濃液用ポンプ(PHA)の吐出量が比例
制御されるようになっている。
(SGA)は高温発生器(1)の吸収液温度を感知する第3の
温度検出器(以下、検出器という)であり、この検出器
の信号により調節器(CPLA)を介して稀液用ポンプ(P
LA)の吐出量が比例制御されるようになっている。な
お、(I1)、(I2)はインバーターである。
温度検出器(以下、検出器という)であり、この検出器
の信号により調節器(CPLA)を介して稀液用ポンプ(P
LA)の吐出量が比例制御されるようになっている。な
お、(I1)、(I2)はインバーターである。
次に、このように構成された吸収冷凍機(以下、本機と
いう)の動作例を本機の制御動作との関連において説明
する。
いう)の動作例を本機の制御動作との関連において説明
する。
なお、この動作例においては、冷水出口の目標温度Vを
7℃とし、調節器(CVD)には比例帯Pが5℃ないし2
0℃、積分時間TIが5分ないし10分、微分時間TD
が1分ないし15分にセット可能なPID調節器を用
い、また、調節器(CPHA)には冷水入口温度が12℃と
なった時に濃液用ポンプ(PHA)の吐出量を最大〔10
0%〕にセットする一方7℃となった時に零〔0%〕に
セットするものを用い、かつまた、調節器(CPLA)には
高温発生器(1)の吸収液温度が150℃となった時に稀
液用ポンプ(PLA)の吐出量を最大〔100%〕にセッ
トする一方140℃となった時に最大吐出量の1/5
〔20%〕にセットするものを用いた場合について説明
する。そして、この場合においては、冷水入口温度が冷
水出口の目標温度である7℃になった時に負荷が零〔0
%〕であり、冷水入口温度が12℃になった時に負荷が
100%であるものとしている。
7℃とし、調節器(CVD)には比例帯Pが5℃ないし2
0℃、積分時間TIが5分ないし10分、微分時間TD
が1分ないし15分にセット可能なPID調節器を用
い、また、調節器(CPHA)には冷水入口温度が12℃と
なった時に濃液用ポンプ(PHA)の吐出量を最大〔10
0%〕にセットする一方7℃となった時に零〔0%〕に
セットするものを用い、かつまた、調節器(CPLA)には
高温発生器(1)の吸収液温度が150℃となった時に稀
液用ポンプ(PLA)の吐出量を最大〔100%〕にセッ
トする一方140℃となった時に最大吐出量の1/5
〔20%〕にセットするものを用いた場合について説明
する。そして、この場合においては、冷水入口温度が冷
水出口の目標温度である7℃になった時に負荷が零〔0
%〕であり、冷水入口温度が12℃になった時に負荷が
100%であるものとしている。
今、本機の運転中に、例えば負荷が100%から50%
に急減したとき、本機の冷凍能力(冷凍出力)は急に変
らないため熱交換器(35)からほぼ7℃の冷水が負荷側へ
供給される。一方、負荷は半減しているため、負荷側か
ら熱交換器(35)に流入する冷水の温度〔冷水入口温度〕
が降下し始める。その結果、検出器(Senw)の信号によ
り比例制御用の調節器(CVD)を介して濃液用ポンプ(P
HA)の吐出量が第2図に示すように減らされて行く。な
お、第2図は冷水入口温度Y〔冷水負荷R〕(横軸に表
示されている。)と濃液用ポンプ(PHA)の吐出量MPHA
(縦軸に表示されている。)との関係を示した線図であ
る。第2図に示すようにMPHAがその最大値の100%か
ら50%へ向って比例制御されることにより、吸収器
(7)の冷却器(36)に散布される濃液流量が比例して減
り、吸収器(7)での冷媒吸収量が次第に減少する。すな
わち、負荷に見合う冷凍出力となるように吸収器(7)の
吸収能力が調整されて行くことになる。
に急減したとき、本機の冷凍能力(冷凍出力)は急に変
らないため熱交換器(35)からほぼ7℃の冷水が負荷側へ
供給される。一方、負荷は半減しているため、負荷側か
ら熱交換器(35)に流入する冷水の温度〔冷水入口温度〕
が降下し始める。その結果、検出器(Senw)の信号によ
り比例制御用の調節器(CVD)を介して濃液用ポンプ(P
HA)の吐出量が第2図に示すように減らされて行く。な
お、第2図は冷水入口温度Y〔冷水負荷R〕(横軸に表
示されている。)と濃液用ポンプ(PHA)の吐出量MPHA
(縦軸に表示されている。)との関係を示した線図であ
る。第2図に示すようにMPHAがその最大値の100%か
ら50%へ向って比例制御されることにより、吸収器
(7)の冷却器(36)に散布される濃液流量が比例して減
り、吸収器(7)での冷媒吸収量が次第に減少する。すな
わち、負荷に見合う冷凍出力となるように吸収器(7)の
吸収能力が調整されて行くことになる。
ところで、負荷の急減に対して冷水入口温度Yの降下
は、秒単位のレベルでみると、ゆるやか〔負荷側熱交換
ユニットの熱容量(冷水の容量)が大きい程Yの降下は
緩慢となる。〕であり、これに伴ない吸収器(7)の吸収
能力の調整も緩慢になるから、濃液用ポンプ(PHA)の
吐出量MPHAが調節され始めても急減した負荷に対して過
大な冷凍出力の状態がしばらくの間〔特にMPHAが50%
に固定されるまでの間〕続くことになる。このため、熱
交換器(35)内の冷水が過度に冷却されることとなり、こ
れから流出する冷水の温度〔冷水出口温度X〕も降下し
始める。その結果、検出器(Sexw)の信号によりPID
制御用の調節器(CVD)を介してダンパー(D)および燃料
制御弁(VF)の開度が制御され、高温発生器(1)の加熱
量が調節される。なお、ダンパー(D)および燃料制御弁
(VF)の開度〔前述の式(b)で求め得る〕は、制御偏差
eすなわち冷水出口の目標温度(7℃)と冷却出口温度
Xとの差がしばらくの間刻々変化するので、この間一定
にならない。
は、秒単位のレベルでみると、ゆるやか〔負荷側熱交換
ユニットの熱容量(冷水の容量)が大きい程Yの降下は
緩慢となる。〕であり、これに伴ない吸収器(7)の吸収
能力の調整も緩慢になるから、濃液用ポンプ(PHA)の
吐出量MPHAが調節され始めても急減した負荷に対して過
大な冷凍出力の状態がしばらくの間〔特にMPHAが50%
に固定されるまでの間〕続くことになる。このため、熱
交換器(35)内の冷水が過度に冷却されることとなり、こ
れから流出する冷水の温度〔冷水出口温度X〕も降下し
始める。その結果、検出器(Sexw)の信号によりPID
制御用の調節器(CVD)を介してダンパー(D)および燃料
制御弁(VF)の開度が制御され、高温発生器(1)の加熱
量が調節される。なお、ダンパー(D)および燃料制御弁
(VF)の開度〔前述の式(b)で求め得る〕は、制御偏差
eすなわち冷水出口の目標温度(7℃)と冷却出口温度
Xとの差がしばらくの間刻々変化するので、この間一定
にならない。
このように、負荷の急減直後に濃液用ポンプ(PHA)の
吐出量MPHAの比例制御が開始されると共にこの制御より
やゝ遅れて〔1〜2秒程度の遅れで人間にはほぼ同時に
感じる程度の遅れである。〕ダンパー(D)、燃料制御弁
(VF)の開度のPID制御が開始され、負荷に見合う冷
凍出力となるように本機の加熱入力も調整されて行き、
本機の熱収支のバランスが維持されることになる。
吐出量MPHAの比例制御が開始されると共にこの制御より
やゝ遅れて〔1〜2秒程度の遅れで人間にはほぼ同時に
感じる程度の遅れである。〕ダンパー(D)、燃料制御弁
(VF)の開度のPID制御が開始され、負荷に見合う冷
凍出力となるように本機の加熱入力も調整されて行き、
本機の熱収支のバランスが維持されることになる。
そして、第3図に示すように冷水出口温度Xが目標温度
にほぼ保たれ、さらに冷水入口温度Yも9.5℃〔第2
図参照〕に達すると、MPHAが50%に固定されると共に
上記開度もほぼ固定され、制御が終了する。なお、第3
図はPID制御における冷水負荷Rの変化に対する冷水
出口温度Xの刻々の変化〔制御経過〕を表わした線図で
ある。第3図において、横軸には時間t、縦軸には外乱
としての負荷Rの変化および偏差としての冷水出口温度
Xの変化が示されている。
にほぼ保たれ、さらに冷水入口温度Yも9.5℃〔第2
図参照〕に達すると、MPHAが50%に固定されると共に
上記開度もほぼ固定され、制御が終了する。なお、第3
図はPID制御における冷水負荷Rの変化に対する冷水
出口温度Xの刻々の変化〔制御経過〕を表わした線図で
ある。第3図において、横軸には時間t、縦軸には外乱
としての負荷Rの変化および偏差としての冷水出口温度
Xの変化が示されている。
また、本機においては、急減した負荷に見合う様に加熱
入力が減じられることによって高温発生器(1)内の吸収
液の温度、飽和蒸気圧が降下し始め、これに伴ない高温
発生器(1)から低温発生器(3)側への吸収液の流出量が減
り始めるため、検出器(SGA)の信号により比例制御用
の調節器(CVD)を介して稀液用ポンプ(PLA)の吐出量
が第4図に示すように減らされて行く。なお、第4図は
高温発生器(1)内の吸収液温度Zと稀液用ポンプ(PLA)
の吐出量MPLAとの関係を示した線図である。稀液用ポン
プ(PLA)の吐出量MPLAが減らされることによって、高
温発生器(1)における吸収液の出入量をバランスさせる
ことが可能となると共に吸収液の昇温のための顕熱消費
量を節約することも可能となる。
入力が減じられることによって高温発生器(1)内の吸収
液の温度、飽和蒸気圧が降下し始め、これに伴ない高温
発生器(1)から低温発生器(3)側への吸収液の流出量が減
り始めるため、検出器(SGA)の信号により比例制御用
の調節器(CVD)を介して稀液用ポンプ(PLA)の吐出量
が第4図に示すように減らされて行く。なお、第4図は
高温発生器(1)内の吸収液温度Zと稀液用ポンプ(PLA)
の吐出量MPLAとの関係を示した線図である。稀液用ポン
プ(PLA)の吐出量MPLAが減らされることによって、高
温発生器(1)における吸収液の出入量をバランスさせる
ことが可能となると共に吸収液の昇温のための顕熱消費
量を節約することも可能となる。
そして、負荷が急増した場合には、負荷の急減時の制御
と逆の動作が行なわれることになる。
と逆の動作が行なわれることになる。
このように、本機においては、負荷の変化に伴なって変
化する冷水入口温度Yを検出しつつ濃液用ポンプ
(PHA)の吐出量MPHAを制御することにより吸収器(7)へ
の濃液散布量を調節して吸収器(7)の吸収能力を調整し
ているため、高温発生器(1)の加熱量を負荷に応じて制
御することにより間接的に吸収器(7)への濃液の散布量
と濃度とを調節して吸収器(7)の吸収能力を調整する従
来のものにくらべ、冷凍出力の負荷の変化に対する応答
速度を早くすることができる。また、上記の従来のもの
はその運転を続けている限りにおいて高温発生器(1)、
発生凝縮器(2)、蒸発吸収器(5)間に圧力差をもつので吸
収器(7)への濃液の散布を断ち得ず、吸収器(7)の能力調
整に限度をもつ。これに対し、本機は、濃液用ポンプ
(PHA)を停止させることによって吸収器(7)の能力をほ
ぼ失なわせ得るので、冷凍出力の制御範囲を従来のもの
よりも拡大できる。なお、低温発生器(3)から吸収器(7)
の溶液散布器(13)へ至る濃液流路に弁を設けてこれを全
閉することにより吸収器(7)への濃液の散布を断つ手段
も考えられるが、この手段の場合、負荷の急増時に弁を
全開にすると同時に高温発生器(1)の加熱量を最大にし
ても、高温発生器(1)、発生凝縮器(2)、蒸発吸収器(5)
間の圧力差は直ちに変わらないため、吸収器(7)への濃
液の散布量を急増させることはできない。したがって、
この手段は負荷の急増時における冷凍出力の追従性に劣
る欠点をもつ。これに対し、本機においては、濃液用ポ
ンプ(PHA)の吐出量MPHAを急増させることによって、
急増した負荷に見合う迅速な冷凍出力制御が可能であ
る。なお、本機においては、濃液溜め(11)の容量を十分
大きく採ることにより濃液用ポンプ(PHA)の吐出量M
PHAを急増させた際にはそのキャビテーションを防止で
きることは勿論であり、また、MPHAを急減させた際には
溢流口(12)より濃液溜め(11)から稀液溜め(10)へ濃液を
排出できるので、MPHAを制御することによって吸収液の
流れに支障を来すようなことはない。
化する冷水入口温度Yを検出しつつ濃液用ポンプ
(PHA)の吐出量MPHAを制御することにより吸収器(7)へ
の濃液散布量を調節して吸収器(7)の吸収能力を調整し
ているため、高温発生器(1)の加熱量を負荷に応じて制
御することにより間接的に吸収器(7)への濃液の散布量
と濃度とを調節して吸収器(7)の吸収能力を調整する従
来のものにくらべ、冷凍出力の負荷の変化に対する応答
速度を早くすることができる。また、上記の従来のもの
はその運転を続けている限りにおいて高温発生器(1)、
発生凝縮器(2)、蒸発吸収器(5)間に圧力差をもつので吸
収器(7)への濃液の散布を断ち得ず、吸収器(7)の能力調
整に限度をもつ。これに対し、本機は、濃液用ポンプ
(PHA)を停止させることによって吸収器(7)の能力をほ
ぼ失なわせ得るので、冷凍出力の制御範囲を従来のもの
よりも拡大できる。なお、低温発生器(3)から吸収器(7)
の溶液散布器(13)へ至る濃液流路に弁を設けてこれを全
閉することにより吸収器(7)への濃液の散布を断つ手段
も考えられるが、この手段の場合、負荷の急増時に弁を
全開にすると同時に高温発生器(1)の加熱量を最大にし
ても、高温発生器(1)、発生凝縮器(2)、蒸発吸収器(5)
間の圧力差は直ちに変わらないため、吸収器(7)への濃
液の散布量を急増させることはできない。したがって、
この手段は負荷の急増時における冷凍出力の追従性に劣
る欠点をもつ。これに対し、本機においては、濃液用ポ
ンプ(PHA)の吐出量MPHAを急増させることによって、
急増した負荷に見合う迅速な冷凍出力制御が可能であ
る。なお、本機においては、濃液溜め(11)の容量を十分
大きく採ることにより濃液用ポンプ(PHA)の吐出量M
PHAを急増させた際にはそのキャビテーションを防止で
きることは勿論であり、また、MPHAを急減させた際には
溢流口(12)より濃液溜め(11)から稀液溜め(10)へ濃液を
排出できるので、MPHAを制御することによって吸収液の
流れに支障を来すようなことはない。
更にまた、本機においては、冷水出口温度Xを検出しつ
つ空気供給路(42)のダンパー(D)および燃料制御弁
(VF)のPID動作による高温発生器(1)の加熱量を調
節して吸収液の濃縮の度合を調整しているので、吸収器
(7)の冷却器(36)に散布される濃液の飽和蒸気圧、飽和
温度をほぼ所定の範囲内に保つことが可能であると共に
冷水出口温度をほぼ目標温度V〔7℃〕に保つことも可
能であり、かつ、濃液用ポンプ(PHA)の吐出量MPHAの
制御による冷凍出力の増減変化に対応させて本機の加熱
入力を増減しつつ本機の熱収支をバランスさせることも
可能である。なお、本機においては、ダンパー(D)およ
び燃料制御弁(VF)のPI動作による加熱量調節を行な
うようにしても良い。PI動作による調節の場合には、
PID動作による調節の場合にくらべ、冷水負荷Rの急
変の際に冷水出口温度Xのハンチングが過渡的にやゝ大
きくなるものの、この程度のハンチングは無視し得る
〔特に容量の大きな吸収冷凍機の加熱量調節において
は、ハンチングの程度に大差がない。〕。
つ空気供給路(42)のダンパー(D)および燃料制御弁
(VF)のPID動作による高温発生器(1)の加熱量を調
節して吸収液の濃縮の度合を調整しているので、吸収器
(7)の冷却器(36)に散布される濃液の飽和蒸気圧、飽和
温度をほぼ所定の範囲内に保つことが可能であると共に
冷水出口温度をほぼ目標温度V〔7℃〕に保つことも可
能であり、かつ、濃液用ポンプ(PHA)の吐出量MPHAの
制御による冷凍出力の増減変化に対応させて本機の加熱
入力を増減しつつ本機の熱収支をバランスさせることも
可能である。なお、本機においては、ダンパー(D)およ
び燃料制御弁(VF)のPI動作による加熱量調節を行な
うようにしても良い。PI動作による調節の場合には、
PID動作による調節の場合にくらべ、冷水負荷Rの急
変の際に冷水出口温度Xのハンチングが過渡的にやゝ大
きくなるものの、この程度のハンチングは無視し得る
〔特に容量の大きな吸収冷凍機の加熱量調節において
は、ハンチングの程度に大差がない。〕。
また、本機においては、高温発生器(1)の吸収液温度Z
を検出しつつ稀液用ポンプ(PLA)の吐出量MPLAを制御
することにより、高温発生器(1)内の吸収液の沸騰温度
を所定の範囲内(140℃〜150℃)に維持してその
飽和蒸気圧を一定の範囲内に保ち、高温発生器(1)と低
温発生器(3)間の圧力差が極端に変化しないようにして
いるので、高温発生器(1)からの吸収液の流出量をほぼ
所定の範囲内に保ち得、かつ、高温発生器(1)の加熱量
に見合うように吸収液の流入量を調節できるので、加熱
効率を高水準に維持しつつ高温発生器(1)における吸収
液の出入量のバランスを保つこともできる。そして、本
機においては、濃液用ポンプ(PHA)の吐出量制御によ
り吸収器(7)の冷媒吸収能力を調整して負荷〔特に急変
した負荷〕に見合う冷凍出力を発揮し得ることと併せ
て、稀液用ポンプ(PLA)の吐出量制御により高温発生
器(1)での吸収液の出入量を加熱量に見合うよう調節し
て効率良く吸収液の濃縮を行ない得る。また、本機にお
いては、濃液用ポンプ(PHA)の吐出量と稀液用ポンプ
(PLA)の吐出量とを制御することによって濃液流量と
稀液流量をほぼ同量にすることも可能であるので、機内
での吸収液の偏在を防いで吸収液の円滑な循環を続け得
る効果も発揮される。なお、この効果は低温発生器を有
さない一重効用吸収冷凍機においてより一層良好に発揮
される。なおまた、本機において、稀液用ポンプ
(PLA)の吐出量制御は熱交換器(35)から温水を得る運
転の際にも可能である。ただし、この運転の際には、調
節器(CPLA)の比例帯や設定温度を冷水の取得運転の際
と異なる値にしても良いことは勿論である。
を検出しつつ稀液用ポンプ(PLA)の吐出量MPLAを制御
することにより、高温発生器(1)内の吸収液の沸騰温度
を所定の範囲内(140℃〜150℃)に維持してその
飽和蒸気圧を一定の範囲内に保ち、高温発生器(1)と低
温発生器(3)間の圧力差が極端に変化しないようにして
いるので、高温発生器(1)からの吸収液の流出量をほぼ
所定の範囲内に保ち得、かつ、高温発生器(1)の加熱量
に見合うように吸収液の流入量を調節できるので、加熱
効率を高水準に維持しつつ高温発生器(1)における吸収
液の出入量のバランスを保つこともできる。そして、本
機においては、濃液用ポンプ(PHA)の吐出量制御によ
り吸収器(7)の冷媒吸収能力を調整して負荷〔特に急変
した負荷〕に見合う冷凍出力を発揮し得ることと併せ
て、稀液用ポンプ(PLA)の吐出量制御により高温発生
器(1)での吸収液の出入量を加熱量に見合うよう調節し
て効率良く吸収液の濃縮を行ない得る。また、本機にお
いては、濃液用ポンプ(PHA)の吐出量と稀液用ポンプ
(PLA)の吐出量とを制御することによって濃液流量と
稀液流量をほぼ同量にすることも可能であるので、機内
での吸収液の偏在を防いで吸収液の円滑な循環を続け得
る効果も発揮される。なお、この効果は低温発生器を有
さない一重効用吸収冷凍機においてより一層良好に発揮
される。なおまた、本機において、稀液用ポンプ
(PLA)の吐出量制御は熱交換器(35)から温水を得る運
転の際にも可能である。ただし、この運転の際には、調
節器(CPLA)の比例帯や設定温度を冷水の取得運転の際
と異なる値にしても良いことは勿論である。
なお、本機において、検出器(Senw)、(Sexw)、(S
GA)はそれぞれ管路(37)、(38)、高温発生器(1)の壁温
を感知するように構成しても良い。
GA)はそれぞれ管路(37)、(38)、高温発生器(1)の壁温
を感知するように構成しても良い。
(ト) 発明の効果 以上のとおり、本発明によれば、負荷の急変に対する冷
凍出力制御の追従性を向上できると共にその制御範囲も
拡大でき、また、負荷に対応させて調整した冷凍出力に
見合うように加熱入力を調節しつつ(この種の吸収冷凍
機の熱収支をバランスさせつつ)吸収液を濃縮して吸収
器および蒸発器内の飽和温度をほぼ所定の温度に保ち得
ると共に冷水出口温度をほぼ目標値に保ち得、かつま
た、発生器内の吸収液の温度すなわち沸騰温度を所定の
範囲に維持すると共に加熱量に見合う発生器への稀液供
給量に維持することができ、この結果、負荷が変化した
際にも発生器の熱効率を高水準に保つことができ、ま
た、濃液用ポンプ及び稀液用ポンプの吐出量を調節して
機内での吸収液の偏在を防止して吸収液の機内循環を良
好に保つことができ、この結果、吸収冷凍機の運転を安
定することができるなど、従来のこの種の吸収冷凍機で
は発揮することの困難であった優れた効果をこの種の吸
収冷凍機にもたらすことができる。
凍出力制御の追従性を向上できると共にその制御範囲も
拡大でき、また、負荷に対応させて調整した冷凍出力に
見合うように加熱入力を調節しつつ(この種の吸収冷凍
機の熱収支をバランスさせつつ)吸収液を濃縮して吸収
器および蒸発器内の飽和温度をほぼ所定の温度に保ち得
ると共に冷水出口温度をほぼ目標値に保ち得、かつま
た、発生器内の吸収液の温度すなわち沸騰温度を所定の
範囲に維持すると共に加熱量に見合う発生器への稀液供
給量に維持することができ、この結果、負荷が変化した
際にも発生器の熱効率を高水準に保つことができ、ま
た、濃液用ポンプ及び稀液用ポンプの吐出量を調節して
機内での吸収液の偏在を防止して吸収液の機内循環を良
好に保つことができ、この結果、吸収冷凍機の運転を安
定することができるなど、従来のこの種の吸収冷凍機で
は発揮することの困難であった優れた効果をこの種の吸
収冷凍機にもたらすことができる。
第1図は本発明によるこの種の吸収冷凍機の一実施例を
示した概略構成説明図、第2図は冷水入口温度Yおよび
冷水負荷Rと濃液用ポンプの吐出量MPHA との関係を示
した線図、第3図はPID制御における冷水負荷Rのス
テップ変化に対する冷水出口温度Xの変化の経過を示し
た線図、第4図は吸収液温度Zと稀液用ポンプの吐出量
MPLA との関係を示した線図である。 (1)……高温発生器、(2)……発生凝縮器、(3)……低温
発生器、(4)……凝縮器、(5)……蒸発吸収器、(6)……
蒸発器、(7)……吸収器、(8),(9)……低温,高温溶液
熱交換器、(10)……稀液溜め、(11)……濃液溜め、(12)
……溢流口、(13)……溶液散布器、(PLA)……稀液用
ポンプ、(PHA)……濃液用ポンプ、(21),(22),(2
3),(24),(25),(26),(27),(28),(29),(30)……
管、(31)……燃燒加熱室、(33)……加熱器、(34)……冷
却器、(35)……熱交換器、(36)……冷却器、(37),(38)
……管路、(42)……空気供給路、(43)……燃料供給路、
(D)……ダンパー、(VF)……燃料制御弁、(Senw)、
(Sexw)、(SGA)……検出器、(CPHA)、(CVD)、
(CPLA)……調節器。
示した概略構成説明図、第2図は冷水入口温度Yおよび
冷水負荷Rと濃液用ポンプの吐出量MPHA との関係を示
した線図、第3図はPID制御における冷水負荷Rのス
テップ変化に対する冷水出口温度Xの変化の経過を示し
た線図、第4図は吸収液温度Zと稀液用ポンプの吐出量
MPLA との関係を示した線図である。 (1)……高温発生器、(2)……発生凝縮器、(3)……低温
発生器、(4)……凝縮器、(5)……蒸発吸収器、(6)……
蒸発器、(7)……吸収器、(8),(9)……低温,高温溶液
熱交換器、(10)……稀液溜め、(11)……濃液溜め、(12)
……溢流口、(13)……溶液散布器、(PLA)……稀液用
ポンプ、(PHA)……濃液用ポンプ、(21),(22),(2
3),(24),(25),(26),(27),(28),(29),(30)……
管、(31)……燃燒加熱室、(33)……加熱器、(34)……冷
却器、(35)……熱交換器、(36)……冷却器、(37),(38)
……管路、(42)……空気供給路、(43)……燃料供給路、
(D)……ダンパー、(VF)……燃料制御弁、(Senw)、
(Sexw)、(SGA)……検出器、(CPHA)、(CVD)、
(CPLA)……調節器。
Claims (3)
- 【請求項1】吸収器、発生器、凝縮器及び蒸発器を配管
接続して冷媒及び溶液の流路を形成し、かつ、吸収器か
ら発生器に至る稀溶液の流路に設けられた吐出量可変の
稀液用ポンプと、発生器から吸収器に至る濃溶液の流路
に設けられた吐出量可変の濃液用ポンプと、蒸発器の冷
水入口温度を検出する第1の温度検出器と、この第1の
温度検出器が検出した温度により濃液用ポンプの吐出量
を制御する濃溶液流量調節装置と、蒸発器の冷水出口温
度を検出する第2の温度検出器と、この第2の温度検出
器が検出した温度により発生器の加熱量を制御する加熱
量調節装置と、発生器の溶液温度を検出する第3の温度
検出器と、この第3の温度検出器が検出した温度により
稀液用ポンプの吐出量を制御する稀溶液流量調節装置と
が備えられていることを特徴とした吸収冷凍機。 - 【請求項2】前記濃溶液流量調節装置および稀溶液流量
調節装置の制御動作が比例動作であり、かつ、加熱量調
節装置の制御動作がPID動作である特許請求の範囲第
1項に記載の吸収冷凍機。 - 【請求項3】前記濃溶液流量調節装置および稀溶液流量
調節装置の制御動作が比例動作であり、かつ、加熱量調
節装置の制御動作がPI動作である特許請求の範囲第1
項に記載の吸収冷凍機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21526385A JPH0627591B2 (ja) | 1985-09-27 | 1985-09-27 | 吸収冷凍機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21526385A JPH0627591B2 (ja) | 1985-09-27 | 1985-09-27 | 吸収冷凍機 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6277567A JPS6277567A (ja) | 1987-04-09 |
JPH0627591B2 true JPH0627591B2 (ja) | 1994-04-13 |
Family
ID=16669413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21526385A Expired - Lifetime JPH0627591B2 (ja) | 1985-09-27 | 1985-09-27 | 吸収冷凍機 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0627591B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2584923B2 (ja) * | 1991-10-30 | 1997-02-26 | 山武ハネウエル株式会社 | 吸収冷温水器コントローラ |
US5592825A (en) * | 1994-08-30 | 1997-01-14 | Ebara Corporation | Absorption refrigeration machine |
-
1985
- 1985-09-27 JP JP21526385A patent/JPH0627591B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6277567A (ja) | 1987-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0473064B2 (ja) | ||
JP2523042B2 (ja) | 吸収冷温水機 | |
JPH0627591B2 (ja) | 吸収冷凍機 | |
JPH0627590B2 (ja) | 吸収冷凍機 | |
JP2858922B2 (ja) | 吸収冷温水機の制御装置 | |
JPH0586543B2 (ja) | ||
JP2883372B2 (ja) | 吸収冷温水機 | |
JP2532982B2 (ja) | 吸収冷凍機の制御装置 | |
JP2645824B2 (ja) | 二重効用吸収冷凍機 | |
JPS602580B2 (ja) | 吸収式冷温水機の制御装置 | |
JPH0379631B2 (ja) | ||
JP2777470B2 (ja) | 吸収冷凍機の制御装置 | |
JP2654009B2 (ja) | 吸収冷凍機 | |
JPH0868572A (ja) | 二重効用吸収冷凍機 | |
JP2567663B2 (ja) | 空冷式二重効用吸収冷凍機 | |
JPS6113546B2 (ja) | ||
JPS586229Y2 (ja) | 吸収冷凍機 | |
JPH08233392A (ja) | 吸収式冷凍機 | |
JPS6113888Y2 (ja) | ||
JPS6117319Y2 (ja) | ||
JPH07190540A (ja) | 吸収冷凍機の制御装置 | |
JPH0356861Y2 (ja) | ||
JPH0411779B2 (ja) | ||
JPH0198865A (ja) | 吸収冷凍機 | |
JP2000161812A (ja) | 吸収冷凍機の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |